Translator Disclaimer
20 June 2018 Total variation-based dense depth from multicamera array
Author Affiliations +
Multicamera arrays are increasingly employed in both consumer and industrial applications, and various passive techniques are documented to estimate depth from such camera arrays. Current depth estimation methods provide useful estimations of depth in an imaged scene but are often impractical due to significant computational requirements. This paper presents a framework that generates a high-quality continuous depth map from multicamera array/light-field cameras. The proposed framework utilizes analysis of the local epipolar plane image to initiate the depth estimation process. The estimated depth map is then refined using total variation minimization based on the Fenchel–Rockafellar duality. Evaluation of this method based on a well-known benchmark indicates that the proposed framework performs well in terms of accuracy when compared with the top-ranked depth estimation methods and a baseline algorithm. The test dataset includes both photorealistic and nonphotorealistic scenes. Notably, the computational requirements required to achieve an equivalent accuracy are significantly reduced when compared with the top algorithms. As a consequence, the proposed framework is suitable for deployment in consumer and industrial applications.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2018/$25.00 © 2018 SPIE
Hossein Javidnia and Peter Corcoran "Total variation-based dense depth from multicamera array," Optical Engineering 57(6), 063105 (20 June 2018).
Received: 21 February 2018; Accepted: 31 May 2018; Published: 20 June 2018

Back to Top