You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 January 2010Negatively refracting chiral metamaterials: a review
Chirality extends the class of negatively refracting metamaterials by endowing a richer palette of electromagnetic properties. Chiral metamaterials can support negative refraction, which must be assessed in light of the closely related phenomenons of negative phase velocity and counterposition. Two categories of chiral metamaterials are being examined these days: (a) homogeneous and homogenizable chiral materials, as exemplified by isotropic chiral materials, Faraday chiral materials, and materials with simultaneous mirror-conjugated and racemic chirality characteristics; and (b) structurally chiral materials, as exemplified by helicoidal bianisotropic materials and ambichiral materials. The planewave response of a half-space occupied by a chiral metamaterial is complex, and important distinctions between negative refraction, negative phase velocity, and counterposition emerge.
The alert did not successfully save. Please try again later.
Tom G. Mackay, Akhlesh Lakhtakia, "Negatively refracting chiral metamaterials: a review," SPIE Rev. 1(1) 018003 (1 January 2010) https://doi.org/10.1117/6.0000003