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Abstract. Soil-moisture information plays an important role in disaster predictions, environ-
mental monitoring, and hydrological applications. A large number of research papers have
introduced a variety of methods to retrieve soil-moisture information from different types of
remote sensing data, such as optical data or radar data. We evaluate the most robust methods for
retrieving soil-moisture information of bare soil and vegetation-covered soil. We begin with an
introduction to the importance and challenges of soil-moisture information extraction and the
development of soil-moisture retrieval methods. An overview of soil-moisture retrieval methods
using different remote sensing data is presented—either active or passive or a combination of
both active and passive remote sensing data. The results of the methods are compared, and
the advantages and limitations of each method are summarized. The comparison shows that
using a statistical method gives the best results among others in the group: a combination of
both active and passive sensing methods, reaching a 1.83% gravimetric soil moisture (%GSM)
root-mean-square error (RMSE) and a 96% correlation between the estimated and field soil
measurements. In the group of active remote sensing methods, the best method is a backscatter
empirical model, which gives a 2.32–1.81%GSM RMSE and a 95–97% correlation between the
estimated and the field soil measurements. Finally, among the group of passive remote sensing
methods, a neural networks method gives the most desirable results: a 0.0937%GSM RMSE
and a 100% correlation between the estimated and field soil measurements. Overall, the newly
developed neural networks method with passive remote sensing data achieves the best results
among all the methods reviewed. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3534910]
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1 Introduction

1.1 Importance of Soil-Moisture Information

Estimating soil properties, including soil moisture, is important for many water-budgeting
processes, and for meteorological and agricultural applications.1 Soil-moisture information can
also be used as an indicator for the prediction of natural disasters, such as flooding and droughts,
and for environment changing, such as dust storms and erosions.2 However, measuring accurate
in situ soil moisture is too expensive because it requires a repeated sampling process to analyze
the periodical changes in soil moisture. Moreover, the sampling itself may introduce problems,
making the sampled data unreliable.3

Remote sensing has the ability to collect information from various samples over a large
area in a short time and repeated time intervals, especially with recent developments in sensor
functionality and both temporal and spatial image resolution.

1946-3251/2011/$25.00 C© 2011 SPIE

SPIE Reviews 028001-1 Vol. 2, 2011

mailto: a.ahmad@unb.ca
http://dx.doi.org/10.1117/1.3534910


Ahmad, Zhang, and Nichols: Review and evaluation of remote sensing methods for soil moisture estimation

1.2 Challenges of Soil-Moisture Estimation

The task estimating soil moisture becomes more difficult when the study area is a land covered
with intense vegetation or snow and when there are significant topographical changes in the
area.4,5 The most accurate results are achieved when there is no or low soil cover, especially
when the test area is flat. By considering soil cover and topography as the main parameters that
affect soil-moisture estimation, the question that must be answered is why does soil covered
with vegetation or snow, and with topographical changes, cause difficulty in estimating soil
moisture accurately.

The emitted electromagnetic radiation (in the passive remote sensing case) or the reflected
microwave radiation (in the active remote sensing case) from the soil surface to the sensor rep-
resents the only measurement for studying the soil properties remotely. This emitted or reflected
radiation from a covered soil surface to the remote sensor will no longer represent the actual
soil surface emission because part of the emitted/reflected radiation might be either absorbed
or enhanced by the soil cover.6 For topography, the surface roughness may be underestimated
or overestimated because the surface will be either tilted toward or against the remote sensor.7

Therefore, spots located at changing ground topography may have different local incidence
angles with respect to the sensor and might give unreal predictions.

From the remote sensing image interpretation point, when the value of a pixel has been
acquired from a homogenous land cover, the value reflects the actual land cover where the pixel
was captured. However, when a land area consists of a mixture of vegetation and bare soil
cover, the acquired pixel’s value would be reflected from a mix of both types of land cover.
Heterogeneity is defined as consisting of elements that are not of the same kind or nature.8

Pixels’ dissimilarity can be defined as a representation of different land covers within a pixel
value. Captured pixels’ values from different land cover cause confusion in assigning the exact
pixel label to the right land cover, especially in a large-scale area. Additionally, different land
cover reduces the classification accuracy of soil-moisture retrieval and mixed-pixel value has
better accuracy and a lower root-mean-square error (RMSE) in soil-moisture classification.3,4

In terms of the soil-moisture estimation depth, remote sensing methods have been relatively
successful in measuring the moisture at a depth of 5 cm from the top soil surface for bare soil
or soil with less vegetation.9–11 Meanwhile, estimating soil moisture at the root zone depth, 10
cm or more from the soil surface, can be considered as another challenge.

For brevity, a number of acronyms have been used in this paper and are defined as follows:
moderate resolution imaging spectroradiometer (MODIS), synthetic aperture radar (SAR), ad-
vanced microwave scanning radiometer–EOS (AMSR-E), Earth Resources Satellite (ERS),
pushbroom microwave radiometer (PBMR), Japanese Earth Resources Satellite (JERS), space-
borne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR), land surface temper-
ature (LST), advanced land observing satellite–PRISM and AVNIR instruments additional
to L-band SAR (ALOS-PALSAR), microwave imaging radiometer using aperture synthesis
(MIRAS), tropical rainfall measuring mission/microwave imager (TRMM/TMI) remote sens-
ing data, electrically scanning microwave radiometer (ESMR), Electro Magnetics Institute
Radiometers (EMIRAD), and advanced space born thermal emission and reflection radiometer
(ASTER).

1.3 Sensors Development for Soil-Moisture Estimation

Table 1 briefly describes the development of some of the satellites that have been widely used
for soil moisture estimation since 1991.

1.4 Purpose and Workflow of this Study

Different soil-moisture evaluation methods have been introduced by different authors for dif-
ferent applications. The purpose of this study is to review, compare, and summarize existing
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Table 1 Satellites’ sensor developments for soil-moisture estimation.

Satellite Sensor Year launched Owned by Data type

Land sat Land sat 1975 NASA Passive
ESRI-1 SAR-C-band July 1991 European Space

Agency
Active

JERS-1 SAR-L-band February 1992 Japanese Agency Active
SIR-C/X-SAR SAR April 1994 U.S–German-

Italian
Active

ERS-2 SAR April 1995 European Space
Agency

Active

RADARSAT-1 SAR-C-band November
1995

Canadian Space
Agency

Active

Terra MODIS- Terra December
1999

NASA, partnerships
with the aerospace
agencies of Canada
and Japan.

Passive

ASTER- Terra NASA, partnerships
with the aerospace
agency of Japan.

Aqua AMSR-E- Aqua May 2002 NASA and the
National Space
Development
Agency (JAXA) of
Japan

Passive

MODIS- Aqua

ALOS-PALSAR SAR L-band,
PRISM, and
AVNIR-2
instrument

January 2006 National Space
Development
Agency of Japan

Passive + Active

RADARSAT-2 SAR-C-band December
2007

Canadian Space
Agency

Active

SMOS MIRAS
(interferometric
radiometer)
L-band

November
2009

European Space
Agency

Passive

methods to identify their effectiveness and weaknesses. The objective is to evaluate the methods
that are applicable to land cover with mixed vegetation and bare soil.

The paper begins with an overview of the importance, challenges and development of soil-
moisture information estimation using remote sensing. Then, an introduction to the remote
sensing methods that are applied to soil-moisture information estimation from different satellite
imagery is presented. This is followed by an overview of different methods, which are classified
into three main groups based on the remote sensing data used: group of active remote sensing
methods, group of passive remote sensing methods, and group of combined of active and
passive remote sensing methods. Some methods are used commonly in all the three groups. A
comparison of each group methods is then presented, and the most robust method of all groups
is identified. Finally, the results are discussed and a conclusion is drawn. The information
presented in this paper is shown in Fig. 1. The paper’s main sections are drawn as trapezoidal
shapes in the diagram, and the methods that are used in each remote sensing group are presented
separately in rectangular shapes.

2 Soil-Moisture Retreival Methods Using Remote Sensing

Soil-moisture information can be retrieved from different remote sensing methods using different
data, such as visible, infrared, thermal, and microwave data.12 Each remote sensing method
used has its own advantages and disadvantages, based on how sensitive the soil surface is to
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Fig. 1 Presentation of the paper’s content.

the electromagnetic radiation and how strong the reflected radiation, from the soil surface, can
be received by the sensor. To follow is an overview, including pros, cons, and a comparison
among three different remote sensing group of methods that have been widely applied in field
of soil-moisture estimation.

2.1 Group of Active Remote Sensing Methods

Electromagnetic microwave radiation with a wavelength that ranges between 0.5 and 100 cm
has been used to measure soil characteristics using active remote sensing. The SAR sensor, an
active remote sensor, is the most widely used sensor for soil-moisture estimation because of its
ability to capture high-resolution images for soil-moisture retrieval based on the spatial variation
in the ground soil moisture.

The operation’s process is based on two main factors: sensor parameters and soil parameters.
The sensor-parameter factor is represented by the variations in signal backscatter as a function of
wavelength, incidence angle, and polarization.13,14 The soil-parameter factor is represented by
the soil surface, the attenuation of the signal through the vegetation canopy, and the vegetation
volume radiation backscatter.15 Normally, the lower the soil moisture content is in the soil
surface, the stronger the radar backscatter value will be under the same land-cover conditions.

The backscatter signal (σ ◦) of an object is an amount of radiation reflected from the object’s
surface area and measured by a unit area in radar cross section.16 In other words, it represents
the amount of measured microwave radiation that was sent originally by a radar sensor toward
an object and then reflected from the object’s surface area toward the radar sensor.

Like other active microwave sensors, SAR has the ability to penetrate the sublayer under
the soil surface area.17 SAR provides high spatial resolution images, normally tens of meters.
Furthermore, the technique of capturing SAR imagery is not influenced by weather conditions.
However, it has a low revisit frequency and more sensitivity to soil roughness and vegetation.18

The following group of methods, which uses active remote sensing data, is widely used for
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soil-moisture estimation: backscattering models, statistical analysis technique, and neural net-
works application.

2.1.1 Backscattering models

The backscattered signal σ ◦ is received by the radar sensor as an electromagnetic microwave
emission. Then backscatter radiation is converted to decibel values using the following
formula:19

σ ◦
dB = 10 log10(σ ◦) (1)

For modeling the radar backscatter signal, three kinds of models have been used for soil-moisture
estimation: empirical models, semi-empirical models, and theoretical models.

Empirical models. Empirical backscatter models result from several site experiment mea-
surements of the backscatter signals (σ ◦) that are reflected from the soil surface to the radar
sensor. The measured data are used to establish general boundaries or conditions that can be
applied to obtain reasonably accurate soil-moisture results.20 However, empirical models may
not be applicable when the set of conditions is changed, such as frequency, incidence angle,
surface roughness, vegetation density, topography, etc. Therefore, they do not deliver desirable
correlation results with the field measurement under a different set of conditions.21 Some em-
pirical models are designed based on using different sensor polarization, which is either vertical
or horizontal, to estimate soil roughness and soil moisture, such as Wang,22 Dubois et al.,7 and
Oh et al.21 models, and Zribi and Dechambre model.23

Theoretical model. Theoretical models are derived under restrictive theoretical basis to
predict the general trend of radar backscatter in response to changes in soil roughness or
soil moisture.15,20,22,24 Theoretical backscatter models are good for describing the soil surface
properties based on a theoretical perspective. In addition, these models can be applied at different
soil characteristics using different sensor properties. However, it is difficult for theoretical
models to represent all the architecture of the vegetation canopy in one model; therefore, some
models are designed to present only the leaf part, whereas others present only the branch part.25

Theoretical modeling is sensitive to surface soil roughness and vegetation, and small deviations
in soil roughness can cause a large difference in the calculated backscatter; hence, these models
are described as highly sensitive to signal backscatter.26 An example of widely used theoretical
models is Kirchhoff model, which represents the relationship between a geometrical optics
model and a physical optics model from radar backscatter.27 The Chen et al. model is another
widely used theoretical model.28

Semi-empirical model. Semi-empirical models are derived from experimental data to develop
empirical fitting of backscatter measurements for the soil surface.25 These models find an
agreement between empirical models and theoretical models by having common rules derived
from both models. Semi-empirical models provide a detailed description of radar backscatter of
soil moisture, and they might be applied when little or no information about surface roughness
for deriving these models is available.29

Oh proposed a semi-empirical model of the ensemble-averaged differential Mueller matrix,
which uses backscatter signal on bare soil.30 The two other commonly used soil-moisture
retrieval methods—statistical analysis technique and neural networks—are explained in
Secs. 2.3.2 and 2.3.3, respectively.

2.2 Group of Passive Remote Sensing Methods

Modeling soil moisture using passive remote sensing information has made a large impact on
mapping the global soil moisture because it is the best method for representing the global soil-
moisture distribution.31 This group of methods retrieves soil-moisture information independently
even when there is a vegetation canopy available,32 and it provides information about land
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properties, such as surface temperature and Normalized Difference Vegetation Index (NDVI).
In addition, passive microwave systems have the ability to cover a large surface area with
a low spatial resolution, normally tens of kilometers. However, some researchers imply that
the optical/IR method has the advantage of providing fine spatial resolution for soil-moisture
estimation.33 The thermal infrared remote sensing band, which ranges from 3 to 14 μm, is the
electromagnetic wavelength that measures the land characteristics in this group of methods.
These methods have proven their ability to retrieve soil-moisture information independently by
providing direct measurements for soil moisture.34 The first attempt to estimate soil moisture
from passive remote sensing information was proposed by Jackson,35 whose method was adopted
to calculate soil-moisture retrieval at the top meters of the soil surface. Later, many applications
were proposed based on establishing a relationship among land parameters, vegetation indices,
and surface radiant temperature measurements.36,37 The following group of methods, which use
passive remote sensing data, is widely used for soil-moisture estimation: universal triangular
relationship method, brightness models, statistical analysis technique, and neural networks
application.

2.2.1 Universal triangular relationship method

The universal triangular relationship is a widely used method for modeling different soil-
vegetation cover areas. It was proposed by Carlson34 and Owen et al.,37 after they had conducted
many trial experiments.

The method shows that there is a universal relationship among soil moisture, NDVI, and LST
of a given region. The shape of the relationship is triangular or slightly truncated trapezoidal
(Fig. 2). The ellipsoid shape drawn at the upper left edge of the triangle is represented by pixels
having commonly low ground moisture content with low vegetation and high temperature called
the “dry edge,” and most of these pixels lie on bare soil. The ellipsoid shape drawn in the middle
zone area represents by pixels that lie in a partially vegetated cover area and have commonly
low moisture content with an average temperature. The lower right edge ellipsoid represents by
pixels that lie in a vegetation covered area with high soil moisture and low temperature called,
the “wet edge.” Hence, every captured pixel will be presented within the range between the
warm edge and the wet edge of the drawn triangle, and located depending on how moist and
vegetated the area is.

The relationship among the three parameters is presented in the following regression
formula:33

M =
i=n∑

i=0

j=n∑

J=0

aij NDVI∗(i)T∗(j ), (2)

Fig. 2 NDVI-Ts representation for universal triangular method (Ref. 38).
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where aij is the regression coefficient. The method is widely applicable to any land that has bare
soil and vegetation cover.38

Although the method is based on optical remote sensing data, which is influenced by
atmospheric conditions, the universal method is insensitive to surface conditions, atmosphere,
and net radiation.34 Furthermore, the method requires a simple process to extract the ground
soil–moisture information using passive land parameter data.33

Recently, the universal method has been modified by redefining the slope of the wet edge
line from a horizontal, which has a zero slope, to a nonhorizontal slope;34 however, the overall
shape is still triangular. Other indexes have been derived based on the method’s principles,
such as temperature vegetation water index (TVWI).39 Many other studies have followed this
method, such as the methods of Sandholt et al.38 and Wang et al.33 The method’s limitation is
that it is affected by topographic changes; therefore, the land surface where the triangular shape
will be identified must be flat.34

2.2.2 Brightness models

Brightness models, also called radiometric models, give better estimation results on bare soil
because the surface emission radiation reflects the soil’s dielectric properties. Brightness tem-
perature (TB) represents the model’s main input parameter; TB is the amount of measured
radiation, in terms of temperature, from an object’s surface to the sensor. Additional data such
as the vegetation parameters and the surface parameters (e.g., bulk density and soil texture) can
be added to improve the model’s output results. Another important soil parameter that affects
these models is the soil roughness, which is represented by root-mean-square (RMS) height and
the correlation length.1–40

Compared to the modeling applications, radiometric models are relatively easy to implement
and don not need field experiments.41 However, their use is more limited to a specific case or
available data. Many brightness algorithm models were proposed for retrieving soil moisture
from passive data.42–44 The model of Shi et al. is another example based on the relationship
between surface microwave brightness temperature and the physical surface temperature.45 The
other two commonly used methods, which are statistical analysis technique and neural networks
application, will be explained in Secs. 2.3.2 and 2.3.3.

2.3 Group of Combined Active and Passive Remote Sensing Methods

As remote sensor instruments and space craft have been developed, integrating both active and
passive remote sensing information with their particular strengths and weaknesses, has become
worthwhile. Thus, combining high spatial resolution information from active remote sensing
with high temporal resolution information from passive remote sensing on an extended area
has improved the soil-moisture estimation accuracy. In addition, the revolution of developing
advanced spacecrafts, which are designed to carry multisensor instruments, both passive and
active, enabled integrating both data together in one system, such as ALOS-PALSAR and the
Soil Moisture Active and Passive (SMAP) mission (planned to be launched in 2014). The first
implemented algorithm that used the advantages of this method was implemented by O’Neill.46

It has been found that the results improved substantially as compared to using each type of
data individually. As a result, many researchers follow the technique of integrating both active
and passive methods for soil-moisture estimation. The most widely used group of methods,
which combines both active and passive data, is as follows: microwave combined algorithms,
statistical analysis technique, and neural networks application.

2.3.1 Microwave combined algorithms

Normally, soil-moisture estimation algorithms analyze the pixels’ digital number (DN) after
making sure that the effects of atmosphere, vegetation, geometry, soil properties, and sensor
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configurations have been corrected. Later, the algorithm that establishes an objective relationship
between the estimated and field soil-moisture measurements may be initiated.

Integrating information from both passive and active remote sensing data in a complementary
way to reach a new level of accurately estimated results is the main aim of this methodology.
A combined algorithm includes input parameters extracted from active remote sensing, such
as vegetation and surface roughness, and parameters extracted from passive remote sensing,
such as brightness temperature (TB). In most cases, the algorithm also considers essential soil-
moisture parameters that affect the estimated soil-moisture accuracy, such as optical depth and
surface roughness.47

A workshop report released by the NASA Soil Moisture community for the Active/Passive
(SMAP) Mission implies that combined algorithms are not as robust as the brightness passive
algorithms.48 However, combining active with passive methods, such as SAR and radiometer,
can reduce soil-moisture prediction errors to ±30% of the true field capacity.49

2.3.2 Statistical analysis technique

All kinds of remote sensing data that have been mentioned above can be used in the methods
for soil-moisture estimation. This method uses statistical calculations on the data to draw
a relationship between two variables: the estimated soil moisture from the remote sensing
information and the field soil moisture. Most of this statistical analysis is represented by a
linear regression analysis, which is widely used between the two variables.50 Many statistical
methods that have been implemented to retrieve soil moisture are based on converting the
emitted microwave radiation, from the surface to the sensor, into mathematical values that
can be statistically analyzed.51,52 The regression analysis aims to measure the degree of linear
correlation between the two variables. The more linearly the relationship is drawn, the better the
accuracy and correlation between the estimated soil moisture and the measured soil moisture
can be determined. Saleh et al. proposed a regression analysis method based on the regression
method to form a relationship between the L-band emission of the biosphere model (L-MEB)
and the retrieved soil moisture using a semi-empirical regression method.53 Another statistical
retrieval method was presented by Pellarin et al.; it was aimed at finding the relationship between
TB and the retrieved soil moisture.54

2.3.3 Neural networks application

Neural networks are an artificial intelligence technique that consists of a set of mathemati-
cal functions that complement each other to produce a desirable output result. Several studies
describe a neural networks application as an inverse model because it converts the input infor-
mation into desirable output results.50,55,56 Neural networks are based on a series of complex
mathematical equations applied to the network’s input parameters to deliver desirable output
results. Neural networks applications are widely used in different fields of science, such as
medical applications, weather forecast, and other computer applications.

In the field of remote sensing, one of the most important kinds of neural networks is the
back-propagation network due to the application’s ability to produce more desirable results. For
soil-moisture estimation, information from both active and passive remote sensing has shown
desirable results using this method.

The methodology’s drawback is that under a vegetated area, the neural networks application
gives inaccurate results due to a lack of correlation between the backscattered radiation and
the in situ soil measurements.57 Furthermore, the neural networks application has a complex
computation network to design a desirable correlation between the input and output results
because the application is highly sensitive to the input parameters.58 As a result, it requires
the user’s experience to integrate adequate input parameters and carefully choose the acquired
training pixels without overtraining to get better output accuracy.
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Table 2 Results of group of combined active and passive remote sensing methods.

Refs. Methodology RMSE (%GSM) CR%

47 Microwave combined algorithm - Minimum of 93
59 Retrieval algorithm 3.16 for ESTAR

Inverse model 3.78 for SAR
60 Bayesian inversion model 68 for C-band

60 for L-band
4 Fuzzy logic 3.39

+
Neural networks 5.5

58 Neural networks 77
57 Neural networks 6.44

+
Fuzzy logic 6.97

51 Statistical regression analysis 1.83 96
Statistical regression analysis 2.63 67

Passive physical model 2.23 90
Active physical model 2.79 64

Wignerona et al. describe neural networks application as a simple and efficient method in
passive remote sensing observations for soil-moisture estimation, and they imply that the appli-
cation can only be limited for the regions and time period during which they were calibrated.50

3 Results Comparison

In order to evaluate the accuracy of each soil-moisture estimation method, a general statistical
analysis based on the correlation coefficient (CR) and/or the standard deviation (RMSE) was
conducted in Tables 2–4. The analysis was compared between the estimated result and the
corresponding field measurement. A linear correlation between the estimated result and the
field data was drawn in a two-dimensional scatter plot, and then the correlation coefficient was
calculated. When the correlation coefficient is high and the standard deviation is low, the method
is considered robust and the analysis result is more desirable, and vice versa.

The comparison process is implemented based on classifying the group of methods based on
the remote sensing data used: the active remote sensing group, the passive remote sensing group,
and a combination of active and passive remote sensing group. On the basis of the statistical
analysis that is shown in Tables 2–4, the most robust method in each group was chosen, and
then the best method among the chosen methods was identified as the most successful method.

The CR of each method was calculated based on the number of soil samples measured and
the corresponding number of correspondent points in the analysis results. In Tables 2–4, the

Table 3 Results of group of active remote sensing methods.

Refs. Methodology RMSE (%GSM) CR%

89
For bare soil

75
61 An empirical model For vegetated soil

83
For combined data

62 An empirical model + A nonlinear least square method 2.32–1.81 95–97
96

63 A backscatter theoretical model For Sandy soil
97

For loess Soil
7 An empirical algorithm <4.2
64 Neural networks 4 90
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Table 4 Results of group of passive remote sensing methods.

Refs. Methodology RMSE (%GSM) CR%

34 Universal Triangular Relationship <0.07 40–96
65 Analytic algorithm - 80
66 Neural networks + a land surface process/radio brightness model 0.0937 1
44 Algorithm 71.6
67 Transfer Model (Emission model) 2.56 84

land cover conditions and the surface parameters considered for each study area are identified
for each reference.

Table 5 contains more detailed information about the soil cover types of the study
area as well as the soil parameters that are considered in each paper presented in
Tables 2–4. For instance, some researchers considered vegetation parameters or topography
changes to determine their effect on the estimated results, whereas others did not.

4 Analysis and Discussion

Results from a number of soil-moisture estimation methodologies are compared according to
the data used under a similar land cover, which is bare and vegetation-covered soil. In all cases,
each author found his/her proposed method works well compared to other selected methods.
The comparison guides among the different methods in each group are based on statistical
parameters, such as a correlation coefficient and/or an RMSE between the methods’ estimated
results and the field measurements. On the basis of the difference in soil parameters considered
in each methodology, such as the area’s topography and vegetation density, it is difficult to draw
an absolute conclusion about which one is the best or worst. However, each method to estimate
soil moisture is fairly applicable in different areas because it is applicable under different land
conditions. Land-cover conditions have a substantial effect on the final soil-moisture information
estimation because of the significant effect of vegetation on the sensor’s backscatter radiation.

In addition, different methods use different ways of collecting the in situ soil measurements,
and the number of collected soil measurements in each method is different from others. There-
fore, in each reference presented, the statistical parameters were calculated based on the number
of collected measurements. Moreover, the numbers of collected measurement might affect the
calculated statistical parameters. For instance, a few numbers of collected measurements might
give a higher correlation with the estimated points, when the number of measurements increases,
the correlation coefficient might decrease.

On the basis of the presented statistical parameters, the methods can be ranked from the
lowest RMSE and higher CR, which is the most robust method to the higher RMSE and lower
CR, which is the less robust method. However, other parameters, such as the difference in the
method of collecting the measurement and the difference in the number of measurements that
are used to calculate the statistical parameter, could cause inaccuracies in ranking the methods.

On the basis of the statistical parameter values that are presented in Tables 2–4, some general
observations can be made for each group of methods used. First, among the active remote sensing
group, the radar backscatter modeling method gives desirable estimation results. Second, neural
networks modeling gives a better result compared to other groups of passive remote sensing
methods, and its result is the best among all methods.

Third, a statistical analysis method on data captured from soil-moisture satellites, such as
PALS, has delivered highly correlated results for soil-moisture estimation using data captured
by radiometric passive channels rather than scaterometer channels. Additionally, ground soil
measurements at a depth of a few centimeters (0–1 cm) from the field surface layer give better
correlation with the estimated soil moisture compared to the ground measurements at deeper
layers. Fourth, in bare soil, using active remote sensing gives a more accurate correlation result
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with the field soil measurements than all other methods, without necessarily considering the
soil-roughness effect.

Finally, the surface scattering method in bare soil is usually related to geometric and di-
electric properties, which substantially affects the backscattered radiation response. Moreover,
correcting the vegetation optical parameters plays a significant role in increasing the moisture
estimation accuracy of a vegetation-covered soil.

From the above-mentioned observations, a few general recommendations can be made. If
both sensor parameters and land-cover properties are important for having highly accurate re-
sults, a relationship between these two main variables needs to be drawn. Moreover, based on
the results compared above, for a vegetation-covered soil, the most accurate result is found
when the neural networks application is used. Although all the mentioned methodologies have
the capability to retrieve soil moisture at certain conditions and have their strengths and weak-
nesses, estimating soil moisture using remote sensing cannot be replaced by the actual soil field
measurements.

5 Conclusion

In this study, an assessment of the current methodologies for soil-moisture estimation was
performed based on their common soil cover conditions. Other soil surface parameters, which are
not considered in this comparison, might affect the comparison results, such as the topographical
area, the method of collecting the field measurements, and the number of collected in situ
measurements. Some of those parameters have not been considered in this study because either
they were unknown or were neglected and no correction was made to consider their effect.
Therefore, vegetation parameters received more attention than topography parameters.

At present, remote sensing methods have not been successful in estimating soil moisture from
deep soil layers, such as at the root-zone soil layers. However, the ability to retrieve soil-moisture
information from the surface layers in itself needs to be further investigated. Although in situ
soil-moisture measurements might involve sampling errors, they are considered the standard
measurements for soil-moisture estimation, and remote sensing information estimations are
usually compared to the sampling measurements.

On the basis of the active remote sensing methods, estimating soil moisture on bare soil or
soil with less vegetation gives more accurate results, as compared to using the methods on a
mixture of land-cover soil. Moreover, the estimation process becomes more challenging when
the vegetation cover is dense. From the other side, under similar soil cover conditions, retrieving
soil moisture using a combination of both active and passive soil information gives reasonably
accurate results. Applications that use a combination of both active and passive remote sensing
information have promising results. Processing the captured microwave signal to convert it to
mathematical values, implementing a mathematical algorithm or a model to correct the soil
surface and sensor parameters, and then analyzing the output results using a statistical method
are the main processing steps for the most widely used methodologies.
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