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Abstract. The features extracted from deep convolutional neural networks (CNNs) have shown
their promise as generic descriptors for land-use scene recognition. However, most of the work
directly adopts the deep features for the classification of remote sensing images, and does not
encode the deep features for improving their discriminative power, which can affect the perfor-
mance of deep feature representations. To address this issue, we propose an effective framework,
LASC-CNN, obtained by locality-constrained affine subspace coding (LASC) pooling of a CNN
filter bank. LASC-CNN obtains more discriminative deep features than directly extracted from
CNNs. Furthermore, LASC-CNN builds on the top convolutional layers of CNNs, which can
incorporate multiscale information and regions of arbitrary resolution and sizes. Our experiments
have been conducted using two widely used remote sensing image databases, and the results
show that the proposed method significantly improves the performance when compared to other
state-of-the-art methods. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.12.015010]
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1 Introduction

In the past decade, with the ongoing development of various satellite sensors, a large volume of
high-resolution remote sensing image data have become available. These high-resolution remote
sensing images are generally rich in spatial arrangement information and textural structures,
which are of great help in recognizing different land-use scene categories. Nevertheless, the
high-resolution remote sensing images introduce new challenges in smart image interpretation.

In the past few years, there has been an intense research of remote sensing scene classifi-
cation, with the focus on both the use of appropriate image descriptors and the appropriate clas-
sification task.1–17 Bag-of-visual-words (BOVW) is one of the representative models in the field
of image analysis and classification. The BOVW model represents an image as an orderless
collection of local features (SIFT, HOG, etc.) extracted from a collection of images. The basic
version of BOVW, however, neglects information on the spatial distribution of visual words.
Hence, there have been several efforts in the literature to overcome the weakness. The BOVW
model incorporating the spatial information of scene images has been successfully applied to
remote sensing land-use scene classification and has exhibited good performance.5 The spatial
pyramid match kernel18 is one approach to tackle the lack of spatial information. It consists of
repeatedly subdividing the image and computing histograms of local features at increasingly fine
resolutions. However, all the above-mentioned approaches are based on manually designed fea-
tures, which heavily depend on the experience and domain knowledge of experts. Moreover,
such features cannot adequately represent the complex image structures. This is mainly due to
the lack of consideration for the details of remote sensing data.

*Address all correspondence to: Shijin Li, E-mail: lishijin@hhu.edu.cn

1931-3195/2018/$25.00 © 2018 SPIE

Journal of Applied Remote Sensing 015010-1 Jan–Mar 2018 • Vol. 12(1)

https://doi.org/10.1117/1.JRS.12.015010
https://doi.org/10.1117/1.JRS.12.015010
https://doi.org/10.1117/1.JRS.12.015010
https://doi.org/10.1117/1.JRS.12.015010
https://doi.org/10.1117/1.JRS.12.015010
mailto:lishijin@hhu.edu.cn
mailto:lishijin@hhu.edu.cn
mailto:lishijin@hhu.edu.cn


In 2006, a breakthrough in deep feature learning was made by Hinton and Salakhutdinov.19

Since then, the aim of researchers has been to replace hand-engineered features with trainable
multilayer networks and an amount of deep learning models have shown impressive feature
representation capability for a wide range of applications including remote sensing image
scene classification.20 A number of recent works6–10,21–24 show that convolutional neural
networks (CNNs) pretrained on such large datasets have been shown to contain general-purpose
feature extractors, transferrable to many other domains with a limited amount of training data.
Employing the pretrained CNNs and fine-tuning them on the scene datasets, Penatti et al. exper-
imentally evaluated ConvNets, showing impressive classification performance.8 Marmanis et al.
investigated the potential of using large pretrained neural networks for land-use classification
and showed promising results on a public remotely sensed scene dataset.7 Castelluccio et al.
explored three design modalities of CNN for the semantic classification of remote sensing scenes
and achieved a significant performance improvement.10

However, general-purpose features extracted from CNNs pretrained on such a large dataset
contain redundant information, which limits their performance for classification and robustness
of highly variable land-use scenes. In recent years, most works mainly focus on the pooling
scheme of deep learning. This MOP-CNN (multiscale orderless pooling)22 extracts deep features
from local patches at multiple scale, performs orderless VLAD encoding of these local patch
activations at each level separately, and concatenates the result to form a new image represen-
tation. Cimpoi et al. proposed FV-CNN (Fisher vector pooling of a convolutional neural net-
work),23 which built on the fully connected layers of CNN form an orderless representation
by fisher vector. Motivated by previous work on spatial and feature space pooling of local
descriptors,11,22,23,25 we develop a simple but effective framework for land-use scene recognition,
which we refer to as locality-constrained affine subspace coding (LASC) pooling (LASC-CNN).
This method builds universal image representations from CNN models with no training phase or
use of labels. It first extracts the deep convolutional activations of an input multiscale image by
an ImageNet pretrained networks. These deep activations are then encoded into a new high
dimensional feature representation by overlaying a spatial pyramid partition. Then, a new feature
representation is encoded via LASC forms the final image-level representation. The LASC,
which can describe manifolds of high dimensional deep features by an ensemble of subspace
attached to affine subspace, can obtain a more discriminative scene representation, and may
exhibit better performance, as is commonly done in the BOVW approaches.5

The rest of this paper is organized as follows. Section 2 describes details of LASC-CNN
methodology. The problem of multiscale deep feature extraction is then discussed in Sec. 2.
Section 3 provides extensive experiments and analysis on the effectiveness of using our method.
A conclusion is drawn in Sec. 4.

2 Description of the Proposed Method

The flowchart of the proposed method is shown in Fig. 1. The idea is to regard the convolutional
layers of a CNN as a filter bank and build an orderless representation using LASC as a pooling
mechanism, as is commonly done in the bag-of-words approaches. In the following sections, we
respectively present the multiscale deep feature extraction method and the LASC-CNN algo-
rithm in detail.

Fig. 1 The image classification framework.
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2.1 Multiscale Deep Feature Extraction

The CNN is a trainable multilayer architecture composed of multiple feature-extraction stages,
each comprising both linear and nonlinear operators, which are learnt jointly, in an end-to-end
manner, to solve specific tasks.6,23 Specifically, a typical CNN is commonly made up of four
layers: (1) convolutional layer, (2) normalization layer, (3) pooling layer, and (4) fully connected
layer. In actual CNNs, each layer comprises various sublayers of neurons operating in parallel on
the previous layer, so as to extract a number of features at once, like a bank of filter does. Every
filter is small spatially (along width and height), but extends through the full depth of the input
image. A pretrained network can be used as a feature extractor for any image, since the generic
features (learned in earlier layers) are less dependent on the final application and could be used in
a myriad of tasks.

Recent advances in convolution layer features11,24 are adapted to remote sensing data and
shown to be as effective as in other domains. The adoption of convolution layer features to
replace the full connection layer features has the following advantages. The first one is that
features from convolutional layers are more generic than those from fully connected layers,23

and thus these features may be more suitable for transfer learning. In addition, convolutional
layer features contain more spatial information, which offers advantages for image classification,
as compared to the activation of fully connected layers.21 Furthermore, scale variation, which
requires considering multiscale contextual and structural information in spatial domain, is quite
common for objects detection in remote sensing images (e.g., roofs with different sizes). A sec-
ond advantage is that the input to the CNN has to be of fixed size to be compatible with the fully
connected layers, which requires an expensive resizing of the input image.

The feature map of top convolutional layers is known to contain mid- and high-level infor-
mation, e.g., object parts or complete objects.24 These deep descriptors contain more spatial
information compared to the activation of the fully connected layers. The fully connected layers
require a fixed image size (e.g., 224 × 224). On the contrary, convolutional layers accept input
images of arbitrary resolution or aspect ratio. In addition, convolutional layer features contain
more spatial information than fully connected layers. In this work, we take the output of the
convolutional layers (before the fully connected layer) to represent the training and test images.

The objects of interest generally have different scales in different remotely sensed scenes, and
even a single scene may contain objects with different sizes. Accordingly, a multiscale spatial
feature extraction technique is proposed for improving classification accuracy. However, most of
the CNNs require a fixed input image size. Therefore, it is difficult to extract multiscale deep
features simultaneously from one network. The spatial pyramid pooling (SPP)-net method21

adds a spatial pyramid pooling layer to deep nets, which allows us to feed images with varying
sizes or scales during training. To explore multiscale deep features, we propose to adopt an SPP-
net based framework to learn spatial features across different scales. Instead of relying on a fixed
observation scale, a series of images at different observation scales are fed into the entire network
for extracting multiscale features. Then, we use LASC to pool activations from a fully convolu-
tional network.

We can form a spatial pyramid26,27 by partitioning the cells of activations in the last convolu-
tional layer into subregions and then pool deep descriptors in each region separately using
LASC. Following Ref. 12, the spatial pyramid matching (SPM) structure as shown in Fig. 2
is employed for all the experiments.

The level 0 simply aggregates all cells using LASC. The level 1, however, splits the cells into
five regions according to their spatial locations: the four quadrants and one centerpiece. Then,

Fig. 2 Spatial pyramid matching.
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five LASCs are generated from activations inside each spatial region. The level 2 splits the cells
into 25 regions. Then, 25 LASCs are generated from activations inside each spatial region. The
output of the spatial pyramid is realized by concatenating all 32 (25 + 6 + 1) LASCs from level 0
to level 2 to form the final image representation.

2.2 LASC-CNN

The deep CNN descriptors extracted from an image via a pretrained CNN model can be directly
used to measure the scene similarity of a pair of images. However, as deep CNN descriptors are
of high dimensionality and contain redundant information, we can encode the feature to obtain a
more compact and discriminative representation, as pointed out in Refs. 22 and 23. The LASC-
CNN descriptor is related to the FV-CNN proposed by Cimpoi et al. We need to pool the multi-
scale deep feature representation by LASC. Recently, Li et al. proposed a feature encoding
method called LASC.25 Taking into account the geometric subspace structure surrounding each
visual word, the LASC algorithm characterizes the data manifold by an ensemble of subspaces
attached to the representative points, resulting in a favorable classification performance in pub-
licly available datasets.

Let y be an input feature to be encoded, μi indicates the i’th central representative point, Ai is
an n × p matrix consisting of orthogonal basis of the linear subspace, and xi are the linear
approximate coefficients. The LASC is formulated as the following objective function:

EQ-TARGET;temp:intralink-;e001;116;495min
∀ xi

X

Si∈NS
KðyÞ

����ðy − uiÞ − Aixi

����
2

2

þ λ
X

i

dðy; SiÞkxik22: (1)

Here, λ > 0 is a regularization parameter, dðy; SiÞ indicates the distance between y and its i’th
subspace Si determined by the proximity measure function, and NS

KðyÞ is the neighbor region of
y defined by its K closest subspaces, where k · k2 indicates the Euclidean distance.

The method performs descriptor encoding only in a few most neighboring subspaces. We
segment the deep feature space by the k-means algorithm to obtain mean vector (μi) of clusters.
Then, we employ PCA to preserve the most significant principal directions (Ai) with larger var-
iances. xi can be regarded as the orthogonal projection of y − μi in the subspaces. Thus, the
objective function Eq. (1) can be a simple form as

Algorithm 1 The LASC-CNN method.

Input: pyramid images I ¼ ½I1; : : : ; Im �; A pretrained CNN model;

Output: Accuracy;

1: for all 1 ≤ i ≤ m do

2: Extract deep descriptors X i from I i using the predefined model, X i ¼ ½x1; : : : ; xn �;

3: Generate a spatial pyramid fX 1
i ; : : : ; X

n
i g for ;

4: for all 1 ≤ j ≤ n do

5: Encoding deep descriptors F j
i ðX j

i Þ by LASC for X j
i ;

6: end for

7: Concatenate F j
i ðX j

i Þ to form the final spatial pyramid representation F i ðXi Þ;

8: end for

9: Concatenate F ðXi Þ
i to F ðX Þ form the multiscale deep feature representation

10: Using an SVM as a classifier for land-use scene classification.
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EQ-TARGET;temp:intralink-;e002;116;735xi ¼ ½1þ λdðy; SiÞ�−1AT
i ðy − uiÞ: (2)

Following Ref. 25, for multiscale deep features, we find its top-k nearest affine subspaces and
perform linear decomposition in these subspaces weighted by the proximity measure. We pro-
duce the first-order (linear) and second-order LASC vector of the descriptor x ¼ ½: : : ; xi; x2i : : : �.

In the first step, we feed multiscale images into a pretrained CNN model to extract deep
activations. Then, a visual dictionary is trained on the deep descriptors from training images.
The third step overlays a spatial pyramid partition to the deep activations of an image, pools deep
descriptors in each region separately using LASC, and then concatenates these regions feature to
form the multiscale deep feature representation. Finally, using a support vector machine (SVM)
as a classifier for land-use scene classification. The LASC-CNN method is summarized in
Algorithm 1.

3 Experiments

Using two remote-sensing datasets, we carried out a number of experiments to assess the per-
formance of the proposed approach in comparison with state-of-the-art results. The well-known
UC Merced Land Use dataset5 (UCMerced for short28), includes aerial optical images, with low-
level characteristics similar to those of the Imagenet. In recent years, many researchers have used
this dataset, allowing for an extensive comparison of results with the literature. All deep learning
models are required to be trained on large training datasets with abundant and diverse images to
avoid overfitting. The NWPU-RESISC4529 is created by Northwestern Polytechnical University
(NWPU30 is a large-scale dataset with big image variations and diversity). Since it
has been published very recently, limited results are available, including results with CNNs.
In the next two sections, we discuss results separately for the two datasets. All experiments
have been carried out on a notebook equipped with an NVIDIA GeForce GT 750M
2048 MB GPU. In feature vector modality, only the last fully connected layer is trained. In
the LASC method, as this was empirically shown, the number of nearest subspaces k ¼ 3, sub-
space dimension M ¼ 64, regularization parameter λ ¼ 1, we normalize the first-order and sec-
ond-order subvectors separately per subspace by l2 norm. Following Ref. 25, too small
parameters (number of nearest subspaces, subspace dimension) are insufficient to describe
the structure of the subspace, while much larger ones give little benefit.

3.1 UCMerced Land Use Dataset

3.1.1 Dataset description and experimental setup

This dataset contains land-use aerial orthoimagery from 21 classes: agricultural, airplane, base-
ball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golfcourse, harbor,
intersection, medium density residential, mobile home park, overpass, parking lot, river, runway,
sparseresidential, storage tanks, and tennis courts. Each class contains 100 images, which are
cropped to 256 × 256 pixels. This is a challenging dataset due to a variety of spatial patterns in
those 21 classes. The dataset represents highly overlapping classes such as the dense residential,
medium residential, and sparse residential, which mainly differs in the density of structures.
Sample images of each land-use class are shown in Fig. 3.

In each experiment, besides the original scale, the images are warped into three different
scales, including 128 × 128, 204 × 204, and 256 × 256 pixels. We choose 256 × 256 pixels to
be consistent with the input scale of the pretrained CaffeNet. The VGGNet-16 model, which was
pretrained on ImageNet dataset, is available in a Github repository: https://github.com/BVLC/
caffe/wiki/Model-Zoo for deep CNN feature extraction. The dataset is randomly divided into
two sets: the training set and the testing set. For the pixels in each convolutional layer,
K-means clustering is employed to form the visual codebook with 300 code words. The encoded
deep features by LASC are then fed into SVM classifiers with histogram intersection kernels,
which are implemented using the LIBSVM package,31 and one-against-one strategy is adopted to
address the multiclass issue. The testing set is used to evaluate the performance of classifiers. In
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order to reduce the effect of random selection, we repeat each algorithm execution on 10 differ-
ent training/testing splits of the dataset and report means and standard deviations of the obtained
accuracies.

We randomly select samples of each class for training the SVM classifier and the rest for
testing, following the same sampling setting as Ref. 5 for the datasets: 80 training samples per
class for the UCMerced dataset.

3.1.2 Different CNN feature coding

We focus on testing different CNN feature coding discriminative powers. To make a sufficient
comparison, LASC-CNN is compared with two other descriptors: (1) MOP-CNN and (2) FV-
CNN. To generate codewords, we use the standard K-means clustering algorithm for all coding
methods. Except for Fisher coding wherein the GMM is applied. We choose 256 × 256 pixels to
be consistent with the input scale of the pretraining CaffeNet for all coding methods.
Experimental results are shown in Table 1. From Table 1, we can see that LASC-CNN achieves
good performance for remote sensing scene classification.

3.1.3 Comparison with state-of-the-art methods

Several approaches have been proposed recently for remote sensing scene classification, and
most of them have been tested on the UCMerced dataset, following the same experimental pro-
tocol, with fivefold cross-validation. Therefore, there is plenty of data available for a solid com-
parison with the state-of-the-art. In Table 2, we report the overall accuracies for all these
comparable methods, as they appear in the original papers, together with the accuracy of our
best CNN solution.

An overview of the performance of multiscale LASC-CNN is shown in the confusion matrix
in Fig. 4. There is some confusion between dense residential and medium residential. This can be

Table 1 Comparison of classification accuracy with different CNN
feature coding on the UCMerced dataset.

Different encoding method UCMerced (%)

MOP-CNN 94.1

FV-CNN 95.2

LASC-CNN 97.14

Fig. 3 Example images from the UCMerced dataset.
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explained by the fact that the pairs of classes have similar spectral or structural features, such as
both dense residential and medium residential. Therefore, more work needs to be done with
regard to the use of the structural feature in the future.

3.2 NWPU-RESISC45 Dataset

3.2.1 Dataset description and experimental setup

The NWPU-RESISC45 dataset consists of 31,500 remote sensing images divided into 45 scene
classes. Each class includes 700 images with a size of 256 × 256 pixels in the red green blue
(RGB) color space. The spatial resolution varies from about 30 to 0.2 m per pixel for most of the
scene classes except for the classes of island, lake, mountain, and snowberg that have lower
spatial resolutions. These 45 scene classes are as follows: airplane, airport, baseball diamond,
basketball, court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area,
dense residential, desert, forest, freeway, golfcourse, ground track field, harbor, industrial area,
intersection, island, lake, meadow, medium residential, mobile home park, mountain, overpass,
palace, parking lot, railway, railway station, rectangular farmland, river, roundabout, runway, sea
ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, thermal power
station, and wetland. Sample images of each land-use class are shown in Fig. 5.

3.2.2 Different CNN feature coding

To make a comprehensive evaluation, two training-test ratios are considered. (i) 10% to 90%: the
dataset was randomly split into 10% for training and 90% for testing (70 training samples and

Table 2 Comparison of classification accuracy with the state-of-
the-art methods on the UCMerced dataset.

Method Accuracy (%)

BOVW5 76.8

SPM5 75.3

BOVW + spatial co-occurrence kernel5 77.7

Concentric circle-structure BOVW13 86.6 (�0.8)

Wavelet BOVW14 87.4 (�1.3)

Pyramid-of-spatial-relations16 89.1

CLBP15 85.5 (�1.9)

MS-CLBP115 90.6 (�1.4)

cCENTRIST (HSV)12 75.2 (�2.4)

Sparse correlaton4 84.31 (�0.51)

meCENTRIST17 91.24 (�0.78)

GoogLeNet6 93.0

VGG166 92.8 (�0.61)

CNN with overfeat feature7 92.4

Caffe8 93.42 (�1.0)

OverFeat8 90.91 (�1.19)

Our VGG16 (single-scale) 97.14

Our VGG16 (multiscale) 98.10
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630 testing samples per class). (ii) 20% to 80%: the dataset was randomly divided into 20% for
training and 80% for testing (140 training samples and 560 testing samples per class).
Experimental results are shown in Table 3. Table 3 demonstrates the classification accuracies
of different feature coding from each class and 256 × 256 input pixels. Same as the results on the

0.95

1.00

1.00

1.00

1.00

1.00

0.90

0.05

0.05

1.00

0.10

1.00

1.00

1.00

0.95

0.95

0.05

0.10

0.05

1.00

1.00

1.00

0.90

1.00

1.00

1.00

0.95

Agricultural

Airplane

Baseballdiamond

Beach

Buildings

Chaparral

Denseresidential

Forest

Freeway

Golfcourse

Harbor

Intersection

Mediumresidential

Mobilehomepark

Overpass

Parkinglot

River

Runway

Sparseresidential

Storagetanks

Tenniscourt

A
gr

ic
ul

tu
ra

l

A
irp

la
ne

B
as

eb
al

ld
ia

m
on

d

B
ea

ch

B
ui

ld
in

gs

C
ha

pa
rr

al

D
en

se
re

si
de

nt
ia

l

F
or

es
t

F
re

ew
ay

G
ol

fc
ou

rs
e

H
ar

bo
r

In
te

rs
ec

tio
n

M
ed

iu
m

re
si

de
nt

ia
l

M
ob

ile
ho

m
ep

ar
k

O
ve

rp
as

s

P
ar

ki
ng

lo
t

R
iv

er

R
un

w
ay

S
pa

rs
er

es
id

en
tia

l

S
to

ra
ge

ta
nk

s

T
en

ni
sc

ou
rt

Fig. 4 Confusion matrix for the UCMerced dataset using the proposed LASC-CNN.

Fig. 5 Example images from the NWPU-RESISC45 dataset.
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UCMerced Land Use dataset, LASC-CNN achieves superior performance compared to the other
feature coding method.

3.2.3 Comparison with state-of-the-art methods

In order to comprehensively analyze the superiority of the proposed method, we compare it with
the three state-of-the-art approaches ever tested on this dataset, including LBP,29 BoVW +
SPM,29 and CNN.29 Table 4 reports the classification accuracies achieved by different methods
with five training samples from each class. All of the LASC-CNN models are better than the best

Table 3 Comparison of classification accuracy with different CNN feature coding on the NWPU-
RESISC45 dataset.

Different encoding method

NWPU-RESISC45 Training ratios (%)

10% 20%

MOP-CNN 77.93 80.7

FV-CNN 78.32 81.6

LASC-CNN 80.68 84.21

Table 4 Comparison of classification accuracy (mean SD) with the state-of-the-art methods on
the NWPU-RESISC45 dataset.

Different encoding method

NWPU-RESISC45 Training ratios (%)

10% 20%

LBP29 19.20 (�0.41) 21.74 (�0.18)

BoVW + SPM29 27.83 (�0.61) 32.96 (�0.47)

CNN29 76.47 (�0.18) 79.79 (�0.15)

LASC-CNN (single-scale) 80.69 83.64

LASC-CNN (multiscale) 81.37 84.30

Fig. 6 Confusion matrix for the NWPU-RESISC45 dataset under the training ratio of 10% by using
the proposed multiscale LASC-CNN.
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state-of-the-art methods CNN, and the multiscale LASC-CNN can further increase the accuracy
as compared to the single-scale models. In this paper, we mainly discuss the different encoding
methods for deep features extracted from pretrained CNN. Certainly, by fine-tuning an off-the-
shelf CNN model, the accuracy was further boosted by at least 6% points.29 However, in com-
parison, fine-tuning the off-the-shelf CNN model is more time consuming and also requires a
certain amount of data to train the deep network.

Figures 6 and 7 show the confusion matrices of multiscale LASC-CNN under the training
ratios of 10% and 20%, respectively. For multiscale LASC-CNN-based CNN features, the rel-
atively big confusions happen between church and palace and dense residential and medium
residential because of their similar spectral or structural features. As expected, a larger training
ratio can induce an increased recognition rate because of the availability of more spatial infor-
mation. This suggests that a potential way to classify more challenging image scenes may be
deep learning-based methods in combination of remote sensing data and spatial technology.

4 Conclusion

This paper has presented a multiscale orderless pooling scheme that is built on top of convolu-
tional layers. The pooling scheme is to regard the convolutional layers of a CNN as a filter bank
and build an orderless representation using LASC as a pooling mechanism, as is commonly done
in the bag-of-words approaches. On two very challenging datasets, we have achieved a substan-
tial improvement over global CNN activations, in some cases outperforming the state-of-the-art.
The experimental results indicate that effectively encoding convolutional layer features can gen-
erate a more powerful representation, and that multiscale input images can provide much more
discriminative information as compared to single-scale ones. In the future, it is interesting to
integrate into LASC-CNN by the computational visual attention model32 for remote sensing
image retrieval.
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