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Abstract. The growing use of optimization for geographic object-based image analysis and the
possibility to derive a wide range of information about the image in textual form makes machine
learning (data mining) a versatile tool for information extraction from multiple data sources. This
paper presents application of data mining for land-cover classification by fusing SPOT-6,
RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized
difference vegetation index, normalized difference water index, and soil adjusted vegetation
index) were combined and subjected to segmentation process with optimal segmentation param-
eters obtained using combination of spatial and Taguchi statistical optimization. The image
objects, which carry all the attributes of the input datasets, were extracted and related to the
target land-cover classes through data mining algorithms (decision tree) for classification. To
evaluate the performance, the result was compared with two nonparametric classifiers: support
vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification
result was evaluated against six unoptimized trials segmented using arbitrary parameter combi-
nations. The result shows that the optimized process produces better land-use land-cover clas-
sification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF,
respectively, while the results of the six unoptimized classifications yield overall accuracy
between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification
approach compared to the unoptimized results indicates that the optimization process has sig-
nificant impact on the classification quality. © 2018 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.12.016036]
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1 Introduction

Fusion of optical and SAR images has been extensively used to improve the quality of feature
extraction in many applications. The advantages of combining multisource spatial data to
enhance land use and land cover (LULC) classification have been widely reported.1–6

However, the quality of the extracted information also relies on the classification algorithm.7

Today, geographic object-based image analysis (GEOBIA) has become the normative feature
extraction approach for the remote sensing community, a paradigm shift from the conventional
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pixel-based image classification method.8–10 GEOBIA permits multiscale and hierarchical image
object representation with additional benefits of employing knowledge-driven mechanisms
using the image semantics, such as spectral, spatial texture, and contextual information.

Object-based mapping techniques are even more desirable to generate informative and accu-
rate maps when data from different sensors are combined. Data fusion is a popular technique in
remote sensing; however, studies to combine data for object-oriented approach have always
relied on the standard fusion techniques, such as wavelet transform, bravery, HIS (intensity
hue and saturation), pan-sharpening, Ehlers etc.2,4,11–14 Although these fusion techniques
enhance spatial resolution of the resulting image, it is well documented that they suffer
from spectral distortion.4,15 Also, there is limitation in the number of data that can be combined.
Nevertheless, improvement in feature extraction and mapping through fusion and object-based
techniques has been reported for various applications, including urban land cover,13,16 landslide
inventory and mapping,11,17 vegetation mapping,5,18,19 and flood extent extraction.14 More
recently, the idea of integrating spectral and nonspectral information to enrich feature attributes
extraction for better classification and quality map production has been advanced.8 In line with
this development and the growing application of machine learning algorithms,4,13 fusion by layer
stacking is gaining prominence in remote sensing image analysis.3,20,21

Image segmentation is the foundation of GEOBIA. The segmentation process divides
image into smaller nonoverlapping regions using the color, texture, and shape properties of
the image, usually governed by three parameters available to users, namely scale, shape, and
compactness.22,23 The process of identifying optimum combination of these parameters is
very challenging.24 Thus, using an optimization technique can be very effective to reduce
time and effort involved in a trial-and-error strategy and also to improve feature detection accu-
racy. Various strategies have been used to evaluate the segmentation quality, including visual
analysis, system-level evaluation, empirical discrepancy methods, and empirical goodness
methods.16,25

The first method employs visual analysis by comparing multiple segmentation outputs to
select best parameter combination. But the approach is subjective, time-consuming, and does
not include any quantitative measure to evaluate the quality. The second method is at system-
level, which considers segmentation as major part of classification that directly affects the final
result. It evaluates quality using classification accuracy as indicator.26–28 The third one is the
empirical discrepancy method, which references the polygons (e.g., manually digitized features)
to examine optimal combination of parameters by measuring the discrepancies between segmen-
tations output and the digitized image objects. If the discrepancy between the segmentation and
reference objects is minor, it indicates high segmentation quality.12,16,26,29–34 The drawbacks of
this technique include the need for extensive manual effort to prepare the reference objects,
which can be subjective, labor, and time-consuming.

The last quality evaluation method is empirical goodness methods.29 The empirical goodness
methods involve the adoption of statistical quality criteria to score and rank multiple image seg-
mentation and find the optimal combination of segmentation parameters.25 An empirical good-
ness objective function proposed by Espindola et al.35 uses quantitative statistical criterion that
combines the weighted variance and spatial autocorrelation (Moran’s index) of the image pixels
to determine segmentation quality. A plethora of empirical goodness methods was proposed and
tested.25,27,33,36–39 The issue with these empirical methods is that they only optimize the scale
parameter and do not emphasize on finding the optimal combination of the three parameters.40,41

The robust Taguchi statistical technique, a fractional factorial design, established by Genichi
Taguchi has been widely adopted in the engineering analysis to optimize the design variables and
the performance characteristics of the combination of design parameters.42 It provides a straight-
forward and efficient tool to find the optimum ranges of designs for a high-quality system and
significantly minimize the overall testing time and experimental cost.43 It uses an orthogonal
array from the design of the experiment that provides a straightforward and systematic method
to optimize the design and assesses the performance by measuring signal to noise ratio (SNR) of
each experiment. The merger of Espindola’s objective function and Taguchi optimization tech-
nique has been applied recently and is gaining relevance in remote sensing applications, such as
landslide inventory mapping,40,17 flood mapping,14 asbestos cement roofs detection,20 and auto-
matic birds’ nests detection and counting.41 In this study, LULC classification was improved
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using GEOBIA. First, segmentation is optimized using Taguchi statistical technique and, sub-
sequently, classification carried out using the machine learning C4.5 decision tree algorithm.
Then, the proposed method is compared with support vector machine (SVM; optimized with
Taguchi statistical technique), random forest (RF), and a set of unoptimized trials segmented
using arbitrary parameter combinations to investigate efficiency of the optimization process.

2 Study Area, Data, and Method

The study was conducted in Perak, a state in Peninsula Malaysia. Geographically, the site
is located between longitudes 100°51′22″E and 101°14′17″E, and latitudes 4°13′21″ N and
3°51′60″N (Fig. 1), covering ∼1741.5 km2. The land use comprises residential settlements,
water bodies, and agricultural land, including oil palm, rice paddy, and vegetable crops.

SPOT-6 and RADARSAT-2 imageries used in this study were provided by Agensi Remote
Sensing Malaysia (ARSM). The SPOT-6 image, which was acquired in February 2014, has 6-m
spatial resolution and four multispectral bands within 0.455- to 0.890-μmwavelength. Similarly,
the RADARSAT-2 image was acquired on March 15, 2015, using fine beam mode SGF with HH

Fig. 1 Study area with Malaysian states and the location of the study area (right map) and SPOT-6
imagery in RGB color combinations (left image).

Table 1 Data used and their properties.

Properties SPOT-6 RADARSAT-2

Acquisition date February 2, 2014 March 15, 2015

Spatial resolution (m) 6 m 12.5 m

Wavelength 0.455 μm to 0.525 μm blue 0.530 μm to
0.590 μm green 0.625 μm to 0.695 μm
red 0.760 μm to 0.890 μm NIR

C-band

Polarization — HH
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single polarization at 20-deg to 50-deg incidence angle. The SAR image was terrain geocoded
and resampled to 12.5 m on delivery. Table 1 presents the characteristics of the dataset.

2.1 Data Processing

For the preprocessing task, SPOT-6 image was corrected for radiometric and atmospheric effects.
Also, speckle in the SAR data was removed using 5 × 5 kernel local sigma. Subsequently, the
image was enhanced texturally with 3 × 3 kernel textural occurrence and resampled to 6-m spa-
tial resolution to match SPOT-6 image. The two datasets were coregistered to bring them into
correct alignment using image-to-image registration. Thereafter, the images were reprojected to
Universal Transverse Mercator projection. Then, the two datasets were fused by layer stacking.
Unlike other fusion methods that transform the image spectral, layer stacking combines dataset
from different sensors without altering the spatial and spectral characteristics of the original
data.1 This ability to retain the image fidelity is an advantage for object-based image analysis
because the algorithm exploits all image properties to detect physical object in the image.

2.2 Optimization and Segmentation

Then, the segmentation process was optimized using integrated Taguchi-objective function opti-
mization strategy.41 Based on the optimal parameter combinations, the image was segmented and
the result classified using different algorithms, including data mining (DM) using a developed
rule-set. Finally, the effect of the optimization was evaluated. Figure 2 presents the data process-
ing and analysis workflow.

Image segmentation is the first and most fundamental step in GEOBIA.27 The widely used
region growing multiresolution segmentation (MRS) was employed. MRS starts with a single-
pixel image object as seed, and then other neighboring image pixels are combined in several
successive steps to produce larger ones till the predefined criteria are met.44 However, the quality
of this process depends on the proper selection of segmentation parameters: scale and homo-
geneity (shape and compactness) values. The scale value controls the size segment: high-scale
value produces large image segment and small-scale value generates small segments.10,45 The
other parameters, homogeneity, combine color and shape properties. In this research, the robust
Taguchi-objective function optimization technique was used to derive appropriate parameter
combination for the scale, shape, and compactness.11,14,40,41,17,20 The technique integrates the
statistical Taguchi and spatial objective function optimizations methods iteratively in a single
processing workflow to produce an accurate result.

In GEOBIA, segmentation of image spectral relative to their spatial arrangement (autocor-
relation) is fundamental to feature identification and grouping. The segmentation technique
divides image into homogeneous contiguous regions that enclose identical pixels as objects
within each segment based on the assumption that an image pixel most likely belongs to the
same object as its neighboring pixels.46 Accurate partitioning of image into distinct image
objects is dependent on appropriate selection of segmentation parameters: scale, shape, and com-
pactness. Over the time, the objective function,47 which attempts to select appropriate parameters
that can produce the best quality segmentation based on intrasegment homogeneity and interseg-
ment reparability, has been widely used. However, this optimization technique relies on arbitrary
selection of a range of parameters for experimentation. Not only that, it emphasizes on varying
the scale factor while keeping the shape and compactness factors constant, even though the
quality of the resulting segments depends on the correct combination of the three parameters.
And this is perceived as bias for the objective function. Hence, the idea of incorporating Taguchi
method into the optimization process by, first, optimizing the design of experiment using the
Taguchi orthogonal array and, second, modeling a unique optimal parameter combination with
the Taguchi SNR is presented. Comprehensive details of this approach can be found in
literature.41,48,49

For experimental design, five levels were defined for the three segmentation parameters
(Table 2). The orthogonal array minimizes the number of experiments to only 25 number of
experiment coded L25 (35) compared to 243 experiments using the standard factorial. The pla-
teau objective function (POF)35 was measured for each experiment to evaluate the quality of the
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segmentation for each experiment. POF is a combination of the weighted variance and spatial
autocorrelation (Moran’s index) to evaluate both of the intersegment homogeneity and hetero-
geneity of image objects. To assess experimental results, SNR is calculated as a measure for the
determination of the quality. The SNR values yield the optimum segmentation parameters, which
were used for image segmentation, followed by classification to extract land-cover classes.
Different land-cover features were correctly classified by exploiting the spectral, textural,
and spatial relationship of the image objects (segments).

Table 2 Segmentation parameter level and variable definition.

Level Scale Shape Compactness

1 30 0.5 0.1

2 40 0.6 0.3

3 50 0.7 0.5

4 60 0.8 0.7

5 70 0.9 0.9

Fig. 2 Methodological workflow.

Gibril et al.: Integrative image segmentation optimization and machine. . .

Journal of Applied Remote Sensing 016036-5 Jan–Mar 2018 • Vol. 12(1)



2.3 Classification and Accuracy Assessment

The outcome of segmentation is an unclassified image object with database of the layer values,
such as spectral indices, backscattering values, and textural parameters (Table 3) that allows
manipulating the feature characteristics for DM. The optimized image objects generated was
classified into nine land-cover classes (palm oil, initial paddy stage, intermediate paddy
stage, matured paddy stage, bare soil, flooded soil, built up areas, water bodies, and grass

Table 3 Description of the feature space included in SVM, RF, and rule-based classification to
classify image objects derived from multisource data and optimized by Taguchi technique.

Feature types Feature names and descriptions

Spectral Mean reflectance band of blue, green, red, NIR, and backscattering.

The standard deviation of reflectance band of blue, green, red, NIR, and
backscattering.

Normalized difference vegetation index ½ðRNIR−RRedÞ
ðRNIRþRRedÞ�.

Normalized difference water index ½ðRGreen−RNIRÞ
ðRGreenþRNIRÞ�.

Soil adjusted vegetation index ½ ðRNIR−RRedÞ
ðRNIRþRRedþlÞ � ð1þ LÞ�.

Ratio G index56 ¼ RGreen
ðRBlueþRGreenþRRedþRNIRÞ.

Brightness values.

Textural grey level co-occurrence matrix (GLCM) mean, GLCM contrast, GLCM entropy,
GLCM dissimilarity, GLCM homogeneity, GLCM correlation, GLCM std., GLCM
Ang. second moment, grey level difference vector (GLDV) mean, GLDV
contrast, GLDV entropy, and GLDV Ang. second moment.

Spatial and geometric Density, compactness, asymmetry, shape index, rectangular fit, and elliptic fit.

Fig. 3 Decision tree generated in Weka for developing russets used for the classification.
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or other vegetation) using SVM, RF, and rule-based DM approach. Theoretical bases of SVM,
RF, and DM can be found in literature.13,19,18,50–55

SVM and RF classifiers were applied by selecting training samples representative of the
respective feature class. But for the rule-based classification, decision tree (Fig. 3) was con-
structed by implementing the C4.5 algorithm in Weka,55 an open source software using the
image object attributes and indices (Table 3). The defined relationships between the image attrib-
utes and land-cover classes were utilized in building rule-sets for classifying the image objects.
Performance of the optimization process was evaluated by comparing its result with six different
studies in which their segmentation parameters were arbitrarily combined and classified using
the rule-based classification method. Evaluation of the classifiers was based on the classification
accuracy using the traditional confusion matrix and its measures (overall accuracy, kappa coef-
ficient, etc.).57 Selection of training image objects for classification and accuracy assessment was

Table 4 L25 orthogonal array for MRS and SVM parameters and experiments responses.

L25 combination of MRS parameters
L25 combination of SVM

parameters

Experiment Level Shape Compactness POF C γ Kappa

1 30 0.5 0.1 1 10 0.1 0.78

2 30 0.6 0.3 1.0001 10 0.3 0.80

3 30 0.7 0.5 1.1358 10 0.5 0.78

4 30 0.8 0.7 1.2186 10 0.7 0.79

5 30 0.9 0.9 1.3166 10 0.9 0.78

6 40 0.5 0.3 1.1841 30 0.1 0.80

7 40 0.6 0.5 1.2618 30 0.3 0.82

8 40 0.7 0.7 1.3595 30 0.5 0.85

9 40 0.8 0.9 1.3901 30 0.7 0.85

10 40 0.9 0.1 1.2895 30 0.9 0.83

11 50 0.5 0.5 1.3786 50 0.1 0.80

12 50 0.6 0.7 1.5315 50 0.3 0.84

13 50 0.7 0.9 1.4264 50 0.5 0.85

14 50 0.8 0.1 1.4821 50 0.7 0.85

15 50 0.9 0.3 1.0454 50 0.9 0.83

16 60 0.5 0.7 1.5421 70 0.1 0.82

17 60 0.6 0.9 1.5149 70 0.3 0.87

18 60 0.7 0.1 1.5327 70 0.5 0.85

19 60 0.8 0.3 1.2681 70 0.7 0.85

20 60 0.9 0.5 1.0814 70 0.9 0.83

21 70 0.5 0.9 1.4635 90 0.1 0.82

22 70 0.6 0.1 1.525 90 0.3 0.87

23 70 0.7 0.3 1.3883 90 0.5 0.86

24 70 0.8 0.5 1.1012 90 0.7 0.85

25 70 0.9 0.7 0.8548 90 0.9 0.83
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done randomly. The GPS points collected during the site visit does not cover the entire range of
classes defined in this study due to the coverage and accessibility. Therefore, the process of
selecting training samples was guided by the GPS points, the land-use map provided by the
Town and Country Planning Department and GoogleEarth image. In addition, quantitative
assessment was carried out to know whether there is a significant change in the classification
accuracy result before and after optimization using McNemar’s tests.58

3 Results and Discussion

3.1 Optimization Output

The first two stages of optimization derived from the 25 experiments produced a preliminary
view of some level of optimization for the MRS and SVM parameters, where the POF and kappa
values are indicators (Table 4). However, at this level, the operation still pose some challenges of
the correct choice of optimal combination because there are a number of closely related POF and
kappa from different combinations that seems optimal.

But further iteration using SNR “larger is better” option provided refined optimal values
(Fig. 4 and Table 5) that eliminates the ambiguity discussed above. Ultimately, the results
yield optimum parameter combination 60:0.7:0.9 for the scale, shape, and compactness factors,
respectively, for the MRS and 90 and 0.3 for C and γ, respectively, for SVM.

3.2 Classification Results and Accuracy

Classification results for the optimized (SVM, RF, and DT) and unoptimized (DT) segmenta-
tions processes are presented in Figs. 5 and 6. Each classified image contain nine classes: palm

Fig. 4 Main effect plot of the SNR “larger is better” for (a) MRS and (b) SVM parameters.

Table 5 Statistical SNR evaluations for MRS and SVM parameters.

Level

MRS SVM

Scale Shape Compactness C γ

1 1.0427 2.2652 2.6001 −2.059 −1.856

2 2.2448 2.5992 1.3534 −1.593 −1.486

3 2.6758 2.6835 1.4862 −1.557 −1.489

4 2.7643 2.1792 2.0974 −1.434 −1.544

5 1.8595 0.86 3.0501 −1.408 1.675

Delta 1.7216 1.8235 1.6968 0.651 0.37

Rank 2 1 3 1 2
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oil, initial paddy stage, intermediate paddy stage, matured paddy stage, bare soil, flooded soil,
built up areas, water bodies, and grass or other vegetation types.

Qualitatively, the use of multiattributes of the surface characteristics using the images and
their derivatives enhanced the quality of the resulting map. Particularly, in tropical agricultural
areas, integration of optical and radar sensor data has provided additional information to separate
intraspecies vegetation and various land-cover classes.3,5,59 The classification maps obtained
from the optimized SVM, RF, and DM classifiers do not show much difference except for
the flooded soil class in the southern part of the image, which is well classified in SVM
and RF and partly misclassified as grass/other vegetation in DM. Aside this class, DM
shows superiority in identifying subtle features as can be seen in the lot demarcation boundaries
and road network, most of which are not detected in SVM and RF. The HH polarization is highly
sensitive to moisture content and vegetation;5 these accounts for the well-classified vegetation
types. Also, the rivers and their tributaries are well mapped in SVM and DM; but further away
from the main river, the tributaries were not detected in RF. Visual analysis reveals that SVM and
RF exhibit misclassification among built-up area, bare soil, and matured paddy classes and also
between flooded soil and grass land, particularly within the paddy fields, all of which are dis-
tinctively separated into their respective classes with DM classifier.

Quantitative evaluation of the classification yielded overall classification accuracy of
87.25%, 88.69%, and 91.79% for SVM, RF, and DM, respectively (Table 6). The accuracy
obtained is similar to the result obtained with closely related works. For example, Zhang
and Xie19 obtained classification accuracy of 85% and 89% with SVM and RF, respectively,
after fusion. Similarly, Ribeiro and Fonseca13 obtained an overall accuracy of 85.66% from
pan-sharpened WorldView-2 using object-oriented techniques and DT classifier. On a scale

Fig. 5 LULCmap using the optimized segments: (a) SVM, (b) RF, and (c) machine learning-based
DT.
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of performance, the three maps produced acceptable results; however, DM using decision-based
approach produces superior quality.

Classification maps produced from the unoptimized segmentation show somewhat a similar
result with obvious misclassification of the matured paddy class as built-up area. This phenome-
non is much pronounced for the larger scale categories (i.e., 100, 90, and 80); but as the scale

Fig. 6 Classification results of the unoptimized process using arbitrary segmentation parameter
combinations (a) 100, 0.9, 0.3; (b) 90, 0.7, 0.3; (c) 80, 0.7, 0.5; (d) 70, 0.7, 0.7; (e) 60, 0.9, 0.5; and
(f) 50, 0.9, 0.1.
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reduces, so also the degree of misclassification reduced. In all the outputs, the main water bodies
are well represented, but most of the tributaries are misclassifies as built-up area, intermediate
paddy, or bare-soil [Figs. 6(a)–6(e)], whereas at scale 50 [Fig. 6(f)], the tributaries are correctly
classified as water. This indicates that using large scale could result in grouping two or more
features in a segment (under segmentation), conversely, if the scale is too small it will lead to

Table 7 Classification accuracy of the unoptimized parameter combination.

100, 0.9, 0.3 90, 0.7, 0.3 80, 0.7, 0.5 70, 0.7, 0.7 60, 0.9, 0.5 50, 0.9, 0.1

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

Palm oil 95.07 93.23 93.16 88.97 95.07 88.83 95.07 88.8 92.62 93.34 95.01 91.97

Initial paddy 81.44 74.42 84.4 98.3 77.49 98.23 79.88 73.58 86.95 98.27 79.38 97.59

Intermediate paddy 89.51 88.55 86.88 86.94 81.27 89.62 81.35 93.48 86.06 90.1 85.1 91.32

Matured paddy 80.38 78.26 88.7 79.39 90.51 79.03 86.98 79.04 92.57 80.34 82.83 77.39

Grass 88.75 85.89 80.59 83.34 79.58 86.72 79.64 91.49 88.67 86.94 86 92.96

Bare soil 73.76 94.44 66.92 81.1 67.86 81.88 69.69 84.62 76.07 92.12 74.95 83.89

Flooded soil 70.51 99.8 89.51 88.85 78.37 66.45 86.42 67.1 77.2 67.36 98.31 83.07

Built-up areas 95.64 73.31 96.51 81.54 97.3 80.87 89.59 72.87 95.84 83.38 93.54 78.1

Water bodies 89.27 100 88.45 94.71 90.46 86.71 89.27 91.69 90.91 91.36 90.57 87.62

Overall accuracy 86.93% 86.16% 85.04% 84.44% 88.08% 87.06%

Kappa coefficient 0.85 0.84 0.828 0.822 0.863 0.8513

Table 6 Error matrix for SVM, RF, and DT classifiers with UA and PA.

SVM RF
Rule-based based on

DM

Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Palm oil 92.21 96.2 98.01 96.01 96.99 92.41

Initial paddy 96.58 95.47 98.37 85.07 98.41 79.59

Intermediate paddy 67.54 100 86.72 88.42 90.58 96.98

Matured paddy 89.59 99.71 84.08 96.06 92.36 80.59

Grass 86.73 100 86.47 96.16 86.32 99.91

Bare soil 94.05 76.88 77.42 81.64 78.09 92.21

Flooded soil 91.57 58.99 99.81 68.29 90.87 89.00

Built up areas 96.1 72.63 90.12 91.52 98.34 88.67

Water bodies 90.48 83.54 86.03 82.99 96.92 100.00

Overall accuracy 87.25 88.69 91.79

Kappa 0.87 0.87 0.90

Note: Values in bold face indicate the best result.
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over segmentation, which could equally complicates the classification process.32,33,60 The trend
in the visual analysis is reflected in the quantitative evaluation results (Table 7).

In Table 7, it can also be observed that the classification accuracy of the unoptimized seg-
mentation performs well, with the overall accuracy range between 84.44% and 88.08% for both
SVM and RF, respectively. However, the optimized DT result out performed them all. On the
basis of this, the optimized DT classification output was selected as the best for the LULC map
(Fig. 7). Statistically, the McNemar’s computed (two-sided) p < 0.0001 is less than the conven-
tional 0.05 at 95% CI, we cannot accept the null hypothesis. Therefore, the conclusion is that
there is a significant difference between the optimized and unoptimized classification processes.
In general, optimization significantly improved the quality of the classification; however, careful
selection of segmentation parameter combination can also produce acceptable result, as dem-
onstrated in Table 7. Inability to obtain sufficient independent ground data for the evaluation
process may affect the result; nonetheless, the use of the basic map provided and
GoogleEarth image is adequate for this task. Decision tree based on DM provides better quali-
tative LULC classification map with the optimized segmentation.

4 Conclusion

Advances in information and data science are fast unifying different disciplines in exploratory
knowledge-based applications. In the field of remote sensing, there is growing use of machine
learning algorithms for complex decisions. The process translates human cognition to machine
intelligence in a more sophisticated way. This study demonstrates a key application in LULC
mapping. GEOBIA enables obtaining all rich information from the images to be mined.
Combination of segment optimization and DM will increase the accuracy and reliability of fea-
ture extraction even in a multifarious environment. Mapping of intraclass land-cover types, such
as the different stages of paddy, bare soil and wet soil, and different vegetation cover, will ordi-
narily be difficult without availability of intricating information in the image to discriminate one
feature from another. This does not mean that SVM and RF are not satisfactory, they also per-
form well; however, they have no capability for attributing data decision intelligence. In

Fig. 7 Final LULC map generated from the optimization process and DT classifier.
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summary, the DM approach is a resourceful method for high-quality LULC mapping and will
also be useful for mapping under different and more heterogeneous environment.
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