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Abstract. Convolutional neural network (CNN) has shown great success in computer vision
tasks, but their application in land-use type classifications within the context of object-based
image analysis has been rarely explored, especially in terms of the identification of irregular
segmentation objects. Thus, a blocks-based object-based image classification (BOBIC) method
was proposed to carry out end-to-end classification for segmentation objects using CNN.
Specifically, BOBIC takes advantage of CNN to automatically extract complex features
from the original image data, thereby avoiding the uncertainty caused by the manual extraction
of features in OBIC. Additionally, OBIC compensates for the shortcomings of CNN whereby it
is difficult to delineate a clear right boundary for ground objects at the pixel level. Using three
high-resolution test images, the proposed BOBIC was compared with support vector machine
(SVM) and random forest (RF) classifiers, and then, the effect of image blocks and mixed objects
on classification accuracy was evaluated for the proposed BOBIC. Compared with conventional
SVM and RF classifiers, the inclusion of CNN improved the OBIC classification performance
substantially (5% to 10% increases in overall accuracy), and it also alleviated the effect derived
from mixed objects. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12.025010]
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1 Introduction

Object identification in very high-resolution (VHR) remote sensing imagery has always been a
fundamental but challenging issue. In the past few decades, various methods for the identifica-
tion of different types of objects have been proposed, including the template matching-based
method,1–3 knowledge-based method,4–6 object-based image analysis (OBIA) method,7–9 and
machine learning-based method.10,11 Among them, the OBIA method can be easily combined
with geographical information system (GIS) techniques, which allows for more complete map-
ping of land-use types for GIS analyses.12 Thus, OBIA has attracted the attention of many
scholars.12–14 The first step in OBIA is to segment the images into relatively homogeneous
regions (segmentation objects),15 and then, the statistical information for the segmentation
objects is employed for image analyses (e.g., object-based image classification, hereafter,
OBIC). As compared with pixels, the segmented objects not only exhibit rich spectral and tex-
tural features, but also provide shape and contextual information,16 which can improve the clas-
sification performance for various types of objects.
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However, the sharp increase in the feature number for each segmentation object renders the
determination of optimal features as an uncertain or subjective process. For example, Weston
et al.17 and Guyon and Elisseeff18 pointed out that reducing feature dimensions could improve
support vector machine (SVM) classification accuracy, whereas Melgani and Bruzzone19 and Pal
and Mather20 deemed that SVM was insensitive to the number of data dimensions. Likewise,
Duro et al.21 found that feature selection could improve the classification performance of the
random forest (RF) classifier,22 whereas Ma et al.23 deemed that RF was a relatively stable clas-
sification model, as they found that there were no significant differences among its classification
accuracies irrespective of the use of feature selection. Presently, the feature selection process is
always associated with an uncertainty factor during OBIC using traditional classification models.
Emerging deep learning24 methods are famous for their ability to carry out automatic feature
extraction on raw data, and therefore, such methods could potentially be used to optimize
the process of feature extraction and selection in OBIC. However, deep learning methods
have not been extensively tested in land-use type classifications, especially within the framework
of OBIA.

As deep learning was proposed,24 it has received extensive attention from many scholars
because it can automatically generate complex and abstract high-level features in a hierarchical
manner.25 High-level features have proven to be highly effective in representing complex objects
(e.g., high-resolution images).26 The convolutional neural network (CNN) is one of the algo-
rithms with most rapid development in deep learning and was specially designed for image clas-
sification tasks.27,28 Images served as the input at the lowest layer in the CNN’s hierarchical
structure, and each layer obtains the features of the upper layer through a convolution
filter.29 Moreover, with increased hierarchical depth, features became more and more robust
and complex. This allows for salient features of translation-, scaling-, and rotation-invariant
data to be obtained.30 However, a major drawback is that the input of the CNN framework
must be image blocks of a fixed size. This poses a certain challenge in terms of combining
CNN with object-based remote sensing image classification because the minimum processing
unit of OBIA is usually irregular segmentation objects.

Despite the above problems, the continuing success of CNN in the field of image
recognition31,32 has motivated researchers in the remote sensing community to investigate its
potentials for OBIA. Guirado et al.33 compared state-of-the-art OBIA methods with CNN-
based methods for the detection of plant species of conservation concern and reasoned that
adopting the CNN-based methods could further improve OBIA methods. Zhao et al.34 proposed
a two-step OBIC framework using a combination of handcrafted and deep CNN features. In their
work, however, CNN only served as a feature descriptor of segmentation objects, which makes
the process of feature selection in OBIA still uncertain. Liu et al.35 implemented end-to-end
classifications of wetland land cover under the OBIA framework and tested the classification
performance of the model using different training samples. However, their work did not sys-
tematically assess the geometric relationship of the irregular segmentation objects to the
input image blocks of the CNN; it only focused on the identification of wetland land cover.
All of the above studies show that the CNN can effectively improve the OBIC classification
performance in specific contexts, so work is urgently needed to systematically evaluate the avail-
ability of classifying irregular segmentation objects using CNN.

In a similar way, this paper considers that including CNN in an OBIA framework could take
advantage of the benefits of both methods, e.g., OBIA segmentation to delineate homogeneous
areas and CNN for classification. Hence, a blocks-based object-based image classification
(BOBIC) method is proposed to combine OBIA with CNN. In this work, the multiresolution
segmentation (MRS) algorithm was employed to generate highly irregular segmentation
objects.36 Image blocks were subsequently generated according to the center of gravity (CG)
of the segmentation objects, thereby combining irregular objects with the CNN.
Furthermore, the differences between this method and conventional classifiers were compared
systematically at three study sites, and the effects of segmentation object shape and mixed
objects on the classification accuracy were also analyzed. The remaining parts of this paper
are organized as follows: Sec. 2 introduces the three study sites that were used in the experi-
ments. Section 3 elaborates on how to apply CNN in OBIA and the experimental procedures
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used in this paper. The experimental results are presented in Sec. 4, and Sec. 5 contains a dis-
cussion of the experimental results. Finally, Sec. 6 summarizes the entire paper.

2 Study Area

In this work, unmanned aerial vehicle (UAV) images and International Society for
Photogrammetry and Remote Sensing (ISPRS) standard datasets corresponding to agricultural
areas and urban areas, respectively, were employed for the experiments. Images for study site 1
were sourced from the high-resolution image acquisition project in Deyang City, Sichuan
Province, China.37 This project adopted a fixed-wing UAV equipped with a Canon EOS 5D
Mark II digital camera. At 80% heading overlap and 60% side overlap and with an average
flight altitude of 750 m, the UAV captured raw image data for the built-up area and suburban
area of Deyang City with a total area of 400 km2 in August 2011. Furthermore, a digital ortho-
photo map (DOM) with a resolution of 0.2 m was finally obtained using digital photogrammetric
techniques. In this work, a standard-sized UAV DOM (500 m × 500 m) [Fig. 1(a)] was ran-
domly selected, where crop (41%), woodland (46%), buildings (6%), roads (2%), and bareland
(5%) were distributed.

Fig. 1 Images of the study sites in this work and their corresponding reference layers. (a), (c), and
(e) The images of the three study sites; (b), (d), and (f) the corresponding reference (labeled)
layers of three study sites.
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Study sites 2 and 3 employed Vaihingen and Potsdam datasets provided by the ISPRS
Commission III, respectively. These datasets can be downloaded freely from the ISPRS
website.38 The Vaihingen dataset contains a total of 33 aerial images of varying sizes (average
size of 2494 pixels × 2064 pixels), 16 of which also have visually interpreted reference (labeled)
polygons, and the spatial resolution for each aerial image is 9 cm. In this work, one image (region
26) was randomly selected from the 16 visually interpreted images for study site 2 [Fig. 1(c)],
where buildings (42%), woodland (29%), water (12%), cars (3%), and grass (14%) were dis-
tributed. The Potsdam dataset comprises a total of 38 aerial images (each image size was
6000 pixels × 6000 pixels), 24 of which have visually interpreted reference polygons, and
the spatial resolution for each aerial image is 5 cm. Likewise, one image (region 07_12)
was randomly selected from the 24 visually interpreted images for study site 3 [Fig. 1(e)],
where buildings (69%), woodland (9%), bareland (3%), cars (4%), and grass (15%) were dis-
tributed. Images of the three study sites and their corresponding visually interpreted polygon
layers are shown in Fig. 1.

3 Methods

As mentioned in Sec. 1, traditional OBIA methods require a large number of image features to be
empirically designed, which is time-consuming and often fails to lead to accurate representa-
tions. In contrast to traditional methods, the CNN can perform automatic feature extraction on
raw images, and deep features extracted by the CNN are generally effective for complex image
pattern descriptions.31,32 However, CNN often fail to capture the precise contour of real-world
objects in the images, and suffer from the “pepper and salt” effect because the output features of
CNN are highly abstract. Thus, it is natural to consider that including CNN in an OBIA

Fig. 2 Flowchart of the comparison between the OBIC method and BOBIC methods.
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framework can take advantage of the benefits of both methods, i.e., CNN for object classification
and OBIA segmentation to provide accurate edge realizations. However, the CNN framework
requires fixed-sized image blocks as input, which limits its development in the OBIA framework.
In consideration of this issue, in this paper, we try to propose a BOBIC method to classify irregu-
lar segmentation objects using CNN. Figure 2 summarizes the technical roadmaps of OBIC and
the proposed BOBIC.

As shown in Fig. 2, OBIA involves two steps, namely image segmentation and object clas-
sification. The proposed BOIBC method involves applying CNN to the object classification step
so as to improve the OBIC method. Therefore, image segmentation is the common step of these
two methods, and this is described in detail in Sec. 3.1. Object classification is divided into two
parts, namely OBIC (Sec. 3.2) and BOBIC (Sec. 3.3). Furthermore, the object classification
process of the traditional OBIC method mainly includes the following two steps: feature cal-
culation and selection (Sec. 3.2.1) and classifier selection (Sec. 3.2.2). The proposed BOBIC
method can automatically perform the feature calculation and selection of images using the
CNN, but there is a need to generate a unique image block corresponding to each segmentation
object. The generation of image blocks for segmentation objects is elaborated on in Sec. 3.3.1,
and Sec. 3.3.2 presents the structure of the CNN used in this paper. In addition, the sampling and
accuracy assessment methods are described in Sec. 3.4.

3.1 Image Segmentation

Image segmentation is the first step and a necessary prerequisite for generating the basic clas-
sification unit of OBIA.39–41 MRS has been proven to be one of the rather successful segmen-
tation algorithms in OBIA.42,43 In this paper, image segmentation was performed for three study
sites in a unified manner using MRS implemented with eCognition 8.7 software (eCognition
Software® Definiens, 2011),36 and subsequently, irregular segmentation objects were generated.
The following three parameters need to be set for the MRS: color/shape ratio, smoothness/com-
pactness ratio, and segmentation scale parameter (SSP). The color/shape ratio defines what per-
centage of the homogeneity of spectral values is weighted against the homogeneity of shape. The
smoothness/compactness ratio is used to determine the smoothness or compactness of each
object. In this work, to make the spectral information have a dominant role during segmentation,
the color/shape ratio was set to 0.9/0.1. The smoothness/compactness ratio was configured to
0.5/0.5, because we did not want to favor compact or noncompact segments.

The most important parameter for MRS is the SSP, which controls the internal heterogeneity
of each object. Specifically, use of a small SSP results in smaller and more homogeneous objects,
i.e., fewer pixels per object. However, using an overly small object size (i.e., over-segmentation)
may affect the quality of the information extracted from each object44 and increase the
computational burden of the subsequent classification process. Conversely, an overly large
SSP (i.e., under-segmentation) will produce objects containing multiple different classes
(i.e., this leads to the generation of mixed objects45). Automated identification/selection of

Table 1 The number of segmentation objects for various land-use types at three study sites; data
were derived using segmentation scales of 50 and 110.

Study
sites Class

Count
(50)

Count
(110)

Study
sites Class

Count
(50)

Count
(110)

Study
sites Class

Count
(50)

Count
(110)

1 Bareland 286 89 2 Grass 331 74 3 Grass 1069 263

Woodland 2832 608 Woodland 1030 263 Woodland 740 159

Building 439 143 Building 1381 435 Building 6758 1732

Crop 1148 290 Car 119 27 Car 1212 469

Road 145 39 Water 116 35 Bareland 437 102

Total 4850 1169 Total 2977 834 Total 10216 2725
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the “appropriate” SSP(s) for segmentation (i.e., those which can minimize under- and over-
segmentation) is still an active research topic.16,46,47 In this research, two SSPs (50 and 110),
selected based on visual analysis, were employed for image segmentation to enrich the exper-
imental results.

Additionally, if the area of a primary class that was encompassed by the segmentation object
accounted for over 60% of the total area of this segmentation object, then this segmentation
object was labeled with this class (otherwise the segmented object was left unlabeled). Here,
the proportion of the primary class was set to 60% with reference to the research by
Verbeeck et al.48 and Ma et al.23 The numbers of segmentation objects for various classes at
the three study sites are shown in Table 1.

3.2 Object-Based Image Classification

3.2.1 Feature calculation

Features of segmentation objects need to be calculated to employ conventional OBIC algorithms
(e.g., SVM or RF). In this paper, eCognition 8.7 software was adopted to calculate commonly
used shape, textural, and spectral features. The shape features included the area, density, round-
ness, compactness, border index, shape index, main direction, elliptic fit, rectangular fit, and
asymmetry; the textural features included the gray-level co-occurrence matrix (GLCM) entropy,
GLCM std. dev., GLCM contrast, GLCM dissimilarity, GLCM homogeneity, GLCM mean,
GLCM ang.2nd moment, and GLCM correlation that were computed according to the
GLCM49,50 as well as the gray-level difference vector (GLDV) entropy, GLDV contrast,
GLDV mean, and GLDV ang.2nd moment that were derived from the GLDV;51 the spectral
features included the mean blue, mean green, mean red, max difference, standard deviation
blue, standard deviation green, standard deviation red, and brightness. Considerable uncertainty
exists concerning feature selection with regard to different classifiers.52,53 Hence, feature selec-
tion has not been performed for the above-mentioned features.

3.2.2 Selection of conventional classifiers

The SVM and RF classifiers have been extensively applied, and such studies have demonstrated
their classification advantages in OBIA multiple times.23,52,54–57 Hence, in this work SVM and
RF classifiers were utilized to classify the extracted features in Sec. 3.2.1. The SVM used the
LIBSVM library that was developed by Chang and Lin,58 and we employed the radial basis
function (RBF)59 as its kernel function. The RBF involved penalty parameter C and kernel
parameter γ. The accuracy of each cross validation was tested by using the grid-search method,
and thus, the parameters with the highest cross-validation accuracy could be identified as the
penalty parameter and kernel parameter. The RF classifier used the “randomforest” package in R
language. Roughly speaking, constructing an RF classifier requires the following two param-
eters: (1) n is the number of features when each decision tree is constructed, (2) k is the total
number of decision trees. Based on the results obtained by Rodriguez-Galiano et al.,60 k was set
to 479, and n was equivalent to one single random segmentation variable; the intent was to
reduce the generalization error and the correlation between trees and prevent over-fitting in
the classification process as much as possible.

3.3 Blocks-Based Object-Based Image Classification

3.3.1 Generation of image blocks for segmentation objects

Image blocks of a fixed size have to be generated for each segmentation object to use CNN in
OBIC. The size of an image block is constrained by the depth of the CNN network and the
capacity of computer memory.61 With respect to subsequent experiments in this work, supervised
classification tests were conducted mainly using a small sample size, where the ultra-large scale
CNN framework could not be adopted. Hence, 32 × 32 and 64 × 64 pixel shapes were selected
as the size of the image block. In addition, in this paper the CG for the segmentation object
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served as the center point of an image block. Each segmentation object corresponded to one
unique image block. In addition, the class of an image block was in good agreement with
that of the corresponding segmentation object. Figure 3 shows a schematic of the generation
of image blocks for irregular segmentation objects, where black lines denote the segmentation
boundaries of irregular segmentation objects, red cross-points represent the CG of irregular seg-
mentation objects, and red square boxes indicate the range of a sampled image block.

It can be seen from Fig. 3 that the CG of a convex polygon, in most cases, fell inside the
polygon. However, with respect to a nonconvex polygon, its CG exhibited a certain shift. This
presented a challenge with regard to the application of the proposed BOBIC method. Hence, we
summarized in detail the geometric relationship of irregular segmentation to the input image
blocks of the CNN. First, when the CG of a segmentation object fell within the segmentation
object, there existed a total of the following three situations:

1. The CG fell inside the segmentation object, and the image block entirely encompassed
the segmentation object.

2. The CG fell within the segmentation object, and the segmentation object entirely encom-
passed the image block.

3. The CG fell inside the segmentation object, and the image block encompassed a portion
of the segmentation object.

Second, under circumstances where the CG fell outside a segmentation object, it was impos-
sible for the segmentation object to encompass the image block. In addition, the CG was likely to
either fall within the segmentation object of the same type or fall inside the segmentation object
of a different type. No difference existed in the former case between situations 1 and 3. This was
because the center point of the image block always fell on the land cover of the same type, and
the class of the segmentation object that corresponded to the image block remained unchanged.
Hence, this situation was not listed separately, i.e., the situation where the CG fell within the land

Fig. 3 Schematic generation of image blocks for irregular segmentation objects. (Black lines
denote the segmentation boundaries of irregular segmentation objects, red cross points represent
the CG of irregular segmentation objects, and red square boxes indicate the range of a sampled
image block.)
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cover of the same type was included in situations 1 and 3 correspondingly. Then, the remaining
situations were as follows:

1. The CG fell outside the segmentation object, and it fell inside different types of segmen-
tation objects, where the image block entirely encompassed the segmentation object.

2. The CG fell outside the segmentation object, and it fell inside different types of segmen-
tation objects, where the image block encompassed a portion of the segmentation object.
The above five situations with different types of land covers are shown in Fig. 4.

3.3.2 Convolutional neural network

The CNN consisted mainly of three different types of hierarchical structures, specifically, con-
volution layers, pooling layers, and fully connected layers. Convolution layers, also known as
feature extraction layers, constitute the primary layers of CNN architecture. The input of con-
volution layers comprises a set of two-dimensional (2-D) feature maps of a fixed size. In the

Class Situation 1 Situation 2 Situation 3 Situation 4 Situation 5

woodland 

grass

bareland

building

water

road

crop

car

Fig. 4 Five situations amongst image blocks and segmentation objects. (“–” indicates that this
situation does not exist with respect to the current land cover class, image blocks are enveloped
by bright blue dotted boxes, bright green solid boxes depict the range of segmentation objects, and
red points are the CG of segmentation objects.)
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convolution phase, trainable filterW (convolution kernel) performs the convolution operation by
using a sliding window technique.62,63 Assume the convolution kernel is i × j in size, and then,
the output feature map Y that corresponds to X can be written as follows:

EQ-TARGET;temp:intralink-;e001;116;699Ym;n ¼ f

�
bþ

X
i¼0

X
j¼0

Wi;jXmþi;nþj

�
; (1)

wherem, n denote the row and column number of a hidden neuron in the 2-D feature map, b is a
trainable bias parameter, and f represents the particular nonlinear activation function.

Pooling layers are down-sampling layers in the CNN architecture, which can enhance the
spatial-invariance property of the convolutional architecture.64 A down-sampling operation was
performed for each 2-D feature map normally through max pooling.65 The max pooling oper-
ation aims to compute the maximum value of a neuron within the local region, which is
expressed as

EQ-TARGET;temp:intralink-;e002;116;567Y ¼ max
1<m<i;1<n<j

Xm;n; (2)

where ði; jÞ denotes the size of the local region X,m, n represents the row and column number of
a neuron inside the local region, and Y is the output of the max pooling operation, respectively.

Fully connected layers generally constitute the last few layers of the CNN architecture, which
accept all neurons in a 2-D feature map and connect them to one-dimensional neurons. With
regard to a multiclass problem, the number of neurons for the last fully connected layer equals
the number of classes for the final classification. In addition, the last fully connected layer is
normally followed by the Softmax layer,66 which can be used to obtain the discrimination prob-
ability for each class. The equation is given as

EQ-TARGET;temp:intralink-;e003;116;434Yi ¼
expðXiÞP

k
j¼1 expðXjÞ

; (3)

where Xi denotes the output of class i in the last fully connected layer, k is the number of classes,
and Yi represents the discrimination probability for class i, respectively.

In this work, the architecture of VGG-Net67 was used as a reference. The end-to-end training
was performed for image blocks of segmentation objects using the CNN architecture as shown
in Fig. 5.

The CNN architecture shown in Fig. 5 is comprised of four convolution layers (blue layers
as shown in Fig. 5). Each convolution layer used a 3 × 3 convolution kernel, and convolution
operations were performed with stride 1 for the 2-D feature maps in the previous layer. The first
two convolution layers produced 32-dimensional output, whereas the latter two generated

Fig. 5 CNN architecture employed in this work. Image blocks that were generated in Sec. 3.2.1
served as the CNN input, and the output of CNN was comprised of the classes of segmentation
objects that corresponded to the image blocks, blue layers represent convolution layers (using
ReLU as the activation function), red layers are pooling layers (using the max pooling layer), purple
layers denote fully connected layers, and green layers are Softmax layers.
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64-dimensional output. A rectified linear unit (ReLU)25 can address the gradient disappearance
phenomenon well.68,69 Therefore, ReLU was adopted as the activation function for each con-
volution layer. Every two convolution layers were followed by a 2 × 2 max pooling layer (red
layers as shown in Fig. 5). The first purple layer in Fig. 5 shows a fully connected layer that was
comprised of 512 neurons, whereas the number of neurons for the last fully connected layer (the
second purple layer in Fig. 5) was equal to the number of land-use types in the three study sites,
all being 5 in this work. Finally, the Softmax function was applied after the last fully connected
layer, which allowed for the generation of the green class output as shown in Fig. 5.

To avoid the risk of overfitting,70 the following strategies were adopted in this work:

1. Employ the dropout technique after the pooling layers and fully connected layers.71 The
dropout technique aims to avoid co-adaptation of neurons during training. It randomly
“shuts down” a given percentage of neurons during CNN training, thereby reducing the
overfitting risk. In this work, the dropout percentage after the max pooling layer was set
to 20%, and it was set to 50% after the fully connected layer.

2. Apply the early stopping technique that monitors a certain value (normally the loss
value). The CNN training stops when this value does not increase or decrease after multi-
ple epochs. In this paper, the loss values of training samples were monitored. When these
values were all <0.1 within 20 epochs, the CNN training was stopped.

3. Data augmentation can extend data without increasing the number of training samples.
The commonly used enhancement strategies include random image rotation, random
image scaling, horizontal image shift, and noise injection. To maintain the high reso-
lution of images, only random rotation was performed on the images.

In addition, all the weights in convolution layers and fully connected layers were initialized
using the He normal distribution.68 In this work, the CNN was trained from scratch using the
end-to-end method.

3.4 Sampling and Accuracy Evaluation

Regardless of whether the base unit of classification is a segmented object or an image block
generated based on the segmentation object, it makes no difference from the perspective of sam-
pling. Hence, the random sampling method was adopted in the experiments. Proportions
amounting to 10%, 20%, 30%, 40%, and 50% of the total number of segmentation objects
in three study sites were sampled as training sample sets, whereas the remaining samples served
as test sample sets. The classification accuracy was derived by dividing the number of correctly
classified segmentation objects in the test sample set by the total number of segmentation objects
in the test sample set. Twenty-time random samplings were performed with respect to each sam-
pling ratio, and then, statistics were collected for the classification accuracies with regard to 20-
time samplings. Finally, the mean value and standard deviation of classification accuracies were
computed.

In addition, Welch’s t-test72 was used to test whether significant differences existed between
two sets of data. Specifically, Welch’s t-test was performed on the classification accuracies with
respect to adjacent sampling ratios, thereby allowing us to assess whether significant differences
existed in terms of the classification accuracies of adjacent sampling ratios. P-values were
derived from the Welch’s t-test, and significant differences were deemed to exist between
two sets of data when the p-value was <0.05.

4 Results

This section contains a complete description of the classification performance of the conven-
tional OBIC method and the proposed BOBIC method. First, to test whether the BOBIC method
could achieve higher land-use type classification accuracy than the OBIC methods, we compared
the two methods at the three study sites using five sampling ratios and two different SSPs (results
presented in Sec. 4.1). Second, as discussed in Sec. 3.3.1, the geometric relationships between
the segmented objects and image blocks were complex. Often the image block did not entirely
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contain its corresponding segmented object, which presented a challenge during the application
of the proposed method. Therefore, the classification error rates of different geometric relation-
ships were calculated in Sec. 4.2 to assess the influence of these geometric relationships on
classification accuracy. In addition, the mixed objects were a special but easily overlooked
issue in the framework of OBIA. On the one hand, the classification accuracy of the mixed
objects tended to be lower, because they often contained pixels belonging to many different
land-use classes. On the other hand, the existence of mixed objects could not be avoided because
of the limitation of the current segmentation algorithm. So, we counted the classification accu-
racy of mixed and pure objects in Sec. 4.3 to evaluate the applicability of the proposed method to
mixed objects.

4.1 Comparison of OBIC and BOBIC in Terms of the Classification Effect

Based on the sampling and accuracy evaluation methods described in Sec. 3.4, final classifica-
tion results were obtained using the OBIC method and BOBIC method, and these results are
shown in Tables 2 and 3. In addition, the classification objects for SVM and RF classifiers were
extracted features of the segmentation objects described in Sec. 3.2.1, which represents OBIC;
additionally, the classification objects for the CNN were image blocks that were generated using
the CGs of segmentation objects in Sec. 3.3.1, which represents the proposed BOBIC. Table 2
shows the mean value and standard deviation of classification accuracies for 20-time random

Table 2 The mean value and standard deviation of classification accuracies for 20-time random
samplings based on different sampling ratios with a segmentation scale of 50 for three study sites.

OBIC (SVM) OBIC (RF) BOBIC (32 × 32) BOBIC (64 × 64)

Sample
ratio (%)

Accuracy
(Mean)

Accuracy
(Std)

Accuracy
(Mean)

Accuracy
(Std)

Accuracy
(Mean)

Accuracy
(Std)

Accuracy
(Mean)

Accuracy
(Std)

Study site 1

10 0.7947 0.0070 0.7791 0.0093 0.8380 0.0052 0.8594 0.0069

20 0.8216 0.0065 0.7957 0.0078 0.8592 0.0049 0.8881 0.0037

30 0.8304 0.0073 0.8024 0.0073 0.8740 0.0036 0.8908 0.0052

40 0.8369 0.0054 0.8095 0.0059 0.8765 0.0034 0.9023 0.0044

50 0.8385 0.0061 0.8148 0.0063 0.8851 0.0041 0.9096 0.0030

Study site 2

10 0.8322 0.0142 0.8301 0.0097 0.8771 0.0056 0.9001 0.0041

20 0.8503 0.0079 0.8453 0.0060 0.9042 0.0061 0.9253 0.0059

30 0.8644 0.0088 0.8512 0.0065 0.9117 0.0034 0.9288 0.0046

40 0.8746 0.0064 0.8555 0.0081 0.9207 0.0037 0.9370 0.0040

50 0.8807 0.0100 0.8605 0.0099 0.9257 0.0039 0.9529 0.0038

Study site 3

10 0.7825 0.0055 0.7437 0.0063 0.8361 0.0032 0.8865 0.0046

20 0.8050 0.0051 0.7670 0.0055 0.8633 0.0042 0.9109 0.0050

30 0.8159 0.0055 0.7784 0.0044 0.8749 0.0046 0.9270 0.0043

40 0.8219 0.0051 0.7843 0.0065 0.8835 0.0046 0.9364 0.0046

50 0.8264 0.0048 0.7928 0.0038 0.8919 0.0018 0.9412 0.0017
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samplings on five sampling ratios using four classification methods with a segmentation scale
of 50.

Meanwhile, Table 3 shows the mean value and standard deviation of classification accuracies
for 20-time random samplings on five sampling ratios, using four classification methods with a
segmentation scale of 110.

According to the results shown in Tables 2 and 3, the following observations can be
made. (1) The classification accuracies of the proposed BOBIC on five sampling ratios
were all superior to the OBIC method. (2) The classification accuracy of image blocks with
64 pixels × 64 pixels was obviously superior to that of image blocks with 32 pixels ×
32 pixels. (3) The BOBIC method was characterized by better classification stability. The vari-
ance of its classification accuracies under corresponding sampling ratios remained less than that
of the two conventional classifiers.

Based on the BOBIC experimental results presented in Tables 2 and 3, the Welch’s t-test was
conducted for adjacent sampling ratios (Sec. 3.4), and these results are shown in Table 4. From a
vertical perspective of Tables 2 and 3 as well as in combination with Table 4, when the sampling
ratio increased from 10% to 20%, the classification accuracy of the BOBIC exhibited a marked
increase (most of the p-values were all <0.05). With regard to the remaining adjacent sampling
ratios, the improvement in classification accuracy did not exhibit an obvious pattern.

Graphical representations of the classification performance for the three study sites were
prepared with respect to the optimal classification results of 20-time random samplings by

Table 3 The mean value and standard deviation of classification accuracies for 20-time random
samplings based on different sampling ratios with a segmentation scale of 110 for three study
sites.

OBIC (SVM) OBIC (RF) BOBIC (32 × 32) BOBIC (64 × 64)

Sample
ratio (%)

Accuracy
(Mean)

Accuracy
(Std)

Accuracy
(Mean)

Accuracy
(Std)

Accuracy
(Mean)

Accuracy
(Std)

Accuracy
(Mean)

Accuracy
(Std)

Study site 1

10 0.7249 0.0240 0.7231 0.0191 0.7878 0.0105 0.7974 0.0115

20 0.7667 0.0162 0.7585 0.0169 0.8131 0.0082 0.8235 0.0108

30 0.7889 0.0129 0.7721 0.0155 0.8298 0.0132 0.8474 0.0105

40 0.8045 0.0136 0.7875 0.0178 0.8337 0.0096 0.8558 0.0091

50 0.8131 0.0150 0.7952 0.0192 0.8296 0.0068 0.8626 0.0090

Study site 2

10 0.8421 0.0170 0.8355 0.0271 0.8557 0.0109 0.8920 0.0110

20 0.8561 0.0120 0.8557 0.0100 0.8924 0.0071 0.8975 0.0071

30 0.8633 0.0100 0.8648 0.0121 0.8979 0.0077 0.9181 0.0076

40 0.8760 0.0150 0.8706 0.0164 0.9079 0.0064 0.9196 0.0064

50 0.8818 0.0121 0.8765 0.0143 0.9054 0.0061 0.9351 0.0065

Study site 3

10 0.7530 0.0164 0.7410 0.0171 0.7880 0.0075 0.8361 0.0096

20 0.7939 0.0126 0.7695 0.0099 0.8220 0.0067 0.8662 0.0107

30 0.8149 0.0083 0.7887 0.0080 0.8410 0.0074 0.8905 0.0047

40 0.8270 0.0098 0.7924 0.0111 0.8476 0.0051 0.8888 0.0073

50 0.8347 0.0096 0.7996 0.0126 0.8665 0.0059 0.9043 0.0063
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using a sampling ratio of 50% (Fig. 6). It can be observed from Fig. 6 that, compared with the
OBIC method (SVM and RF), the classification performance of the proposed BOBIC was more
“clear-cut,” i.e., it overcame the so-called “pepper and salt” effect. Specifically, different land
cover types were characterized by more clear boundaries, e.g., woodland, farmland, and barren
land in study site 1; water bodies and buildings in study site 2; and buildings, woodland, barren
land, and grassland in study site 3, respectively. In summary, the proposed BOBIC method
improved the overall classification performance of the traditional OBIC.

4.2 Classification Effect of Different Geometric Relationships between
Image Blocks and Segmented Objects

The geometric relationship between image blocks and segmentation objects forms an important
part of the proposed BOBIC method. So this section provides a further statistical analysis of the
five situations summarized in Sec. 3.3.1. Table 5 presents the number of segmentation objects in
the three study sites under different situations.

With a sampling proportion of 50%, the classification error rates for each situation were
calculated, as shown in Table 6.

The following could be clearly observed from Tables 5 and 6. (1) The probability for the
occurrence of situation 4 and 5 remained extremely low, but their error rates were very high.
(2) The error rate of situation 2 remained very low; however, the number of training samples for
situation 2 was very small. (3) The numbers for situation 1 and 3 accounted for the vast majority
of the total number of segmentation objects, and the error rates of these two situations were close.

4.3 Effects of the BOBIC Method on the Classification of Mixed Objects

The effects of the BOBIC method on the classification of mixed objects are discussed in this
section. The ratio of the area of the primary class in a segmentation object to the total area of the
segmentation object [referred to as the primary class proportion (PCP)] was employed as an
indicator to measure the mixed degree of the segmentation objects. When the PCP was
100%, the segmentation object was a pure object. Lower PCP values reflect the greater
mixed degree of the segmentation objects. Then, statistics were collected for the ratios of sample
sizes for the different intervals of the PCP to the total sample size, as shown in Fig. 7.

Table 4 Welch’s t-test results for the BOBIC with respect to adjacent sampling ratios.

Study site 1 Study site 2 Study site 3

Adjacent ratio

p-value p-value p-value p-value p-value p-value

(32 × 32) (64 × 64) (32 × 32) (64 × 64) (32 × 32) (64 × 64)

SSP (50)

10%/20% <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

20%/30% <0.05 >0.05 <0.05 >0.05 <0.05 <0.05

30%/40% <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

40%/50% <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

SSP (110)

10%/20% <0.05 <0.05 <0.05 >0.05 <0.05 <0.05

20%/30% <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

30%/40% >0.05 <0.05 <0.05 >0.05 <0.05 >0.05

40%/50% >0.05 >0.05 >0.05 <0.05 <0.05 <0.05

Note: A p-value <0.05 indicates that a significant difference exists between the two sets of data.
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Smaller SSP values were associated with more severe over-segmentation. Therefore, the
number of pure objects with a segmentation scale of 50 was obviously larger than that with
a scale of 110 in Fig. 7. In addition, with decreasing levels of the mixed degree (increases
in the PCP), the number of segmentation objects increased gradually. We used the classification
model with a sampling rate of 10% described in Sec. 4.1 to classify all segmentation objects in
the study area, and then, we computed the classification accuracies for the different intervals of
the PCP. The sampling ratio of 10% was selected to minimize the difference that different clas-
sifiers would impose varying levels of fitting on training samples. Figure 8 shows a combo line
and column chart for the classification accuracies of the different intervals of the PCP at the three
study sites.

First, as observed from Fig. 8, the classification accuracies of the BOBIC method over
different intervals of the PCP were almost all superior to those of the SVM and RF classifiers,
in particular with respect to image blocks of 64 pixels × 64 pixels. Second, the proposed
method improved the classification accuracy of mixed objects substantially. Moreover,
with an increased level in the mixed degree (decreases in the PCP), the BOBIC method dem-
onstrated a more obvious advantage. Finally, the proposed method also exhibited more supe-
rior performance when classifying pure objects, in particular with respect to a segmentation
scale of 50.

Fig. 6 Graphical representations of the classification performance for different study sites using a
sampling ratio of 50%. [For the different study sites, (a) is the vector graph of the fully correct
classification, (b) is the vector graph classified by using the SVM classifier, (c) is the vector
graph classified by using the RF classifier, (d) is the vector graph of the BOBIC with an image
block size of 32 pixels × 32 pixels, and (e) is the vector graph of the BOBIC with an image
block size of 64 pixels × 64 pixels.]
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Table 5 Number of segmentation objects under different situations.

Situation
Study
sites

Count
(32 × 32)

Count
(64 × 64)

Study
sites

Count
(32 × 32)

Count
(64 × 64)

Study
sites

Count
(32 × 32)

Count
(64 × 64)

SSP (50)

1 1 743 2087 2 621 1503 3 1700 3925

2 113 13 80 3 432 43

3 3938 2696 2261 1456 8060 6224

4 0 12 0 3 0 1

5 56 42 15 12 24 23

Total 4850 4850 2977 2977 10,216 10,216

SSP (110)

1 1 23 159 2 79 210 3 248 717

2 134 30 91 9 410 109

3 992 959 657 608 2059 1891

4 0 0 0 0 0 0

5 20 21 7 7 8 8

Total 1169 1169 834 834 2725 2725

Table 6 Classification error rates of segmentation objects under different situations.

Situation
Study
sites

Error rate
(32 × 32)

(%)

Error rate
(64 × 64)

(%)
Study
sites

Error rate
(32 × 32)

(%)

Error rate
(64 × 64)

(%)
Study
sites

Error rate
(32 × 32)

(%)

Error rate
(64 × 64)

(%)

SSP (50)

1 1 4.98 4.22 2 0.00 0.00 3 4.41 2.68

2 2.65 0.00 1.25 0.00 4.86 0.00

3 5.26 3.93 4.64 3.50 5.42 2.84

4 — 50.00 — 66.67 — 100.00

5 37.50 23.81 60.00 41.67 45.83 34.78

Total 5.53 4.33 3.86 1.95 5.32 2.85

SSP (110)

1 1 8.70 5.66 2 3.80 3.33 3 5.65 2.79

2 8.96 0.00 3.30 0.00 8.05 5.50

3 7.06 5.94 4.87 2.63 6.31 4.81

4 — — — — — —

5 60.00 23.81 42.86 28.57 87.50 12.50

Total 8.21 6.07 4.92 3.00 6.75 4.33

Note: “—” denotes that segmentation objects do not exist under the current situation.
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5 Discussion

The proposed BOBIC method exhibited better classification accuracy than the conventional
OBIC method in the three study areas, and the results confirmed the feasibility of using the
proposed method for land-use type classifications. We also found that the geometric relationship
of image blocks to segmented objects was important for the proposed BOBIC method. This was

Fig. 7 The ratios of the segmentation object quantity for the different intervals of PCPs in the three
study sites to the total quantity of segmentation objects. (The PCP represents the ratio of the area
of the primary class in a segmentation object to the total area of the segmentation object.)

Fig. 8 Under a sampling proportion of 10%, the combo line and column chart for the classification
accuracies of different intervals of the PCP in the three study sites. (a) and (b) The results when the
segmentation scale was 50 and 110, respectively. (In the subfigures, the Y -coordinates of the top
end of each bar and node represent the mean value of 20 classification accuracies, the error bar
on the node denotes the standard deviation of 20 classification accuracies, and the PCP repre-
sents the ratio of the area of the primary class in a segmentation object to the total area of the
segmentation object.)
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because, in terms of remote sensing images, segmented objects of different land cover types
would exhibit varying features. For example, the single area of vehicular segmented objects
was normally small, whereas segmentation objects of rural roads were generally strip-shaped.
Irregular shapes of segmented objects resulted in situations where the image block of a fixed-
sized often encompassed only a portion of the segmented object, or even was enclosed by the
segmented object. In our experimental results, the numbers of situations 1, 2, and 3 accounted for
the vast majority of the total number of segmented objects. Moreover, situations 2 and 3 did not
exhibit a higher error rate than situation 1, which demonstrates that the classification accuracy of
CNN would not be affected by the situation where the image block only encompasses a portion
of the segmentation object. This finding further confirms the feasibility of using the proposed
BOBIC method.

Furthermore, another key point of the proposed BOBIC method was that it improved the
classification effect of mixed objects, which can be attributed to the way that it generates sam-
ples, i.e., by generating image blocks using CGs of segmentation objects. First, the image block
itself was a mixed object, which could substantially narrow the gap between mixed and pure
segmentation objects. Second, owing to the fact that the CG was the center of object mass, the
center point of the image block exhibited a tendency to fall on or approach the region of the
primary class in the mixed object. Moreover, as the PCP became greater, this tendency became
more pronounced. Certainly, only the CNN can overcome the fact that the complexity of VHR
images can cause traditional human-dependent classification models to fail due to the limited
representation power of handcrafted features,34 thereby obtaining class information from com-
plex image blocks. It can be concluded that the proposed BOBIC method was successful at
applying the CNN to OBIC, which also proves the hypothesis of Guirado et al.33 that stated
that the inclusion of CNN-models could further improve OBIA methods.

Finally, we need to mention that there was a disadvantage in relation to the use of the pro-
posed method in that the center point of an image block fell onto different types of land covers in
a few rare cases (i.e., situations 4 and 5, and in particular, with respect to the road under situation
5, where its image block represented not a road but a building). As discussed in Sec. 4.2, the error
rates of situations 4 and 5 were very high, but the probability of the occurrence of situations 4 and
5 remained extremely low. This was because only if the boundary line between two types of land
covers exhibited a larger curvature, the CG of land cover on the outward side of the boundary
line (in the direction opposite to the side where the curvature center was located) fell within the
land cover on the inward side of the boundary line (on the side where the curvature center was
positioned). Meanwhile, the CG of land cover on the inward side of the boundary line still fell
onto the land cover of the same type. Even so, how to generate more appropriate image blocks
for the segmented objects of situations 4 and 5 will be an important focus topic for us in the
future.

6 Conclusions

In this work, a blocks-based OBIC (BOBIC) method was proposed for applying a CNN to
OBIC. Compared with traditional classification methods, the proposed method utilizes the abil-
ity of CNN to automatically extract high-level features, thereby achieving end-to-end classifi-
cation for irregular segmentation objects within the framework of OBIA. To evaluate the
feasibility of the proposed BOBIC method, we systematically summarized the geometric rela-
tionships of segmented objects to image blocks and tested the method at three study sites using
two segmentation scales and two types of image block sizes. Experimental results showed that
the BOBIC method could substantially improve the OBIC classification effect and alleviate the
effect derived from mixed objects. However, there was a drawback to the proposed method in
that erroneous samples could be generated when the boundary line between two types of land
covers exhibited a large curvature, which will be the focus topic of our future research. In sum-
mary, the proposed BOBIC exhibited an excellent classification effect compared with the OBIC.
Moreover, this approach successfully reduced the uncertainty associated with OBIA during clas-
sification, which is mainly comprised of uncertainty during feature selection and that of mixed
objects.
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