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Abstract. Mapping of vegetation types is of great importance to the San Carlos Apache Tribe
and their management of forestry and fire fuels. Various remote sensing techniques were applied
to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model
data. A multitiered unsupervised classification generated over 900 classes that were then recoded
to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap
Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using
field data collected in the SWReGAP project and our field campaign. Field data were gathered
and accuracy assessments were generated to compare outputs. Our hypothesis was that a result-
ing map would update and potentially improve upon the vegetation/land cover class distributions
of the older SWReGAP map over the 24;000 km2 study area. The estimated overall accuracies
ranged between 43% and 75%, depending on which method and field dataset were used. The
findings demonstrate the complexity of vegetation mapping, the importance of recent, high-
quality-field data, and the potential for misleading results when insufficient field data are col-
lected. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.12.026017]
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1 Introduction

Remote sensing technology is often used to document and classify existing vegetation data at the
regional scales.1 Vegetation/land cover maps can be developed either at a community level or
species level by discerning spectral characteristics and translating them into classes.2 Large-scale
projects are often constrained by the limited availability of high-resolution imagery and depend
on lower resolution remotely sensed imagery as inputs that create lower resolution outputs.3

Accuracy can increase when newer products are used and when lower resolution data can
be validated with field data.4 Gathering baseline conditions and change monitoring are advan-
tages when creating good maps and improving the quality of the results.5

A large mapping effort was undertaken to classify vegetation in the USA by the National Gap
Analysis Program (GAP), where gap analysis was defined as a method for identifying “gaps” in
conservation land and/or water locations.6 This was improved upon in the five southwestern states
(Arizona, Colorado, New Mexico, Nevada, and Utah), by the Southwest Regional Gap Analysis
Project (SWReGAP). SWReGAP provided land-cover mapping and assessment of biodiversity
using Landsat ETM+ imagery (1999 to 2001) and digital elevation model (DEM) derivatives.7

The SWReGAP project used terrestrial ecological systems (TES) classification8 developed by
NatureServe9 to emphasize dominant vegetation types.7,10,11 The SWReGAP map contains 125
land-cover classes with validation accuracy of 61%.7 This validation accuracy was based on
an intermediate product, whereas the final, published map (based on all of the field observation

*Address all correspondence to: Laura M. Norman, E-mail: lnorman@usgs.gov

Journal of Applied Remote Sensing 026017-1 Apr–Jun 2018 • Vol. 12(2)

https://doi.org/10.1117/1.JRS.12.026017
https://doi.org/10.1117/1.JRS.12.026017
https://doi.org/10.1117/1.JRS.12.026017
https://doi.org/10.1117/1.JRS.12.026017
https://doi.org/10.1117/1.JRS.12.026017
mailto:lnorman@usgs.gov
mailto:lnorman@usgs.gov


sites with determined vegetation/land cover class) should be higher. In addition, the process of
generalizing the vegetation/land cover classes for this study should result in a more accurate prod-
uct as fewer, more generalized classes can be easier to map. Therefore, we felt that the SWReGAP
map would be acceptable for use in this project.

Landsat Earth Observation Satellites have been collecting space-based imagery of the Earth’s
surface since 1972.12 The Landsat 8 satellite was launched in February 2013, with Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments onboard. OLI collects data
with a spatial resolution of 30 m in the visible, near-IR, and SWIR wavelength regions, and
a 15-m panchromatic band.12 The OLI payload is distinguished for examining vegetative
cover types.13–15

Land managers of the San Carlos Apache Tribe identified a need to obtain an updated veg-
etation map for better management of forest, woodland, and rangelands. The U.S. Geological
Survey (USGS) Western Geographic Science Center (WGSC) used remotely sensed data to help
the Tribe map rangeland condition. That map was later used to identify areas for spraying pes-
ticides for invasive grasshoppers.16 In 2017, WGSC attempted a unique mapping approach to
provide a more current vegetation map, both on and off the reservation, for the Tribe. The
SWReGAP vegetation map was used as a starting point for this mapping effort.

Our hypothesis was that using the SWReGAP map as a base, and adding more recent multi-
temporal Landsat 8 OLI satellite data, along with vegetation index and DEM data, the
SWReGAP map could be improved upon for a relatively small area (24;000 km2). It was postu-
lated that using unsupervised algorithms to split the current multitemporal 30-m satellite data up
into many classes, and recombining them using the SWReGAP map as a guide, an updated map,
with improved accuracy, could be produced. It was also decided to pursue an initial supervised
classification using field data from the SWReGAP and our field campaign. This paper presents
an overview of how remotely sensed imagery was used to classify and map vegetation at the San
Carlos Apache Reservation, Arizona and surrounding area, while also providing a discussion of
its accuracy for the remote sensing of vegetation community.

1.1 Study Area

The San Carlos Apache Reservation in east-central Arizona, covers 7502 km2 and is the 10th
largest reservation in the United States by land area, with a population of 10,709.17 The study
area and map includes 16;500 km2 of adjacent land creating a larger area of interest (AOI;
Fig. 1). Surrounding lands include White Mountain Apache Reservation, National Forests
(Tonto, Apache-Sitgreaves, and Coronado), Bureau of Land Management, state, and private
lands. Elevations range from ∼530 m along the Gila River to 3480 m on Mount Baldy in
the White Mountains. On the San Carlos Apache Reservation, vegetation types including
Ponderosa Pine Forests, Pinyon-Juniper Woodlands, grasslands, and desert scrub have signifi-
cant ecological, cultural, and economic value for the Tribe that extends beyond the tribal lands
and across the western United States.18,19

2 Methods

2.1 Classification

SWReGAP mapped 46 discrete classes in the study area; however, the Tribe did not require the
specificity of the SWReGAP classes. Based on discussions with the San Carlos Apache Tribe
(tribal ethnobotanist),20 12 classes were determined to be of interest. Two classes were added to
identify areas that do not occur on the reservation but occur in the surrounding mapping area
(“mine” land cover class and “Montane Grassland” vegetation type). Finally, two classes were
added to be more in-line with the SWReGAP vegetation classes (“Madrean Pine-Oak Forest/
Woodland” and “Mesquite Upland Scrub”), as these common study area vegetation classes did
not fit well into the original 12-class classification. This resulted in 16 classes for our analysis. To
compare these classes with SWReGAP, a cross walk was developed between the generalized

Norman, Middleton, and Wilson: Remote sensing analysis of vegetation. . .

Journal of Applied Remote Sensing 026017-2 Apr–Jun 2018 • Vol. 12(2)



vegetation classes used in the unsupervised classification mapping effort and the more specific
classes employed by SWReGAP for this mapping area (Table 1).

Of the 46 discrete classes that SWReGAP mapped in the study area, only a relatively small
portion of them came up as what were considered, “likely” vegetation types in this analysis. We
define “likely” vegetation types as the top three SWReGAP vegetation/land cover classes (non-
generalized) with the most pixels in common with the unsupervised class in question. In other
words, the vegetation/land cover classes that best represented the unsupervised class, measured
by the number of pixels sharing a common location. Many of the smaller classes, covering a low
percentage of the mapping area (∼ < 0.5%), did not fit in this category. Additionally, some veg-
etation classes were grouped together into a single class (i.e., Dry-Mesic Mixed Conifer, Mesic
Mixed Conifer, etc.) for the study.

2.2 Remote Sensing

A suite of Landsat 8 OLI images from 2014 to 2013 was used in the classification. These images
are virtually cloud-free over the study area and are calibrated to surface reflectance; they were
downloaded in February 2017 from the USGS earth resources observation and science (EROS)
science processing architecture (ESPA) website21 and are from two Landsat path/rows, P35R37
and P36R37.

A high number of Landsat 8 dates were used to accurately represent the phenology of the
vegetation and therefore better differentiate the vegetation classes. The following dates were
selected: P35R37: September 24, 2013; March 19, 2014; May 6, 2014; June 7, 2014;

Fig. 1 Location of the study area in eastern Arizona, USA.
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October 13, 2014; and October 29, 2014 (six dates) and P36R37: July 29, 2013; February 22,
2014; May 13, 2014; June 30, 2014; September 2, 2014; October 4, 2014; and November 5,
2014 (seven dates). The Landsat 8 OLI surface reflectance data (bands 1 to 7) were subset to the
study area coordinates. See Table 2 for information on selected bands.

Table 1 Cross walk between the unsupervised classification map and the SWReGAP map veg-
etation/land cover classes.

Unsupervised classification map
vegetation/land cover class Associated SWReGAP vegetation/land cover class(es)

Water Open water

Agriculture Agriculture

Riparian Forest/Woodland Rocky Mountain Lower Montane Riparian Woodland and Shrubland,
North American Warm Desert Lower Montane Riparian Woodland and
Shrubland, North American Warm Desert Riparian Woodland and
Shrubland, North American Warm Desert Riparian Mesquite Bosque,
Invasive Southwest Riparian Woodland and Shrubland

Aspen Forest Rocky Mountain Aspen Forest and Woodland

Spruce-Fir Forest Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and
Woodland, Rocky Mountain Subalpine Mesic Spruce-Fir
Forest and Woodland

Mixed Conifer Forest Rocky Mountain Montane Dry-Mesic Mixed Conifer Forest and
Woodland, Rocky Mountain Montane Mesic Mixed Conifer
Forest and Woodland

Ponderosa Pine Forest Rocky Mountain Ponderosa Pine Woodland

Madrean Pine-Oak
Forest/Woodland

Madrean Pine-Oak Forest and Woodland

Pinyon-Juniper-Evergreen
Oak Woodland

Colorado Plateau Pinyon-Juniper Woodland, Madrean Encinal,
Inter-Mountain Basins Juniper Savanna, Madrean Pinyon-Juniper
Woodland, Madrean Juniper Savanna

Interior chaparral Rocky Mountain Gambel Oak-Mixed Montane Shrubland,
Mogollon Chaparral

Montane Grassland Southern Rocky Mountain Montane-Subalpine Grassland

Plains and Semidesert
Grassland

Apacherian-Chihuahuan Piedmont Semidesert Grassland and
Steppe, Inter-Mountain Basins Semidesert Shrub Steppe,
Inter-Mountain Basins Semidesert Grassland, Chihuahuan
Sandy Plains Semi-Desert Grassland

Mesquite Upland Scrub Apacherian-Chihuahuan Mesquite Upland Scrub, Chihuahuan
Stabilized Coppice Dune and Sand Flat Scrub

Sonoran and Chihuahuan
Desertscrub

North American Warm Desert Bedrock Cliff and Outcrop, North
American Warm Desert Volcanic Rockland, North American Warm
Desert Wash, North American Warm Desert Pavement,
Chihuahuan Succulent Desert Scrub, Chihuahuan Creosotebush,
Mixed Desert and Thorn Scrub, Sonoran Paloverde-Mixed Cacti
Desert Scrub, Sonora-Mojave Creosotebush-White Bursage Desert
Scrub, Chihuahuan Mixed Salt Desert Scrub, Sonoran
Mid-Elevation Desert Scrub

Mine Recently mined or quarried

Urban Developed, open space—low intensity, developed,
medium—high intensity

Unclassified Rocky Mountain Cliff and Canyon, Colorado Plateau Mixed Bedrock
Canyon and Tableland, Rocky Mountain Subalpine-Montane
Limber-Bristlecone Pine Woodland, North American Arid West
Emergent Marsh, Recently Burned
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2.2.1 Normalized difference vegetation index

The normalized difference vegetation index (NDVI) is an index derived from reflectance values
of the red and near-infrared (NIR) regions of the electromagnetic spectrum [Eq. (1)] and is sen-
sitive to various biophysical vegetation characteristics, such as biomass and percent cover23–25

EQ-TARGET;temp:intralink-;e001;116;495NDVI ¼ ðNIR − RedÞ∕ðNIRþ RedÞ: (1)

NDVI was calculated for each of the 13 Landsat 8 scenes and used as inputs to the clas-
sification. For Landsat 8, the bands used in NDVI are b4 (red) and b5 (NIR). NDVI values
range from −1 to 1; nonland surfaces (such as water and snow) typically assume negative values
and land surfaces typically assume positive values. As landscapes become more densely veg-
etated, the NDVI trends to 1.11,15,26

2.2.2 Creating layer stacks for different elevation zones

Vegetation communities are generally constrained by elevation gradients and the inclusion of
elevation data can greatly increase the accuracy of mapping efforts.27 A 10-m raster DEM from
The National Map28 was downloaded, mosaiced, and reprojected (UTM, zone 12, WGS84)
using bilinear interpolation, converted into units of feet, degraded in resolution to 30 m, and
finally subset to the study area coordinates. The newer 10-m data were used as it is an updated
version of the 30 m that corrects for some of the issues with the original 30-m data, such as edge
matching/seam issues, while maintaining the potential of being updated from other high-reso-
lution sources (such as LIDAR). A mask was created from the DEM data for elevations above
and below 2591 m. Snow contamination affecting the pixels of several image dates in areas
above 2591 m was the main reason for splitting the scene using this elevation. Masking scenes
using this threshold allowed more dates to be utilized in areas below this elevation because snow
contamination in upland areas would have caused some otherwise excellent scenes to be
rejected.

Initially, two layer stacks were produced, one for each Landsat path/row. The layer stack for
P36/R37 consisted of bands 1 to 7 and NDVI for each of the seven dates followed by the DEM
image to create a 57 band image. The layer stack for P35/R37 consisted of bands 1 to 7 and
NDVI for each of the six dates, followed by the DEM image to create a 49 band image. The
P35R37 layer stack was further split into two separate image stacks, one masked to elevations
above 2591 m, and one below that elevation. Only P35R37 contained elevations above this
threshold in the study area.

For areas above 2591-m elevation, only four of the six dates were uncontaminated by snow
cover; these four scenes and their derived NDVIs and DEM imagery were used to create a new 33
band layer stack for analysis in the high elevation zone. The Landsat path/row boundaries cut
diagonally across the study area which resulted in strips of “extraneous” pixels as the individual
image bands did not exactly cover the same area. To address this, all the individual image bands

Table 2 Landsat 8 OLI band information for bands used in this analysis.22

Band name Wavelength (micrometers) Band number

“Ultra” blue 0.435 to 0.451 1

Blue 0.452 to 0.512 2

Green 0.533 to 0.590 3

Red 0.636 to 0.673 4

NIR 0.851 to 0.879 5

Shortwave infrared 1 (SWIR1) 1.566 to 1.651 6

Shortwave infrared 2 (SWIR2) 2.107 to 2.294 7
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in two of the layer stacks affected by this issue (P35R37 below 2591 m and P36R37) were made
into a binary mask with 0 representing no data and 1 representing usable image data. The mini-
mum overlap area (intersection of polygons) was then determined and used to mask out the areas
of the layer stack that contained any “no data” values. In summary, three layer stacks were made
as follows:

i. (P35/R37) above 2591 m—four dates (dates are September 24, 2013; June 7, 2014; October
13, 2014; and October 29, 2014) (33 band);

ii. (P35/R37) below 2591 m—six dates (dates are September 24, 2013; March 19, 2014; May
6, 2014; June 7, 2014; October 13, 2014; and October 29, 2014) (49 band); and

iii. (P36R37)—seven dates (dates are July 29, 2013; February 22, 2014; May 13, 2014; June
30, 2014; September 2, 2014; October 4, 2014; and November 5, 2014) (57 band).

2.2.3 Unsupervised classification

Unsupervised classifications do not require training data like supervised classification and there-
fore may be more economical in developing land cover maps for large areas. We explored a
unique method using iterations of unsupervised classifications and thematic class matching
in an attempt to increase the accuracy of the classification.

For portions of the map above 2591 m, a four-date layer stack (with corresponding NDVIs
and DEM) was classified to initially create 10 unsupervised classes. Each of those 10 classes
were then subset from the same layer stack and further classified into 10 additional classes,
resulting in a total of 100 classes. One second-generation class was further subdivided into five
classes, so 104 classes in total were created. Below 2591 m (P35R37), a six-date layer stack
(with corresponding NDVIs and DEM) was classified to create 20 unsupervised classes. Each
of those 20 classes were further subdivided into 20 additional classes for a total of 400 classes.
For P36R37, a seven-date layer stack (with corresponding NDVIs and DEM) was iteratively
classified (20 × 20) to ultimately create 400 unsupervised classes as well. The portion of the
mapping area above 2591 m (only in P35R37) was far less than the portion of the image
below this elevation, and needed far fewer classes to map.

The ERDAS Imagine (ver. 2014), ISODATA algorithm was used for the unsupervised clas-
sifications, and these multiple tiered classifications ultimately resulted in over 900 classes. For
each ISODATA run, the parameters were set as follows: initialize from statistics; # of classes
from: xx to xx (i.e., from 20 to 20); minimum size (%): 0.001; maximum SD: 3.00; minimum
distance: 4.00; max. merges: 1; initialize means along: principle axis; scaling range: automatic;
maximum iterations: 100; convergence threshold: 0.999; skip factors: X: 1 Y: 1; and classify
zeros = not checked.

2.2.4 Vegetation class assignment

To determine the most likely vegetation class of each of the 904 resultant unsupervised classes,
they were compared with the original SWReGAP map. Each class was spatially subset from the
SWReGAP map, and the top three SWReGAP vegetation class designations were determined for
each unsupervised class. If the “top” SWReGAP class, determined by the number of pixels
representing that class, was exceeded by summing the second and third place most likely
SWReGAP classes, and these classes were to be grouped into a single class (i.e., Dry-Mesic
Spruce-Fir, Mesic Spruce-Fir, etc.), the grouped class designation (i.e., Spruce-Fir, etc.) was now
considered the most likely vegetation class. In other words, if the second and third place classes
were to be grouped into a single class, and the number of pixels representing these summed
classes exceeded the original first place selection, it was determined to be the most likely
class. See Fig. 2 for further clarification.

After assigning the most likely class to all the unsupervised classes for P35R37, the
Ponderosa and Mixed Conifer classes, that straddled the “border” across the 2591-m elevation
threshold, were subset out, combined and reclassified (into 30 unsupervised classes) using the
same four-date layer stack used for high elevations. Vegetation classes were then assigned using
the technique described previously. This resulted in a much “cleaner transition” across this arti-
ficial elevation boundary. After the class assignments were made, the below and above 2591-m
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portions of P35R37 were initially mosaiced together. This was followed by mosaicing (using the
overlay function) the classified area that straddled the elevation threshold “over” the original
P35R37 mosaic. The resultant P35R37 mosaic was then mosaiced (using the overlay function)
“over” the classified P36R37 section of the mapping area. This resulted in roughly the eastern
two-thirds of the mapping area being derived from P35R37 imagery, and the remaining western
portion being generated from P36R37 imagery. Finally, a 3 × 3 pixel majority filter was applied
to eliminate single pixels and small pixel groups that are potential “noise” in the image. Urban
area boundary shapefiles from 2016 were then downloaded from the census website,29 screen
digitized, and added to the map to create an urban class. See Fig. 3 for flowchart of process
discussed above.

For use in accuracy assessment, the SWReGAP vegetation/land cover map was collapsed and
recoded from its original 46 classes found in the study area to the final 16 classes used in the
unsupervised classification map using the cross walk shown in Table 1. Classes that did not
directly translate from the SWReGAP map to a more generalized class of the unsupervised clas-
sification map (i.e., recently burned, etc.) were labeled as “unclassified” on this map. None of the
“unclassified” group of vegetation/land cover classes came up as a “likely” class in the analysis.

2.2.5 Supervised classification

A supervised classification was developed to compare with the unsupervised classification. An
initial supervised classification was performed using all the field data [specifically vegetation/
land cover class and associated global positioning system (GPS) position] in the study area from
the 2001 to 2004 SWReGAP and the 2017 field campaign as training sites (1028 points/pixels in
all). No attempt was made to verify that the SWReGAP points were indeed still the same

Fig. 2 Flowchart of process to determine “most likely” vegetation/land cover class.
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vegetation class, nor was burned vegetation removed or reassigned from the dataset. After the
SWReGAP vegetation type field data were generalized into one of the 16 final classes, they were
combined with the field data points from the 2017 field campaign. The field data points were
then grouped into the individual vegetation class shapefiles using ArcMap (v. 10.5). They were
then further subdivided by Landsat path/row. These groups of points that represented the same
vegetation class (in a specific path/row) were then opened into ERDAS Imagine (v. 2014) and
converted into AOI points, before being combined with the respective Landsat 8, NDVI, and
DEM image layer files to create representative signature files. The six-date Landsat 8 image
stack (with NDVI and DEM) discussed earlier was used to create the signature files for

Fig. 3 Flowchart of process steps in creating the unsupervised map.
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P35R37, whereas the seven-date Landsat 8 image stack (with NDVI and DEM) was used for
P36R37. During the supervised classification, “minimum distance” was used as the parametric
rule, whereas a nonparametric rule was not employed. Water, agriculture, Riparian Forest/
Woodland, mine, and urban were added back in from the unsupervised classification map
(non 3 × 3 spatial filtered version). Then, a 3 × 3 median filter was run on the image.

2.3 Reference Data

Ninety-five observation sites were visited during two-field campaigns in 2017. Additionally, 933
field observation “points” in the mapping area, which were collected from 2001 to 2004, were
subset from the historical SWReGAP field database. Each set of reference data are representative
samples reflecting the land cover composition in the study area.

2.3.1 2017 field campaign

The 2017 field campaign was based on a map of semirandom, accessible points in the study area
that included a number of points for each of the generalized vegetation/land cover classes. Roads
layers from the San Carlos Apache Reservation, Tonto and Apache-Sitgreaves National Forest,
and other sources were buffered by 200 m in ArcMap 10.5 (ESRI 2016) to constrain the accuracy
assessment points to areas near a road. The map was broken into six regions based on the dis-
tribution of major roads and land management/ownership regions. Random points were gener-
ated for each vegetation class for each region with a minimum allowed distance between points
of 100 m. Some classes, such as Spruce-Fir Forest, are less spatially extensive and therefore not
represented in all regions; this resulted in 74 class/region combinations. We attempted to create
10 points in each of the 74 class/region areas; however, because of the small spatial extent of
some classes as well as the minimum allowed distance constraint, this was not always possible.
Eight of the 74 class/region combinations received <10 random sampling points. This resulted in
a total of 684 possible field sampling points.

Field work was performed September 18 to 22, 2017, and October 31 to November 1, 2017,
by driving along well-maintained roads to predetermined accuracy assessment points. Allowing
for a suitable area to pull off, we attempted to locate the point to collect field data (Fig. 4). If a
fence line (or a steep drop-off) impeded access, a “subjective point” was placed as near to the
actual point as possible. Other subjective points were added along the route, often within broad
expanses of a single vegetation type, or in unique vegetation “islands” within a more continuous
cover. A total of 95 points were sampled. At each site, a GPS point and photographs in the four
cardinal directions (north, east, south, and west) were collected and information on the local
vegetative cover were documented, including the major vegetation species and their apparent
abundances, and overall vegetation type based on one of the mapped vegetation classes. General
vegetation of areas bordering the site was noted as well, as was evidence of fire and tree mortal-
ity/regeneration.

2.3.2 2001 to 2004 SWReGAP field campaigns

Over the course of 2−1/2 field seasons, approximately 93,000 reference samples were collected
directly, or obtained from other contemporary projects, for the SWReGAP land-cover mapping
effort in the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah.7 Of
those, 933 were in the study area (Fig. 5). In the study area, the vast majority of field plots were
field collected by traveling easily navigable roads and selecting plots that were at least 1 hectare
in size with stand homogeneity.7 Ocular estimates included percent cover of dominant species
and abiotic site characteristics. GPS coordinates were recorded.

2.4 Accuracy Assessment

Classification accuracy measures the agreement between what is known to be on the ground (i.e.,
reference condition) and the product of a remotely sensed image classification (expected condi-
tion).30 To perform an accuracy assessment, a user compares reference data with the expected class
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Fig. 4 Representative images of some vegetation classes from the study area: (a) Sonoran and
Chihuahuan Desertscrub (Sonoran), (b) Plains and Semidesert Grassland, (c) Pinyon-Juniper-
Oak Woodland, and (d) Ponderosa Pine Forest.

Fig. 5 Sites where vegetation and land cover field data were collected.
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at a number of locations within the image. An error matrix is developed that provides a descriptive
statistical technique to determine overall accuracy. Overall accuracy is the number of pixels cor-
rectly classified divided by the total number of pixels.31 In addition, accuracies of each vegetation
class can be computed, with both a “consumer’s accuracy (CA)” and “producer’s accuracy (PA).”32

The CA divides the number of correctly classified pixels by the total number of pixels assigned to a
class by the classification analysis (expected). The PA divides the number of pixels correctly clas-
sified per class as a percentage of the total number of pixels belonging to that class as described by
the reference data. Classification errors occur via omission, when a feature is left out of the class,
and via commission, when a feature is incorrectly included in a class.

2.4.1 Statistical analysis

The unsupervised classification map was compared with 2017 field data and SWReGAP field
data. Additionally, the recoded SWReGAP map was compared with 2017 field campaign data.
The SWReGAP map was also compared with the SWReGAP field data to determine an upper
boundary for this map’s accuracy over the study area. Finally, the supervised classification map
was compared with both the SWReGAP and 2017 field campaign data to estimate upper boun-
daries for this map’s accuracy. Accuracy assessments were developed in R33 using the caret
package.34 The error matrices for the SWReGAP map to SWReGAP field data, and supervised
classification are not shown as the field data (100%) were used as the training data to produce
these maps.

3 Results

3.1 Maps

Figure 6 shows the results of our mapping efforts. Figure 6(a) was created from a 904 class
unsupervised classification using Landsat 8 OLI satellite and DEM data. The determination
of vegetation and land cover class designations was based on reference to the SWReGAP
map. Figure 6(b) was created from recoding the SWReGAP vegetation/land cover map for
the study area to the same classes used in the unsupervised classification map. An additional
“unclassified” class was added to capture SWReGAP vegetation and land cover classes that did
not directly fit into the 16-class scheme. Figure 6(c) was created from an initial supervised clas-
sification employing training sites derived directly from the SWReGAP and 2017 field cam-
paigns. All SWReGAP field data [specifically vegetation/land cover class (generalized) and
associated GPS position] in the study area were used in the analysis, and were not checked
to see if had changed (burned, changed vegetation type, etc.) in the intervening years since
it was collected (2001 to 2004). In addition, all vegetation/land cover class and associated loca-
tion observations in the study area from the 2017 field campaign were also utilized to create
training sites in the supervised classification.

3.2 Accuracy Assessment

3.2.1 Unsupervised classification

The results of the unsupervised classification had an overall accuracy of 53% when compared
with 2017 field data (Table 3). In general, CAwas higher than PA. Agriculture (Ag) and Pinyon-
Juniper-Evergreen Oak Woodland were the most accurate classes overall with both CA and PA
>0.50. Madrean Pine-Oak Forest/Woodland was the least accurate class with both CA and PA
falling below 0.25.

The unsupervised classification map was assessed using SWReGAP field data (Table 4) and
compared with the accuracy assessment using the 2017 field data. Overall accuracy was similar
at 52% with mixed results in both CA and PA. Not all classes can be compared between the 2017
field data and the SWReGAP field data since the SWReGAP field data are missing any
Agricultural observation points and the 2017 field data is missing Spruce-Fir Forest. All of the
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classes saw changes in either CA or PA and most classes saw changes in both. Aspen Forest and
Pinyon-Juniper-Evergreen Oak Woodland were lower in both CA and PA, while Mixed Conifer
Forest, Ponderosa Pine Forest, and Madrean Pine-Oak Forest/Woodland were higher in both CA
and PA. Interior chaparral, Montane Grassland, and Plains/Semidesert Grassland had higher PA
but lower CA. Sonoran/Chihuahuan Desertscrub had lower PA but higher CA. Riparian Forest/
Woodland and Mesquite Upland Scrub maintained their CA but had lower PA. Montane
Grassland, Plains/Semidesert Grassland, and Sonoran/Chihuahuan Desertscrub were the most
accurate (PA and CA > 0.50), whereas Spruce-Fir Forest was the least accurate (PA
and CA < 0.25).

3.2.2 SWReGAP

The SWReGAP map was assessed using 2017 field data (Table 5). Overall accuracy was 44%, a
reduction of 9% from the unsupervised classification map assessed with 2017 field data with
mixed results in both CA and PA. Madrean Pine-Oak Forest/Woodland was the only class to
improve in both CA and PA. Aspen Forest, Ponderosa Pine Forest, Montane Grassland, and
Mesquite Upland Scrub showed decreases in both CA and PA. Pinyon-Juniper-Evergreen Oak
Woodland had higher CA but lower PA, whereas Interior Chaparral had lower CA but higher PA.

Fig. 6 (a) Unsupervised classification, (b) recoded SWReGAP map, and (c) supervised
classification.
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Both Mixed Conifer Forest and Plains/Semidesert Grassland had higher CA, whereas Riparian
Forest/Woodland had higher PA. Sonoran/Chihuahuan Desertscrub had lower CA. Just as in the
unsupervised classification map, agriculture and Pinyon-Juniper-Evergreen Oak Woodland were
the most accurate classes, whereas Madrean Pine-Oak Forest/Woodland was the least accurate.

Lowry et al.7 reported a validation accuracy of 61% for the entire five state mapping area.
This validation accuracy was based on an accuracy assessment of an intermediary product and
the accuracy of the final SWReGAP map is likely higher than the validation accuracy. To find an
upper boundary for accuracy of the final SWReGAP product over the study area, the SWReGAP
map was compared with the SWReGAP field data. The resultant accuracy is overestimated
because the test data were taken from the training data30 but it sets the upper boundary of
accuracy at 75%. The overall accuracy of the SWReGAP map was roughly considered to be
between these boundaries (61% minimum—measured over the five state mapping areas, and
75% maximum—measured over the study area). The error matrix comparing the recoded
SWReGAP map to the SWReGAP field data is not presented here, because 100% of the
field data were used to create the map, and it does not represent a competent estimate.

3.2.3 Supervised classification

The results of the supervised classification had an overall accuracy of 43% when compared with
2017 field data, and 47% when compared with the SWReGAP field data. The error matrices are
not presented here, because 100% of the field data were used to create the map, and they re-
present an unrealistic upper limit to the accuracy estimates. Even so, the supervised classification
map has very low accuracy and probably requires a significant amount of work with the selection
of training sites before being useful as an accurate map product. Moreover, this classification was
only meant to explore the initial results of using a supervised classification on the field data to see
if that is a reasonable avenue for future mapping.

Table 3 Error matrix comparing the unsupervised classification results (expected) to the 2017
field data (reference).

Reference

Ag Rip Aspen MxCon Pondo MPO PJO Chap MG PSDG Mesq Desert Total CA

Expected Ag 2 1 0 0 0 0 0 0 0 0 0 0 3 0.67

Rip 0 1 0 0 0 0 0 0 0 0 0 0 1 1.00

Aspen 0 0 2 0 0 0 0 0 0 0 0 0 2 1.00

MxCon 0 0 1 1 0 0 0 0 1 0 0 0 3 0.33

Pondo 0 0 0 3 6 2 1 3 2 1 0 0 18 0.33

MPO 0 0 1 2 3 0 1 1 0 0 0 0 8 0.00

PJO 0 0 0 0 3 0 18 2 0 2 0 0 25 0.72

Chap 0 0 0 0 0 0 0 2 0 1 0 0 3 0.67

MG 0 0 0 0 0 0 0 0 2 0 0 0 2 1.00

PSDG 0 0 0 0 0 0 1 0 0 5 0 0 6 0.83

Mesq 0 2 0 0 0 0 1 0 0 3 7 2 15 0.47

Desert 0 0 0 0 0 0 0 0 0 2 3 4 9 0.44

Total 2 4 4 6 12 2 22 8 5 14 10 6 95

PA 1.00 0.25 0.50 0.17 0.50 0.00 0.82 0.25 0.40 0.36 0.70 0.67

Overall 0.5263 Kappa 0.4578
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4 Discussion

The overall accuracy for each map iteration compared with the field dataset is shown in Table 6.
The unsupervised classification map ranged between 52% and 53%, depending on which field
dataset was used as a reference. The overall accuracy of the SWReGAP map over the study area
was 44% using the 95 sites of 2017 field data as a reference. However, the SWReGAP field data
are much more extensive, with nearly 10-fold more observation sites, potentially allowing for a
more definitive accuracy assessment. In addition, the larger multistate SWReGAP map has an
accuracy that is likely higher than the reported 61% due to their method of validation.
SWReGAP validated an intermediate map developed with 80% of field data, using the remaining
20% to assess the validation accuracy. The final map was developed using 100% of the field data,
and thus would be expected to be of even higher accuracy. In addition, if fewer classes were used
as in the unsupervised classification map, one would expect the SWReGAP map to be of higher
accuracy than the stated 61% as well. The measured 75% accuracy of the SWReGAP map using
the SWReGAP field data (used to create it) sets an elevated upper limit on the accuracy of this
map over the study area. Although the accuracy results are inconclusive, we deem the
SWReGAP map to be more accurate in general.

Visually, the unsupervised classification map and SWReGAP map differ greatly. One geo-
graphic area of note is the Pinaleño Mountains, a large mountain range in the extreme south-
central part of the study area. This mountain range peaks at 3267 m in elevation, and is portrayed
as covered entirely in Ponderosa Pine (green) at its middle and highest elevations on the
SWReGAP map. Although Ponderosa Pine is prevalent at middle elevations, the range is
actually covered in Mixed Conifer, Spruce Fir, Aspen and Montane Grassland at its highest
elevations. The unsupervised classification map depicts these cover types in the Pinaleño
Mountains, although they are not entirely representative of actual cover distributions. This

Table 4 Error matrix comparing the unsupervised classification map (expected) to the SWReGAP
field data (reference).

Reference

Rip Aspen SprFir MxCon Pondo MPO PJO Chap MG PSDG Mesq Desert Total CA

Expected Rip 2 0 0 0 0 0 0 0 0 0 0 0 2 1.00

Aspen 0 5 1 5 0 0 0 0 0 0 0 0 11 0.45

SprFir 0 0 0 0 0 0 0 0 0 0 0 0 0 NA

MxCon 0 8 5 31 5 0 0 0 0 0 0 0 49 0.63

Pondo 9 7 12 56 73 9 5 1 8 0 0 0 180 0.41

MPO 3 1 1 3 0 26 0 2 0 0 0 0 36 0.72

PJO 13 0 0 2 6 37 72 16 0 11 9 5 171 0.42

Chap 1 0 0 0 0 18 3 31 0 0 4 1 58 0.53

MG 0 1 0 9 1 0 0 0 27 0 0 0 38 0.71

PSDG 1 0 0 0 0 6 3 3 0 39 1 3 56 0.70

Mesq 9 0 0 0 0 3 8 35 0 15 99 40 209 0.47

Desert 5 0 0 0 0 0 0 0 0 5 36 77 123 0.63

Total 43 22 19 106 85 99 91 88 35 70 149 126 933

PA 0.05 0.23 0.00 0.29 0.86 0.26 0.79 0.35 0.77 0.56 0.66 0.61

Overall 0.5166 Kappa 0.456
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seems to be one small part of the study area, where the unsupervised classification map improves
on the accuracy of the vegetation depiction.

During the analysis, very few “small” SWReGAP vegetation/land cover classes (those with
fewer pixels in the study area associated with them) came up as “likely” classes. There may not
have been enough unsupervised classes in general, and the chosen 0.001% class size threshold
used in the ISODATA unsupervised classification may have been too large, or it is possible
that other parameter(s) may be at fault. More unsupervised classes would have resulted in
more numerous classes with fewer pixels and potentially, a greater opportunity for small
SWReGAP vegetation/land cover classes to represent them. A lower class size threshold per-
centage in ISODATA could have worked in roughly the same way, allowing smaller classes to be
generated and ultimately classified as one of the small SWReGAP classes. This is not believed to
be a major issue; however, because small classes, by their definition, do not cover much land area
and many (if not all) would have ultimately have been generalized into a larger class anyway.

SWReGAP classes have a higher thematic class “resolution.” During the process of general-
izing the SWReGAP classes to fit within the 16 classes of the unsupervised classification map,

Table 5 Error matrix comparing the SWREGAP map with generalized classes (expected) to the
2017 field data (reference).

Reference

Ag Rip Aspen MxCon Pondo MPO PJO Chap MG PSDG Mesq Desert Total CA

Expected Ag 2 0 0 0 0 0 0 0 0 0 1 0 3 0.67

Rip 0 1 0 0 0 0 0 0 0 0 0 0 1 1.00

Aspen 0 0 0 0 0 0 0 0 0 0 0 0 0 NA

MxCon 0 0 0 1 1 0 0 0 0 0 0 0 2 0.50

Pondo 0 0 3 5 3 0 3 2 4 1 0 0 21 0.14

MPO 0 0 0 0 5 1 2 2 0 1 0 0 11 0.09

PJO 0 0 0 0 3 0 16 1 0 1 0 0 21 0.76

Chap 0 0 0 0 0 1 0 3 0 0 1 0 5 0.60

MG 0 0 1 0 0 0 0 0 1 0 0 0 2 0.50

PSDG 0 0 0 0 0 0 0 0 0 5 0 0 5 1.00

Mesq 0 0 0 0 0 0 1 0 0 3 4 2 10 0.40

Desert 0 2 0 0 0 0 0 0 0 3 4 4 13 0.31

Total 2 3 4 6 12 2 22 8 5 14 10 6 94

PA 1.00 0.33 0.00 0.17 0.25 0.50 0.73 0.38 0.20 0.36 0.40 0.67

Overall 0.4362 Kappa 0.3597

Table 6 Measured overall accuracies for different vegetation/land cover maps. These values are
derived from a comparison against either the 2017 field campaign or 2001 to 2004 SWReGAP field
data.

Unsupervised Recoded SWReGAP (%) Supervised (%)

2017 field data 53% 44 43a

SWReGAP field data 52% 75a 47a

aAccuracy values are artificially high as the data that were used to assess the accuracy of the supervised
classification were also used to train the classification.
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there were some issues that could have affected negatively the overall and individual class accu-
racy estimates. For instance, we feel that the fairly common SWReGAP class “Juniper Savanna”
would have best been split between Pinyon-Juniper-Oak Woodland and Plains/Semidesert
Grassland depending on the tree density. It was, however, assigned to Pinyon-Juniper-Oak alone.

SWReGAP field data are also significantly older (2001 to 2004 versus 2017) and there were
probably some instances of change in the landscape at the field observation sites, decreasing the
apparent accuracy results. Areas affected by fire in the intervening years may be extensive in
some classes (Ponderosa Pine, Mixed Conifer, and Interior Chaparral, for instance), and this
could have significantly skewed the results as well. The accuracy of the individual classes dif-
fered greatly and was dependent on what field dataset it was referenced to, further confusing the
decision about which map is more accurate. Fire history could have also affected the accuracy of
our supervised classification map causing the forest/chaparral classes to be inaccurately
assigned. The fact that all of the 2001 to 2004 SWReGAP field data in the study area were used
(unchanged) to create training sites and vegetation spectral signatures for the supervised clas-
sification needs to be taken into account. We expect Ponderosa Pine and Mixed Conifer in par-
ticular, and Madrean Pine-Oak, Interior Chaparral, Spruce-Fir and Aspen to have greater errors
compared with other classes because those classes are susceptible to big changes from interven-
ing fire. In this particular case, the SWReGAP training data could be suspect solely because of
age, and give poor results unless it is carefully vetted and burned areas accounted for. This may
also affect the accuracy numbers when compared against the SWReGAP field data (verses the
2017 field data), making the forest/chaparral classes seem less accurate.

Why the huge difference in overall accuracy measurements of the SWReGAP map using the
2017 field data (44%) verses the 2001 to 2004 SWReGAP field data (75%)? Despite the 75%
overall accuracy measurement being an overestimation based on it being the training data for the
creation of the map itself, the overall accuracy using the 2017 field data, 44% seems artificially
low. Our only explanation is that there were far too few-field observation sites (95) to give us an
accurate portrait of a map covering 24;000 km2 in such a diverse landscape. Additionally, many
of these observation sites are highly spatially correlated as they are found along access roads and
not randomly distributed across the mapping area, making our collection of field data less effective
than even the low number reflects. The SWReGAP field data have a similar issue (albeit even more
pronounced) with high spatial correlation because of the tight distribution along access roads, but
the sheer number of points still allows for a better estimate of the map’s accuracy.

The technique to classify the image data into many classes, and recombine them using the
SWReGAP map as a guide was envisioned as a way to allow the map to differ significantly from
and yet potentially improve upon the SWReGAP map. Unsupervised classification algorithms
are adept at “pulling apart” the spectral variability of the image data, and minimizing the vari-
ability of the individual classes. By iteratively classifying the image into many classes, the vari-
ability of each class should be minimized, and the likelihood of it being a similar vegetation or
land cover class maximized. The assignment of vegetation and land cover classes to these unsu-
pervised classes, however, is a major potential source of error. In supervised classification, the
vegetation or land cover class is usually determined for the training areas “a priori,” and this
class assignment is applied to the entire supervised class. The use of the SWReGAP map was
expected to help account for this disadvantage.

The SWReGAP and our classification maps were done from images acquired at different
times (12+ years difference), from different platforms (Landsat ETM+ and Landsat 8 OLI), clas-
sified by different procedures and analysts. To be compared, the SWReGAP map was translated
into the same classification scheme and both were shown at the same level of detail. The accu-
racy assessment allows for quantitative comparisons of different interpretations and produces
variations as described.

To expand upon this research, we consider that in addition to the comparison with the
SWReGAP data, each unsupervised class could also be checked against a NDVI time plot (class
average NDVI verses date) and other variables (such as elevation and class distribution) to help
decide what class it most resembled. Additionally, we suggest that the supervised classification
would be improved upon by checking the SWReGAP field data points to see if they were burned,
or had changed class in the intervening years. It is still expected, that a more robust, and iterative
supervised classification procedure could ultimately improve the map and result in an accurate
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rendition of the vegetation classes. Updating the unsupervised version could probably produce a
similar result but would probably require even more time. In retrospect, we could have identified
unsupervised classes that had no clear winner (where the “most likely” vegetation/land cover
class had only a small edge over second place) and then analyzed the NDVI time plot and other
variables to make a final determination. This hybrid option could potentially be accomplished in
a reasonable amount of time.

5 Conclusions

Our approach to improve upon a regional, multistate mapping effort using an unsupervised clas-
sification to make updates in a smaller area was of limited success. A multitiered unsupervised
classification generated over 900 classes, and these classes were then compared individually
with the SWReGAP map and recoded to coincide with a class that represented the largest major-
ity of the shared pixels. Our hypothesis was that the recombined, resultant map would update and
potentially improve upon the vegetation/land cover class distributions of the SWReGAP map
over the 24;000 km2 study area.

Although a slight improvement (53% versus 44%) was measured in the overall accuracy of
the unsupervised classification map versus the SWReGAP map using the limited field data from
2017, the field data collected during the previous SWReGAP mapping effort allowed for an
analysis depicting the opposite. As the SWReGAP field campaign collected 933 points over
the mapping area compared with the 95 points that were visited during the much shorter
2017 field campaign, more emphasis should be put on the results of the accuracy assessment
conducted with a much larger set of reference samples. Therefore, it is surmised that the
SWReGAP map is more accurate overall. Just how much more accurate is unknown as the accu-
racy of the SWReGAP map was measured as an upper limit as the field data (100%) was used to
create the map. One would predict that the more classes generated by this multitiered, unsuper-
vised technique, the more it should mimic the comparison SWReGAP map, but even with the
900+ classes, it was not enough. Although errors were certainly propagated from the SWReGAP
map, we accept that this experimental technique was insufficient to overcome this shortfall and
added new sources of error. Future efforts to develop a new vegetation map would benefit from
using a carefully selected subset of the field data collected by SWReGAP and the 2017 field
campaigns as training data. It is surmised that this more traditional supervised approach, with
numerous, potential training sites, has a greater chance of success in a shorter timeframe than
updating the vegetation class assignments of a pre-existing map on a class-by-class basis when
there are over 900 classes to analyze. Although it is likely that the vegetation class assignments
for the unsupervised classification could be greatly improved upon by analyzing the NDVI time
plots (phenology) and other variables, it would almost certainly require a significant amount of
time because of the sheer number of classes to consider. Perhaps if the class-by-class analysis
was limited in scope to cases where there was no clear winner “most likely” class, the time-
constraint issue could be overcome and the map improved to a sufficient degree.

The final conclusion is that while it is not always possible, attaining a sufficient set of field
reference data points is critical, and improves analysis dramatically. If we had relied on the 95
field sites visited during the 2017 field campaign, we would have had a different finding than if
using the 933 SWReGAP field sites we ultimately chose to base our conclusions on. It may have
been concluded that the unsupervised classification had indeed improved on the SWReGAP map
over the study area, while it had not. Ultimately, the technique used to develop this map was
insufficient at producing an accurate product.
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