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Abstract. To consistently observe deteriorating air quality over East Asia, the National Institute
of Environmental Research, Republic of Korea, is planning to launch an environmental obser-
vation sensor, the Geostationary Environment Monitoring Spectrometer (GEMS), onboard the
GK-2B satellite (a successor to the GeoKOMPSAT-1) in late 2019. GEMS is a hyperspectral
spectrometer that covers the ultraviolet–visible range (300 to 500 nm) with full-width at half-
maximum of 0.6 nm. It has been designed for the observation of air pollutants and short-lived
climate pollutants. GEMS captures images at hourly intervals in the daytime, alternating with
the Geostationary Ocean Color Imager-II every 30 min. Over the Seoul Special Metropolitan
area, South Korea, the spatial sampling resolution of GEMS is 3.5 × 8 km (north–south and
east–west, respectively). There are 16 baseline products, including aerosol optical depth and
the vertical column density of trace gases such as nitrogen dioxide, sulfur dioxide, formaldehyde,
and ozone. Research continues into additional applications (e.g., ground-level concentrations
and emissions). © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12.044005]
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1 Introduction

Nearly three million premature deaths are attributed to air pollution each year;1 ∼90% of the
world’s population is in constant danger of exposure to high levels of particulate matter (PM)
with an aerodynamic diameter ≤ 2.5 μm (PM2.5).2 Due to various factors including ongoing
industrialization and urbanization with significant changes in climate and geography, especially
over East Asia, South Korea had the worst air quality among the Organization for Economic
Co-operation and Development (OECD) nations in 2013. Averaged annual exposure to PM2.5
over 3 years (2010 to 2012) was 29.09 μg∕m3, significantly greater than the OECD mean of
14.05 μg∕m3.3 In addition, PM10 levels (PM with a diameter ≤ 10 μm), which had been con-
sistently improving since the 1990s, have deteriorated since 2013, while high concentrations of
fine particles are becoming more common.

To address this deteriorating air quality, the South Korean government established the
“Special Act on the Improvement of Air Quality in Seoul Metropolitan Area” and invested
approximately $3 billion during phase 1 (2005 to 2014).4 Policies regulating air pollutant emis-
sions have resulted in significant reductions in sulfur oxides, nitrogen oxides, volatile organic
compounds (VOCs), and PM10 (Table 1). However, the concentrations of nitrogen oxides and
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PM2.5 remain high when compared with other developed nations.5,6 Phase 2 is currently
underway with a total budget projected to be approximately $4 billion over the next 10 years.

For air quality improvement policies to succeed, the relationships between sources and
quantities of air pollutants in the atmosphere need to be more accurately understood. Moreover,
optimum reduction quantities and efficient reduction scenarios require determination. Therefore,
it is critical to distinguish between the contributions of domestic sources and foreign influxes
to direct air quality improvement policies. Additionally, depending on climatic conditions,
air pollutants emitted from surrounding nations directly impact the South Korean atmosphere
with a lag time of 1 to 2 days.7 For example, recent increases in air pollution over South Korea
have been closely attributed to air pollutant emissions from China.8–11 Therefore, multilateral and
international efforts have been proposed to determine the effects of long-range air pollutant
transport and thus to improve air quality in East Asia. These efforts include the launching
of joint research groups between South Korea and China, the operation of long-range
transboundary air pollutant (LTP) projects among South Korea, Japan, and China,12,13 and
discussions at the Tripartite Environment Ministers Meeting and Korea–United States Air
Quality Campaign.14,15

The South Korean government is in the process of expanding its ground observation
network used for monitoring air quality. It has also been performing episodic aerial monitoring
to efficiently establish and enforce air quality policies, and to acquire fundamental scientific
data. However, precise assessments are still limited due to deficient data from ground-based
observations that do not sufficiently cover contiguous large target areas of interest. The develop-
ment of advanced remote sensing technologies as well as the consistent monitoring of trace gases
in the atmosphere directly contributes to overcoming these limitations, thereby improving
our ability to analyze long-range transported air pollutants.16 Currently operational low Earth
orbit (LEO) environmental satellites16–21 are capable of monitoring air quality on a global scale;
however, they are temporally limited to observing the same location only every 1 to 3 days.
To consistently monitor deteriorating air quality over East Asia, the National Institute of
Environmental Research (NIER), Republic of Korea, is planning to launch a satellite-based envi-
ronmental observation instrument, the Geostationary Environment Monitoring Spectrometer
(GEMS), in late 2019. GEMS is expected to perform quantitative analyses on air pollution
phenomena in the East Asian region.22,23

2 GEMS Mission Overview

GEMS development was initiated in 2012 along with an advanced ocean color imager,
the Geostationary Ocean Color Imager-II (GOCI-II).24 Both sensors will be launched onboard
GeoKOMPSAT-2B (GK-2B) as part of the GK-2 mission, which consists of two satellites
(GK-2A/B):25 the 2A satellite, which carries the Advanced Meteorological Imager (AMI) for
weather surveys, and the 2B satellite, which carries GOCI-II and GEMS for ocean and atmos-
pheric environmental monitoring.

The AMI, GOCI-II, and GEMS sensors each have unique spectral and spatial coverage with
resolutions optimized for their respective missions. In addition to the major products obtained
from each payload, additional products are expected to be utilized by integrating the GK-2A/B
observation data based on their different spectral and spatial resolutions. Research to develop
potentially new output categories, and to improve the accuracy of existing outputs via the
integration of payload data, is currently underway.

Table 1 Air quality conditions before and after phase 1 of the “Special Act on the Improvement of
Air Quality in Seoul Metropolitan Area,” and phase 2 goals.

Item PM10 PM2.5 (goal) NO2 O3 (goal)

2001 71 μg∕m3 — 37 ppb —

2010 47 μg∕m3 27 μg∕m3 34 ppb 87 ppb

2024 (target) 30 μg∕m3 20 μg∕m3 21 ppb 60 ppb

Choi et al.: Introducing the geostationary environment monitoring spectrometer

Journal of Applied Remote Sensing 044005-2 Oct–Dec 2018 • Vol. 12(4)



GEMS is scheduled to be launched after October 2019. Along with the Tropospheric
Emissions: Monitoring Pollution (TEMPO) of the United States’ National Aeronautics and
Space Administration (NASA), and Sentinel-4 of the European Space Agency (ESA), GEMS
is expected be an essential part of the GEO air quality constellation for monitoring global
air quality.22,23

2.1 Spatial and Spectral Coverage

The region of interest for GEMS covers East Asia, corresponding to longitudes 75° E–145° E and
latitudes of 5° S–45° N. Its sampling spatial resolution is 3.5 × 8 km (north–south and east–west,
respectively) per pixel at Seoul, with spatial and temporal co-adding depending on product
category.

GEMS provides trace gas concentrations through a spectroscopic algorithm that calculates
concentrations based on the gas absorption cross section with regards to solar irradiance (Fig. 1).
The spectrometer observes ultraviolet–visible wavelengths in the 300- to 500-nm range with
a sampling spectral resolution of 0.2 nm, and a full-width at half-maximum (FWHM) of
0.6 nm, which is the sum of all three spectral sampling data sources; thus its operation is limited
to the daytime.

2.2 Observation Modes

GEMS and GOCI-II will operate alternatively every 30 min to capture hourly images; GEMS
covers a wider area, from east of Japan to Indonesia (Fig. 2). Its operational scenario includes a
concentrated observation mode that allows enhancement of its signal-to-noise ratio (SNR) by
reducing the east–west scan range during the mornings and evenings when solar radiation is
weak. GEMS can utilize three observational modes: normal observation, East Asia observation,
and local area observation. These observational modes can be utilized to closely monitor
corresponding areas during instances of high air pollution (Table 2).

3 Instrument Design and Performance

3.1 Overall Design and Performance

In normal mode, GEMS observes its field of view (FOV; Fig. 2) from east to west by moving its
scan mirror position a total of 701 times. At a given scan position, 37 images over a period of
63.5 ms are coadded onboard to enhance its SNR; coadding is possible up to 63 times (Fig. 3).
However, GEMS is limited to only 30 min of observation per hour, and its allowable FOV
decreases for concentrated observations to enhance SNR. Earth radiance values are given as

Fig. 1 Optical thickness of atmospheric species of interest as a function of wavelength. Adapted
from Ref. 19.
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EQ-TARGET;temp:intralink-;e001;116;211P2i;jðDNÞ ¼
Xk¼CON

k¼1

fP1i;jðDNÞgk; (1)

where i is the spectral position and j is the ground position (north-south direction); P1i;jðDNÞ is
the focal plane subsystem output with 14 bits∕pixel; P2i;jðDNÞ is the Earth observation radiance
value; CON is the number of Earth observations (generally 37, maximum 63); and DN is
the mirror position (generally 1 to 701).

The design of GEMS, including the light path, uses optical paths equal to those used in
observing the Earth and Sun for spectral calibration (Fig. 4). The grating and reflector spectro-
scopic parts were designed in the form of an Offner relay to minimize distortion. One scan
spatially covers 2048 pixels in a north–south direction (one pixel corresponds to 3.5 km at Seoul)
and spectrally covers 1000 pixels (spectral resolution of 0.2 nm); scanned data are sent to ground

Table 2 Main features of the GEMS.

Operational observation modes
Observation
cycle (min)

East–west scanning
range (longitude
based on Seoul) Notes

General
observation

60 75°E–145°E

Special
observation

East Asia (EA) mode 60 110°E–140°E Monitoring of East Asian region

Enhanced East
Asia (EEA) mode

60 115°E–130°E Enhanced monitoring of
East Asian region

Operational mode for winter

Local area (LA) mode 30 Based on ground
command

For emergency situations on
the Korean Peninsula

Fig. 2 Region of requirement (yellow box), GEMS field of regard (FOR) (red box), and GEMS FOV
(green box) for the GEMS. The background satellite imagery data are obtained from the Blue
MarbleNext Generation. (Image credit: Reto Stckli, NASA Earth Observatory.)
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control after each observation. Spatial coaddings are performed based on product category to
enhance the SNR at the ground station, the Environmental Satellite Center (ESC), which
eventually improves the accuracy of the level 2 data.

3.2 Spectral Performance

The GEMS bandpass function has been measured at selected wavelengths (Table 3). Using a
laser with an accuracy of 0.006 nm, 10 images were captured at each wavelength with a sampling
interval of 0.06 nm over the scan range of �1.8 nm. The collected data were used to determine
bandpass function with the wavelengths for the maximum bandpass as well as for the FWHM.
The point spread function (PSF) was calculated at four selected wavelengths (300, 370, 430, and
500 nm) and three spatial positions. The PSF was characterized at the spectroscopic level.

Signals at both extremes of the bandpass function are hidden by noise, making them difficult
to measure. Thus, broadband characterization was performed with multiple laser sources and
long pass filters. These data can also be utilized in the assessment of stray light performance
with the PSF. Stray light can be also from out-of-band (i.e., wavelengths outside of 300 to

Fig. 4 Optomechanical subsystem of the GEMS.

Fig. 3 Basic concept of GEMS operations.
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500 nm) and out-of-field, which is spatially affected in the north–south direction. To measure
stray light, data from the middle range are collected using a proper laser source intensity (or
exposure length) level to ensure that signals at middle wavelengths (370 and 430 nm) are
not saturated. Even if the signal in the middle range becomes saturated, the laser source intensity
can be set so that data from the two extremes are greater than the noise level and can be
subsequently recorded with high SNRs. Similarly, ranges at the extremes can also be analyzed
with high SNRs by using a stronger laser source. As shown in Fig. 5, a clean PSF without
the influence of noise can be obtained by standardizing collected data to their corresponding
laser source intensities.

As opposed to methods involving adjustment of light source intensity, GEMS collects data by
adjusting the laser exposure time. This method ensures uniformity of the laser source with
respect to wavelength and makes standardization easier. In addition, adjusting the laser exposure
time is more accurate than adjusting the intensity of the laser source.

3.3 Calibration

GEMS covers a wavelength range of 200 nm (between 300 and 500 nm) with a spectral res-
olution of 0.6 nm; the accuracy of the final output is heavily affected by the slightest perturba-
tions in the observations. Hence, GEMS is expected to validate and calibrate its observational
data through methods such as solar observation and light-emitting diode (LED)-assisted linearity
analysis. Representative on-orbit calibration activities include solar observations using diffusers
of GEMS, dark imaging with the calibration wheel in closed position, utilization of internal
LEDs, and the validation of linearity of the results (Table 4).

Fig. 5 PSF results using the “stitching method”: (a) before PSF and (b) after PSF.

Table 3 Spectral scale and bandpass test matrix.

Spectral scale
center wavelength

Bandpass wavelength
scan range (from center)

Bandpass wavelength
sampling interval (step size)

Number of samples
per wavelength

301.8 �1.8 nm 0.06 nm 10 images

330.0

365.0

400.0

435.0

470.0

498.2
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3.3.1 Working/reference diffuser calibration

GEMS monitors the Sun once a day to validate and calibrate any self-caused changes in
the Earth’s radiance data. For this reason, GEMS is equipped with a calibration mechanism
assembly (CMA), which has an open position for Earth observations, two diffuser positions,
and a closed position to prevent incoming debris. GEMS also carries a working diffuser as
well as a reference diffuser to correct the degradation of the working diffuser every 6 months.
The diffuser is used for solar calibrations before midnight when the incident angle of sunlight
on GEMS is ∼30 deg. The diffuser transmission is affected by the solar incidence angle;
thus, the solar calibration time during the year is determined at a constant incident angle
(Fig. 6).

Observed solar irradiance [Fmeasði; jÞ] is used to calibrate the Earth radiance observations
from GEMS compared to existing reference values. Fmeasði; jÞ is expressed as

EQ-TARGET;temp:intralink-;e002;116;248Fmeasði; jÞ ¼
kri;j · C

i
photonði; jÞ

BTDFDiffuserðGi;jÞ · NCoadd · tint
; (2)

where kri;j is the pixel radiance calibration coefficient at column i, row j; Ci
photonði; jÞ is the

measured signal in irradiance mode at column i, row j; BTDFDiffuserðGi;jÞ is the bidirectional
transmission distribution function (BTDF) of the on-board diffuser, which is a function of
the goniometric angle; NCoadd is the number of image coadditions; and tint is the single frame
integration time.

3.3.2 Dark imaging and on-board LED source linearity calibration

Dark imaging is performed to analyze GEMS noise signals and to offset values when the CMA is
in the closed position. The imaging is conducted twice daily (before and after Earth observations)
and is used for the current dark correction during the observation. Dark calibration is performed

Table 4 Radiometric calibration activities.

Radiometric calibration activity Frequency Time

Dark imaging Two times/day Before and after daytime recording

Working solar diffuser observation One time/day Before midnight; solar elevation angle at 30 deg

Internal LED observation One time/week Between dark imaging and solar diffuser observation

Reference solar diffuser observation Two times/year Before midnight; solar elevation angle at 30 deg

Fig. 6 Solar calibration geometry over a yearly cycle.
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by combining the frames of dark imaging and normal observation, which have the same
integration times and numbers of images.

In addition, GEMS utilizes its internal LEDs once a week to check the homogeneity of CCDs
and the linearity of the image. It collects LED images at 20 different times and interpolation is
used in between. Each data element consists of a combination of five frames. The calibration
wheel moves to the closed position during LED imaging.

4 Main Products

GEMS is expected to provide a total of 16 level 2 (L2) products (Table 5), including aerosol
optical depth (AOD), ozone (O3), and trace gases in the atmosphere such as sulfur dioxide (SO2),
nitrogen dioxide (NO2), glyoxal (CHOCHO), and formaldehyde (HCHO).

Some GEMS products are provided as vertical column densities (VCD) by retrieving slant
column densities and applying the air mass factor (AMF). The acquired data are expected to be
used as feedback for the detection of clear sky pixels and calculation of surface reflectance to
further contribute to the improvement of accuracy. The accuracy of the products retrieved is
needed to be validated after the satellite launched.

4.1 Aerosol Optical Depth

Aerosols affect the human body via respiration: they are deposited in the bronchial tract, often
reaching the lungs, where they critically endanger health by accumulating in the cardiovascular
system. Aerosols can even create economic losses by damaging precision industries. Owing to
their detrimental health effects, the World Health Organization (WHO) has classified PM as
group 1 carcinogens.1 Not only does the absorption and scattering of solar energy used by
aerosols have a direct and critical effect on global climate change,26–28 indirect meteorological
effects are also caused by physical processes related to clouds and precipitation.

While radiative energy in the 300- to 500-nm range is only slightly affected by the ground
surface, it is strongly affected by air molecule scattering and the absorption/scattering effects of
aerosols, making it useful in aerosol-type determinations or optical depth calculations. The
GEMS AOD output algorithm uses a radiative transfer model to calculate a lookup table
(LUT) and estimate the AOD by applying an inversion method to compare top-of-atmosphere
reflectance and the LUT data. The AOD is very sensitive to clouds; therefore, only clear regions
without any clouds are selectively used for calculations. The accuracy of data is determined by
the cloud detection accuracy as well as the spectral properties and size distribution of the aerosols
used in the LUT. The temporal resolution of the AOD output is identical to the temporal
resolution of the general observation and calculations can be performed on a single pixel of
the spatial resolution mentioned in Sec. 2.1 (3.5 × 8 km per pixel based on the Seoul area).

Table 5 Main L2 outputs of the GEMS unit.

No. Output No. Output

1 NO2 VCD (molecular number∕cm2) 9 Aerosol optical depth

2 SO2 VCD (molecular number∕cm2) 10 Aerosol index

3 HCHO VCD (molecular number∕cm2) 11 Single scattering albedo

4 CHOCHO VCD (molecular number∕cm2) 12 Aerosol height (km)

5 O3 VCD (molecular number∕cm2) 13 Cloud pressure (hPa)

6 O3 stratosphere density (molecular number∕cm2) 14 Impactive cloud fraction

7 Upper troposphere O3 density (molecular number∕cm2) 15 Surface reflectivity

8 Lower troposphere O3 density (molecular number∕cm2) 16 UV index
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4.2 Ozone

Ozone is a trace gas composing 0.001% of atmospheric volume. It is a short-lived climate
pollutant (SLCP) and its contribution to the greenhouse effect closely follows that of carbon
dioxide (CO2) and methane (CH4).

29 Moreover, although stratospheric O3 absorbs ultraviolet
rays from the sun and creates a viable environment on the Earth’s surface, tropospheric O3

is a key secondary pollutant that is detrimental to the human body and various ecosystems.
With recent rapid economic growth in East Asia and the subsequent increase in fossil fuel
consumption, a significant volume of air pollutants is emitted and the amount of the secondary
pollutant O3 is increasing, creating concerns for human health and ecological damage.30–32

The GEMS O3 calculation algorithm outputs total O3 and a vertical profile, where the wave-
length range for the calculation of accumulated tropospheric O3 concentrations is 300 to 340 nm.
Tropospheric O3 can be calculated with low analytical error using signals in the ultraviolet range
at the ground level. The calculation algorithm utilizes a nonlinear optimal estimation to minimize
the difference between measured and simulated spectral radiances and the difference between
retrieved and a priori state vectors, constrained with measurement and a priori error covariance
matrices.33 The accuracy of the final accumulatedO3 concentration is determined by factors such
as the measured satellite signal accuracy and the O3 sensitivity dependent on vertical height, and
is calculated over cloudless, clear sky pixels. The temporal resolution is identical to that of
the general observation, and calculations of the accumulated O3 can be performed by coadding
two pixels of GEMS spatial resolution (7 × 8 km).

4.3 Nitrogen Dioxide and Sulfur Dioxide

Accumulated NO2 and SO2 concentrations are calculated from the GEMS spectral imaging
calibration data for 400 to 500 nm and 305 to 320 nm, respectively. Using satellite signals
from areas with low amounts of NO2 or SO2 as references, the signals of aerosols and air
molecules with slow absorption effects are removed. Using the differential optical absorption
spectroscopy (DOAS) method,34 the VCDs are calculated by fitting the gas-specific absorption
cross-section data from the database.

The accuracies of the final accumulated NO2 and SO2 concentrations are determined from
the calculation errors between the AMF and the residual noise signals after the DOAS fitting.
The temporal resolution is identical to that of the general observation and calculations
of the accumulated NO2 can be performed by coadding two pixels of GEMS resolution
(7 × 8 km). For the sake of improving the precision and SNR of SO2, eight pixels of the
GEMS resolution are coadded and averaged over up to 3 h.

4.4 Formaldehyde

Most of the HCHO in the atmosphere is produced from oxidation of CH4. High concentrations of
HCHO at the ground level can be observed when it is directly released into the atmosphere (e.g.,
wildfires); however, the main product is isoprene (C5H8). The emission of C5H8 can be derived
from the VCD of HCHO, which can be observed via satellites.35–41 Satellite observation of
HCHO can be a key contributor to the estimation of VOCs over large areas and the reduction
of uncertainty.

The accumulated HCHO calculation algorithm of GEMS uses basic optical absorption
spectroscopy (BOAS) technology over a wavelength range of 327 to 358 nm. The BOAS
technology fits the directly measured satellite radiance signals, numerous variables stored in
the library, and the gas-specific absorption cross-section data to calculate the accumulated con-
centrations of HCHO. The accuracies of the accumulated HCHO concentrations are determined
from the calculation errors between the AMF and the residual noise signals after the BOAS
fitting.

Calculations for HCHO are performed over clear sky pixels and the temporal resolution is
identical to that of the general observation. The calculations of the accumulated HCHO can be
performed by coadding eight pixels of the spatial resolution as mentioned in Sec. 2.1
(14 × 16 km∕pixel) and averaged over 3 h.
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5 GEMS Ground Station

For the reception, processing, and application of GEMS data, the Korean Ministry of
Environment constructed the ESC at the NIER and established a data processing system.
The NIER is currently conducting an integrated air quality forecast;42 a significant improvement
in the forecast accuracy is expected with the utilization of GEMS data.

GEMS data are simultaneously received at the Korea Aerospace Research Institute, which
controls the satellite bus system, and the Korea Ocean Satellite Center, which is the ground
control station for the GOCI-II and holds a mutual data backup relationship with its counterparts
(Fig. 7). The raw data observed from GEMS and received via the reception system at the ESC
produce the L1B data through the decomposition module, radiation calibration, and geometric
calibration. The L2 data are provided in the form of outputs such as AOD (Fig. 8 and Table 6).
To improve the accuracy of the main L2 outputs at the ESC, forecast data from the ocean color
satellite GOCI-II and the atmospheric chemistry modeling data are collected. The production
of external-data driven value-added products, including mean field and surface concentrations,
is in preparation.

Fig. 7 Systematic diagram of the GK-2 ground control process.

Fig. 8 Structural diagram of the GEMS data processing system.

Choi et al.: Introducing the geostationary environment monitoring spectrometer

Journal of Applied Remote Sensing 044005-10 Oct–Dec 2018 • Vol. 12(4)



6 Application and Expected Impacts of GEMS

GEMS is expected to provide the hourly distribution of the product variables and simultaneously
analyze their emission, transport, and sinks. Unlike those of LEO environmental satellites,
the spatial and temporal distribution characteristics of GEMS enable continuous monitoring
of O3, SO2, NO2, aerosols, and HCHO from a single location; it thus has a wide range
of expected applications, including top-down pollutant emissions and long-range transport.
In particular, it is anticipated that emission calculations and monitoring will be possible
through the spatial and temporal observations of tropospheric O3, PMs, VOCs, and precursors,43

and that these will be utilized in the quantitative analysis and transport pathway determination
of long-range air pollutants. Furthermore, methods to calculate the surface concentrations
of PM could be developed using the satellite-observed AODs,44–47 which would be useful in
the monitoring of PM distributions, and analyses of their trends and high PM concentration
events.

In the field of climate change, GEMS is expected to contribute toward understanding active
climate change responses, such as quantitative analyses related to climate change through the
consistent monitoring of surface and atmospheric East Asian SLCP (e.g., O3, aerosols) concen-
trations. It is also likely to provide solutions to reduce SLCPs, which, unlike long-lived CO2,
represent short-term reduction effects.

Furthermore, GEMS is anticipated to be used in the detection of sulfuric gases, as an
indicator of volcanic eruptions, for the confirmation, prediction, and analysis of air pollutants
(e.g., toxic substances), for understanding transport paths from chemical accidents, and the
quantitative estimation of air pollutants from large wildfires.

In particular, the use of GEMS as input data in air quality models is expected to significantly
improve forecast accuracies through data assimilation and the amelioration of initial and boun-
dary condition uncertainties.48,49 GEMS may also bring about quality improvement through the
evaluation of air quality prediction models, accuracy enhancement of air pollutant emissions
through bottom-up estimations, and through accuracy enhancement and improvement of air
quality prediction intervals through assimilation of satellite data and forecast models.49–51

It is also likely to improve the accuracy of air pollution forecasts and warnings through earlier
estimation of high air pollutant concentrations. These examples of forecast and warning accuracy
improvements will enhance public trust and increase air pollution avoidance rates; thus, improv-
ing the health and quality of life of citizens.

Lastly, along with TEMPO22 and Sentinel-4,23 GEMS is expected to ensure broad and
consistent monitoring of air quality in East Asia, North America, and Europe’s concentrated
areas. In conjunction with scientific data for air pollutant emissions, transport, and degradation
at the global scale, international cooperation among state governments and efficient air
quality policy implementation will be achievable. It should be noted that globally spreading
air pollution is impossible to mitigate with the efforts of only a few nations. Therefore,
the three major geostationary environmental satellites, including GEMS, are anticipated to
provide solutions for international cooperation and ensure efficient and effective air quality
control.

Table 6 Abbreviations of GEMS data processing systems.

Abbreviation Explanation

PPS Data preprocessing system

DAS Data analysis system

DMS Data management system

DVS Data verification system

SDPS Scientific data processing system

CMS Control and monitoring system

Choi et al.: Introducing the geostationary environment monitoring spectrometer

Journal of Applied Remote Sensing 044005-11 Oct–Dec 2018 • Vol. 12(4)



7 Conclusions

The South Korean government is developing the first geostationary environment spectrometer
(GEMS) and planning its launch in 2019 to consistently monitor deteriorating air quality and
establish and enforce efficient and cost-effective air quality policies. GEMS is expected to pro-
vide fundamental data on trace gases including NO2, SO2, HCHO, O3, and AOD. In addition,
its output can be utilized in air quality prediction models and contribute toward increasing the
accuracy of forecasts and warnings that are needed to prevent air pollution, thereby enhancing
quality of life. Moreover, GEMS will potentially be able to contribute to international efforts and
assist in the development of a clean atmosphere.
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