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Abstract. The presence of a significant amount of information in the hyperspectral image
makes it suitable for numerous applications. However, extraction of the suitable and informative
features from the high-dimensional data is a tedious task. A feature extraction technique using
expectation–maximization (EM) clustering and weighted average fusion technique is proposed.
Bhattacharya distance measure is used for computing the distance among all the spectral bands.
With this distance information, the spectral bands are grouped into the clusters by employing the
EM clustering method. The EM algorithm automatically converges to an optimum number of
clusters, thereby specifying the absence of need for the required number of clusters. The bands in
each cluster are fused together applying the weighted average fusion method. The weight of
each band is calculated on the basis of the criteria of minimizing the distance inside the cluster
and maximizing the distance among the different clusters. The fused bands from each cluster are
then considered as the extracted features. These features are used to train the support vector
machine for classification of the hyperspectral image. The performance of the proposed tech-
nique has been validated against three small-size standard bench-mark datasets, Indian Pines,
Pavia University, Salinas, and one large-size dataset, Botswana. The proposed method achieves
an overall accuracy (OA) of 92.19%, 94.10%, 93.96%, and 84.92% for Indian Pines, Pavia
University, Salinas, and Botswana datasets, respectively. The experimental results prove
that the proposed technique attains significant classification performance in terms of the
OA, average accuracy, and Cohen’s kappa coefficient (k) when compared to the other competing
methods. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12
.046015]
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1 Introduction

Hyperspectral sensors [e.g., Airborne Visible Infrared Imaging Spectrometer (AVIRIS), hyper-
spectral digital imagery collection experiment, HyMap, and EO-1 Hyperion] record a scene over
the wide wavelength ranging from the visible region to the infrared spectrum, which provides
detailed spectral information about the objects in numerous and continuous spectral bands (from
tens to several hundreds) as well as a high spatial resolution.1 Due to the high spectral resolution,
hyperspectral images offer very high-discrimination capabilities among similar ground cover
objects.2 However, the huge numbers of bands always bring the curse of dimensionality, reduc-
ing the discriminating ability of the data as the dimensionality increases with fewer numbers
of labeled training samples.3,4 This behavior is also referred to as “Hughes phenomenon.”5

Moreover, the high dimensionality of the hyperspectral image also consists of redundant and
noisy information, which increases the computational burden of the data processing. So dimen-
sionality reduction becomes an essential task in the hyperspectral image processing.

Dimensionality reduction is the process of reducing redundant data and extracting meaning-
ful features. In other words, dimensionality reduction is a convenient way of reducing the
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number of spectral bands and transforming the data from a high-dimensional space to a lower
dimensional space, where the most significant information is conserved.6,7 Dimensionality
reduction can be done through the feature selection or feature extraction method. In the feature
selection method, a few informative bands are selected on the basis of the adopted selection
criteria, namely, the distance measures (Euclidean distance, spectral angle mapping,
Bhattacharyya distance, Hausdorff distance, and Jeffreys–Matusita distance), information theo-
retic approaches (divergence, transformed divergence, and mutual information), and Eigen
analysis [principal component analysis (PCA)], where the original physical significant properties
of the bands can be preserved.8–15 One of the popular band selection methods is the constrained
band selection (CBS) method.9 It minimizes the correlation and dependency in the selection of
the bands. Based on correlation and dependence, CBS method offers four different approaches,
which arise from two different approaches: (1) constrained energy minimization (CEM) and
(2) linearly constrained minimum variance (LCMV). There are four specific criteria for band
selection such as, band correlation minimization (BCM), band correlation constraint (BCC),
band dependence minimization (BDM), and band dependence constraint (BDC). These four
criteria divide the CEM and LCMV approach into to four parts: CEM-BCC/BDC, CEM-
BCM/BDM, LCMV-BCC/BDC, and LCMV-BCM/BDM. Feature selection provides suitable
features for classification but is computationally expensive and often not robust in complex
scenes (variation in spectral signatures across scenes). On the other hand, feature extraction
methods transform the higher dimensional data into the lower dimensional space. They are com-
putationally superior and more robust to the complex scenes. However, extraction of efficient
and suitable features in the classification of large hyperspectral data is a highly crucial task.

Feature extraction methods transform the original high-dimensional feature space into a low-
dimensional feature space, which faces loss of the physical meaning of the bands but preserves
the significant discriminative information needed for further analysis.16–25,26 PCA is one of the
most widely used approaches for feature extraction.16 This is due to the fact of PCA being
an invertible transformation, which facilitates the interpretation of the extracted features.
PCA offers high-computational load and operates on the global features but loses local
information.27 The extension of PCA, segmented PCA method,17 is presented for addressing
this issue. Here, for using the local information, PCA is applied to the groups of bands formed
using the correlation between bands. Another most useful feature extraction method is indepen-
dent component analysis (ICA),19 which is used for the extraction of class discriminant features
from the hyperspectral images. But the complexity of ICA method increases the computational
load. In general, the hyperspectral data are nonlinear in nature. Hence, the linear classifier usu-
ally provides unsatisfied classification performance. In recent times, some nonlinear methods
such as maximum noise fraction20 and kernel PCA,21 and probabilistic PCA (PPCA) are pro-
posed as an extension to the conventional PCA. PPCA is a constraint Gaussian generative latent
variable model. PPCA extracts features using the maximum likelihood estimates for the param-
eters associated with the covariance matrix that can be efficiently calculated from the data prin-
cipal component.22 In most of the situations, the labeled samples are limited and obtaining the
labeled samples is a very expensive and time-consuming task. On the other hand, unlabeled
samples are available in large quantities at low cost. Hence, semisupervised PPCA is proposed
as an extension of PPCA, which uses both the labeled as well as unlabeled information into the
projection for overcoming the problem of the scarcity of the labeled samples.18 Apart from the
PCA, there are two other best known feature extraction approaches, discriminant analysis feature
extraction28 and linear discriminant analysis (LDA).23 In recent times, many other extensions to
the above-mentioned two methods have been proposed, namely, regularized LDA,23 nonpara-
metric weighted feature extraction (NWFE),24 and kernel NWFE.25 Another most popular fea-
ture extraction approach is the clustering-based feature extraction (CBFE). Clustering makes
partitions of the hyperspectral image into several uncorrelated subband groups, each of
which contains contiguous bands. Clustering has received increasing attention in the hyperspec-
tral remote sensing community due to its better performance toward the curse of dimensionality
problem.29–35 Clustering technique removes redundancies and the correlated data from the high-
dimensional data and provides uncorrelated low-dimensional data. In Ref. 30, CBFE is pro-
posed. It works well in a small sample size scenario using the most popular k-means clustering
algorithm. A semisupervised k-means clustering method is proposed for utilizing the easily
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available unlabeled samples.36 It uses the multiple classifiers for each cluster of band and the
final output is the fused result of the multiple classifiers. Clustering methods do not require
a priori knowledge in advance to the band grouping process, but make the cluster of the
bands as per the distribution of the spectral features of hyperspectral image. Moreover, clustering
methods are too sensitive to the randomly initialized cluster center and selected subset of bands
may be unstable. Hence, in Ref. 37, an automatic clustering method [fast density peak-based
clustering (FDPC)] is proposed, which selects the cluster centers using the fast search method.
But it is not a fully automatic cluster center selection method and loses the data points. Hence,
improvements in FDPC are proposed, namely, enhanced fast density peak-based clustering
(E-FDPC),38 and k-means fast density peak-based clustering.39 Dual clustering-based band
selection by context analysis (DCCA)33 does the clustering by considering the context informa-
tion in the bands of the hyperspectral image. Recently, along with the algorithm development for
the hyperspectral image classification, fusion methods such as decision level and feature level
fusion methods have gained great interest,40–43 and these methods demonstrated the ability of the
combination of the selected features to improve the classification performance. Considering the
above study of the feature extraction techniques, the authors of this work found the following
challenges:

1. Though the existing clustering-based feature extraction approaches show a significant
performance, the emphasis of these conventional clustering strategies is on raw spectral
features rather than exploiting more complementary information from the bands of the
hyperspectral cube.

2. The existing clustering-based feature extraction approaches fail to find an optimal num-
ber of clusters and are very sensitive to the number of clusters.

3. The existing feature extraction methods work well in small-size data, but fail to show the
effectiveness in the case of the large-size data.

The main contributions of the proposed method are summarized as follows.

1. An effective expectation–maximization clustering and weighted average fusion
(EM-WAF)-based feature extraction method is proposed for the hyperspectral image
classification.

2. The EM algorithm automatically converges to an optimal number of clusters. Therefore,
the proposed technique circumvents the necessity to specify the number of clusters by
making the use of the EM clustering algorithm.

3. The bands from each cluster are combined by adopting the weighted average fusion
method. This process usually improves the classification performance by giving
more weight to the particular band, thereby providing more discriminative and comple-
mentary information. Calculation of the weight is done on the basis of the criteria of
minimizing the intracluster distance and maximizing the intercluster distance. The
fused bands obtained from each cluster are then considered as extracted features,
which are further used for the hyperspectral image classification.

4. Finally, the experimentation is done on both small and large-size datasets to prove the
effectiveness of the proposed method.

The remainder of this paper is arranged as follows: in Sec. 2, the proposed architecture of EM
clustering and weighted average fusion-based hyperspectral image classification is explained in
detail. Mathematical details of EM clustering and weighted average fusion are also discussed.
Experimental analysis of four standard datasets is presented in Sec. 3. More precisely, the pro-
posed method is compared with other clustering and fusion-based methods. Comparison is done
for both quantitative accuracy and visual interpretation. Section 4 provides the concluding
remarks.

2 Proposed Architecture

This section discusses the proposed architecture of the feature extraction for hyperspectral image
classification in detail. The proposed feature extraction architecture is presented in Fig. 1, which
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depicts the proposed approach as comprising three stages, namely, band clustering, the fusion of
the bands of each cluster, and classification. The following section provides a detailed explan-
ation of the various stages present in the proposed system.

2.1 Band Clustering

Hyperspectral data consist of the hundreds of spectral bands, which are highly redundant due to
similar sensor responses in two adjacent bands. The objective of the band clustering is to group
the highly correlated bands and group them into distant clusters. Figure 2 shows the workflow of
the band clustering procedure. Here the Bhattacharya distance28 is used as band separability
measure for computing the distance between each pair of spectral bands. The Bhattacharya dis-
tance between bands bi and bj is defined as

EQ-TARGET;temp:intralink-;e001;116;393bi;j ¼
1

8
ðμi − μjÞT

�
Σi þ Σj

2

�
−1
ðμi − μjÞ þ

1

2
ln

�jðΣi þ ΣjÞ∕2j
jΣij12jΣjj12

�
: (1)

Here, μi and μj are band means, Σi and Σj are band covariance matrices.
Using the distance information, the bands are clustered using the EM clustering algorithm.

The band clustering procedure using the EM clustering algorithm is explained in detail in the
following section.

Fig. 1 The architecture of the proposed EM-WAF method for hyperspectral image
classification.

Fig. 2 The band clustering procedure. In this procedure, the pairwise band separability
information is calculated, and then EM clustering is conducted to generate “d ” band
clusters.
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2.1.1 Band clustering using EM algorithm

Using the generated distances between each pair of spectral bands, all the original bands are
grouped into “d” clusters. Clustering is done using the EM algorithm.

The EM clustering algorithm features the partial allotment of points to different clusters
instead of assigning them to the closest cluster center. This can be achieved by modeling
each cluster using the probabilistic distribution. Finally, the algorithm is converged into the clus-
ter with the highest probability. The K-means clustering algorithm is an incremental heuristic
approach, whereas the EM algorithm is a statistical algorithm that assumes a statistical model
that describes the data. The assumption of the EM algorithm to cluster analysis is that the pat-
terns are drawn from one or several distributions. The goal here is to identify the parameters of
each distribution. In this case, the parameters of a Gaussian mixture model have to be estimated.
The EM algorithm44 is a probabilistic model used for finding the maximum likelihood estimates
of the parameters from the patterns. Assume that bands belonging to the same cluster are drawn
from a multivariate Gaussian probability distribution for forming the cluster of bands. The EM
clustering algorithm converges to an optimal value of the clusters. It considered as converged
when there is no further change in the assignment of the bands to cluster. The EM clustering
algorithm is explained in Algorithm 1.

Algorithm 1 Band clustering using EM algorithm.

Input: b ¼ fb1; b2; b3; : : : ; bng be the set of the bands andC ¼ fC1; C2; : : : ; Ccg be the set of centroid centers,
max_iteration k .

Output: An optimal number of “d ” band clusters.

Step 1: Initialization

i) Initially select c bands randomly from the set b as cluster center. Let us consider, μj is the mean, Σj is
covariance matrix, and αj is the weight. Each cluster Cj is represented by a Gaussian distribution
Nðμj ;Σj Þ and αj .

Step 2: Iteration

i) While (iteration < k )

ii) Expectation step (E-step)

Assign each band to one of the clusters according to the maximum a posteriori probability criteria.

The probability of cluster Cj over bi , for each distance point bi and each cluster Cj :

EQ-TARGET;temp:intralink-;e002;116;279pðCj jbi Þ ¼
pðbi jCj ÞpðCj ÞP
j pðbi jCj ÞpðCj Þ

: (2)

The probability density function pðbi jCj Þ for a bivariate Gaussian distribution is given by

EQ-TARGET;temp:intralink-;e003;116;222pðbi jCj Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞd jΣj j
q e

h
−1
2ðbi−μj ÞTΣ−1

j ðbi−μj Þ
i
: (3)

iii) Maximization step (M-step):

Recompute the parameter values μj , Σj , and αj for the cluster Cj by using the probability pðCj jbi Þ
obtained in expectation step.

The mean μj is computed as

EQ-TARGET;temp:intralink-;e004;116;112μj ¼
P

i pðCj jbi ÞbiP
i pðCj jbi Þ

: (4)
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2.2 Weighted Average Fusion

Following the band clustering process, all the bands from each cluster are fused together using
the weighted average fusion method. The fused bands should have the following characteristics:

1. Decorrelation. Correlation among the clusters should be greatly reduced.
2. Separability. Discrimination capability of fused bands should be increased.

The simple average fusion method proposed in Ref. 29 does not ensure any satisfactory way
for removing redundant information. Hence, here, the weighted average fusion method is used
for the preservation of the discriminative information of the original bands. Since the weight
factor preserves the discriminative information of the original bands, it improves the classifi-
cation results. Therefore, m bands in d’th cluster are fused as shown in

EQ-TARGET;temp:intralink-;e007;116;378Fd ¼
P

j∈m wdðjÞ � bj
m

∀ d; (7)

where bj is the j’th band in d’th cluster, and wdðjÞ is the weight factor for j’th band in d’th
cluster. Here we provide each band a weight value of w. An optimal weight value of each band is
determined by updating the weight value w.45 Let the sum of band weight in each cluster be one,
i.e.,

EQ-TARGET;temp:intralink-;e008;116;287

X
j∈d

wdðjÞ ¼ 1: (8)

The initial weight value of each band is evaluated by considering the variance of each band. The
initial value of weight w0

dðjÞ is calculated as:

EQ-TARGET;temp:intralink-;e009;116;219w0
dðjÞ ¼

sjP
i∈N si

; (9)

where sj represents variance of j’th band image and N represents the total number of bands in
the hyperspectral image data.

The weight updating procedure is iterated for t times for finding the optimal weight value of
each band. The weight value wt

dðjÞ is determined using the following equation:

EQ-TARGET;temp:intralink-;e010;116;129wt
dðjÞ ¼ α

�
w0
dðjÞ þ

X
bi∈d

xðbi; bjÞwt−1
d ðiÞ

�
−
1 − α

d − 1

X
d¼2;3: : : d

X
bi∈d

xðbi; bjÞwt−1
d ðiÞ; (10)

The covariance matrix Σj is computed as

EQ-TARGET;temp:intralink-;e005;116;726Σj ¼
P

i pðCj jbi Þðbi − μj Þðbi − μj ÞTP
i pðCj jbi Þ

: (5)

The weight αj is given as

EQ-TARGET;temp:intralink-;e006;116;658αj ¼
P

i pðCj jbi Þ
N

: (6)

where N is the total number of bands.

iv) Eliminate the cluster C if pðCj jbi Þ is less. The bands that belonged to the deleted clusters will be
reassigned to the other clusters in the next iteration.

Step 3: Stopping criteria

i) If the convergence criterion is not achieved, repeat the step 2.
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where t is the number of iterations, α is the balance factor between first and second term of
Eq. (10), and xðbi; bjÞ is the distance between band bi and bj calculated by using Eq. (1).

In this propagation process, each time updating one band’s weight is done using all other
information relating to the bands based on the distance between them. This process continues
until all bands in the cluster have been updated once. The weight updating procedure indicated in
Eq. (10) ensures following two characteristics of fused bands. The first term measures the com-
pactness within the same cluster, whereas the second term measures the scatteredness among the
discriminative clusters. There exists a concise form for Eq. (10):

EQ-TARGET;temp:intralink-;e011;116;640wt
dðjÞ ¼∝ w0

dðjÞ þ aðxi; xjÞAij; (11)

where

EQ-TARGET;temp:intralink-;e012;116;595aðxi; xjÞ ¼
X
bi∈d

xðbi; bjÞwt−1
d ðiÞ: (12)

The coefficient matrix A is defined as

EQ-TARGET;temp:intralink-;e013;116;543A ¼
(
α; if bi; bj ∈ d
1−α
d−1

P
d¼2;3;: : : ;d

; if bj ∈ d and bi ∈= cd : (13)

Following the t iterations, the weight value of band bj is chosen by maximizing Eq. (10), i.e.,

EQ-TARGET;temp:intralink-;e014;116;479wdðjÞ ¼ arg max
wt
dðjÞ;j∈d

∈ ½wt
dðjÞ� ∀ t: (14)

Then weight value in each band cluster is normalized as follows:

EQ-TARGET;temp:intralink-;e015;116;428wdðjÞ ¼
wdðjÞP
bj∈d wdðjÞ

: (15)

Calculation of the weighted average of bands in each subgroup removes the noise from bands
and also the redundant information for each subgroups. Weighted average fusion decorrelates the
intercorrelated hyperspectral bands into a set of uncorrelated bands. The fused bands Fd from
each cluster are then considered as set of extracted features. After fusion of bands using the
weighted average fusion technique, the actual classification is performed with SVM classifier.
The extracted features are used for training the SVM classifier. Its remarkable benefits in solving
the complex problems such as nonlinear and high dimensionality of the data and limited training
samples make the SVM classifier the most commonly used in the hyperspectral image
classification.46

2.3 Computational Cost Analysis

In this section, the theoretical computational cost of the proposed EM-WAFmethod is discussed.
Both the arithmetic operations and the big O notation are used for calculation of the computa-
tional cost. The theoretical computational cost of the proposed method depends on four steps,
namely, the Bhattacharya distance-based band distance measure, the EM band clustering, the
weighted average fusion, and SVM classifier. The computational cost of the Bhattacharya dis-
tance measure for all pairs of bands scales is Oðn2Þ, where n is the number of the spectral bands.
The computational cost of EM clustering method is OðnkdÞ, where k is the number of iterations
in EM clustering and d is the number of clusters formed. In the weighted average fusion, the
computation cost comes mainly from Eq. (10), which scales asOðn2tdÞ, where t is the number of
iteration in the process. For the SVM with RBF kernel, the computational cost isOðd2Þ, where d
is the number of input dimensions. Hence, the total computational cost of the proposed algorithm
is the arithmetic sum of the computational costs of all stages, which is given as:
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EQ-TARGET;temp:intralink-;e016;116;735Oðn2Þ þOðnkdÞ þOðn2dtÞ þOðd2Þ: (16)

Although the proposed method shows a significant classification performance, its training
phase requires the determination of an optimal weight value of the band in the fusion process,
which is computationally expensive.

3 Results and Discussion

This section presents the experimental analysis of the proposed method using a standard bench-
mark hyperspectral datasets widely used in the literature.

3.1 Dataset Description

A series of experiments were conducted on four standard bench-mark datasets, namely,
Indian Pines, Pavia University, Salinas, and Botswana dataset, available in Ref. 47.
Datasets such as Indian Pines, Pavia University, and Salinas are small-size datasets captured
by airborne sensor, whereas Botswana dataset is a large-size hyperspectral dataset, which is
captured by space borne or satellite sensors. The detailed description of each dataset is
given below:

a. Indian Pines dataset. It was acquired by Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) over North-Western Indiana region in June 1992. This dataset consists of 16
different classes of agriculture as well as vegetation species, namely, “alfalfa,” “corn-notill,”
“corn-mintill,” “corn,” “grass-pasture,” “grass-trees,” “grass-pasture-mowed,” “hay-
windrowed,” “oats,” “soybean-notill,” “soybean-mintill,” “soybean-clean,” “wheat,”
“woods,” “buildings-grass-trees-drives,” and “stone-steel-towers.” The size of the dataset
is 145 × 145 pixels with 20-m spatial resolution and 10-nm spectral resolution over the
range of 400 to 2500 nm. It contains 224 spectral bands where only 200 bands remain
for experimentation after the removal of 24 water absorption bands.

b. Pavia University dataset. It was captured by Reflective Optical System Imaging
Spectrometer over Pavia, Northern Italy, in July 2002. This dataset contains nine differ-
ent classes such as “water,” “trees,” “asphalt,” “self-blocking bricks,” “bitumen,” “tiles,”
“shadows,” “meadows,” and “bare soil.” The size of the dataset is 610 × 340 pixels with
1.3-m spatial resolution over the range of 430 to 860 nm. It contains 103 spectral bands.

c. Salinas dataset. It was captured by AVIRIS over Salinas Valley, California. This dataset
contains 16 different classes, namely, “brocoli-green-weeds1,” “brocoli-green-weeds2,”
“fallow,” “fallow-rough-plow,” “fallow-smooth,” “stubble,” “celery,” “grapes-untrained,”
“soil-vinyard-develop,” “corn-senesced-green-weeds,” “lettuce-romaine-4wk,” “lettuce-
romaine-5wk,” “lettuce-romaine-6wk,” “lettuce-romaine-7wk,” “vinyard-untrained,” and
“vinyard-vertical-trellis.” The size of the dataset is 512 × 217 pixels with 3.7-m spatial res-
olution over the range of 400 to 2500 nm. It contains 224 spectral bands.

d. Botswana dataset. It was captured by NASA EO-1 satellite over the Okavango Delta,
Botswana from 2001 to 2004. The hyperion sensor on EO-1 acquires data at 30-m
pixel resolution over a 7.7-km strip in 242 bands covering the 400- to 2500-nm portion
of the spectrum in 10-nm windows. Only 145 bands remain for experimentation after
removal of noisy and water absorption bands. The size of dataset is 1476 × 256 pixels

with 30-m spatial resolution. The data contain 14 classes, namely, “water,” “hippo
grass,” “floodplain grasses1,” “floodplain grasses2,” “reeds1,” “riparian,” “firescar2,”
“island interior,” “Acacia woodlands,” “Acacia shrublands,” “Acacia grasslands,” “short
mopane,” “mixed mopane,” and “exposed soils.”

3.2 Evaluation Measures

The classification performance of the proposed EM-WAF technique is assessed using three com-
monly used quality metrics, i.e., overall accuracy (OA), average accuracy (AA), and k.
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a. OA

Percentage of the correctly classified pixels in the whole scene:

EQ-TARGET;temp:intralink-;e017;116;705OA ¼ no: of correctly classified samples

no: of test samples
: (17)

b. AA

Mean of the percentage of the correctly labeled pixels for each class:

EQ-TARGET;temp:intralink-;e018;116;626AA ¼ 1

no: of classesðcÞ
Xc
i¼1

ðOAÞi: (18)

c. Kappa coefficient (k)

It is a robust measure of the degree of agreement, which integrates diagonal and off-diagonal
entries of a confusion matrix.

3.3 Parameters Settings

For the EM clustering algorithm, the number of iteration k is set to 10. For an optimal
weight finding procedure, the balance factor α is set to 0.5 and the number of iterations t
is set to 100. The SVM classifier with RBF kernels has two parameters: the penalty
parameter C and the RBF parameter γ are tuned through fivefold cross validation
(γ ¼ 2 − 8;2 − 7; : : : ; 28, C ¼ 2 − 8;2 − 7; : : : ; 28).

3.4 Experimental Results

In this section, the impact of different proportions of training samples on OA, the classification
results obtained for Indian Pines, Pavia University, Salinas, and Botswana dataset, analysis of the
features extracted by the proposed method, and remarkable findings are discussed. All the
experiments are conducted using MATLAB 2018a on PC with 16 GB RAM and 2.70 GHz
CPU. In the beginning, to evaluate the effectiveness of the proposed method with fewer amounts
of labeled data, 20% of the samples for each class from the Indian Pines, Pavia University,
Salinas, and Botswana dataset are randomly chosen as training samples, and the remaining sam-
ples in each class are used for testing purpose. Section 3.4.1 provides a detailed analysis of the
different proportions of the training samples on OA. The experiment is conducted ten times to
evaluate an average of OA, AA, and kappa coefficient. Four different categories of methods have
been considered for comparison for verification of the superiority of the proposed method.

a. In the first category, clustering-based feature extraction methods, namely, CBFE30 and
DCCA33 are considered.

b. In the second category, CBS methods9 considered are, CEM-BCC/BDC, CEM-BCM/BDM,
LCMV-BCC/BDC, and LCMV-BCM/BDM.

c. In the third category, clustering- and ranking-based band selection method considered is
E-FDPC.38

d. In the fourth category, a comparison of the proposed method is made with clustering and
band fusion method for demonstrating the significance of the weights of the bands,29 where
a simple average fusion method is used for fusing the bands from a cluster.

3.4.1 Influence of different proportion of training samples on OA obtained
by the proposed method for all four hyperspectral datasets

The performance of the proposed method is validated against different proportions of training
samples, namely, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% of the labeled
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training samples per class. Figure 3 shows OA obtained using the proposed method for different
proportions of the training samples. The proposed method has seen a good discriminative ability
to deal even with a smaller size of the labeled samples, 5% of training sample size per class. With
increase in the number of training sample, the classification performance of the proposed method
increases gradually for all four datasets. The sample size of more than 20% does not have much
impact on the OA. However, the increase in sample size increases the computational burden in
the training phase. Hence, the proposed method is tested with 20% of the training samples.

3.4.2 Results analysis by comparing the proposed method with different
classification methods on Indian Pines dataset

The ground truth data of Indian Pines dataset are shown in Fig. 4(a), where the different colors
signify the various land cover categories. Figure 4(b) shows the spectral signature or the reflec-
tance of each category. The classification maps obtained for all the competing methods on Indian
Pines dataset as shown in Fig. 5 and the classification results (i.e., OA, class wise accuracy, AA,
and k) are reported in Table 1. Figure 5 and Table 1 show that the proposed method achieves the

Fig. 4 Indian Pines dataset information: (a) ground truth data and (b) spectral response of each
category

Fig. 3 Influence of different proportions of training samples on OA for Indian Pines, Pavia
University, Salinas, and Botswana dataset.
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Table 1 Comparison of classification accuracies (%) obtained by the proposed method with other
competing methods for Indian Pines dataset.

Class name

Clustering-based
methods

Constrained-based selection
methods

Clustering and
ranking-based

selection
method

Clustering and
fusion-based
methods

CBFE30 DCCA33

CEM-
BCC/
BDC9

CEM-
BCM/
BDM9

LCMV-
BCC/
BDC9

LCMV-
BCM/
BDM9 E-FDPC38 IF29

EM-WAF
(proposed
method)

Alfalfa 85.13 84.13 69.53 54.63 69.3 67.23 57.53 89.43 94.01

Corn-no till 72.09 71.09 56.49 41.59 56.26 54.19 44.49 76.39 81.09

Corn-min till 59.04 58.04 62.64 47.74 62.41 60.34 50.64 63.34 87.24

Corn 59.71 58.71 66.55 51.65 66.32 64.25 54.55 64.01 91.15

Fig. 5 Classification map of Indian Pines dataset for all competing methods: (a) CBFE, (b) DCCA,
(c) CEM-BCC/BDC, (d) CEM-BCM/BDM, (e) LCMV-BCC/BDC, (f) LCMV-BCM/BDM, (g) E-FDPC,
(h) IF, and (i) EM-WAF.
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better result when compared with the competing methods in terms of OA, AA, and k. It is due to
the use of EM clustering algorithm for band partitioning and weighted average fusion for fusing
the correlated band that leads to increase the interclass separation and decrease the intraclass
separation.

Table 1 shows EM-WAF method achieving a good performance compared to clustering-
based methods, namely, CBFE, DCCA, CEM-BCC/BDC, CEM-BCM/BDM, LCMV-BCC/
BDC, LCMV-BCM/BDM, and E-FDPC. The proposed technique shows a noticeable perfor-
mance due to the presence of larger discriminative information by the clustering and fusing
of highly correlated bands. The classification accuracy of the proposed EM-WAF method is
much better than that of the simple IF method and highlights the importance of weight factor
in the fusion process. Clustering-based methods and IF method only consider the intracluster
distance, which limits the discriminative ability, whereas the proposed method considers the
intercluster distance as well as intracluster distance, which leads to a better discriminative ability.
Hence, the proposed EM-WAF technique preserves the useful as well as the discriminative
information of the original data. When compared to the other competing approaches, the pro-
posed EM-WAF approach achieves a substantial improvement in terms of the class wise clas-
sification accuracy as shown in Table 1 (boldface). It is evident that the classification accuracy of

Table 1 (Continued).

Class name

Clustering-based
methods

Constrained-based selection
methods

Clustering and
ranking-based

selection
method

Clustering and
fusion-based
methods

CBFE30 DCCA33

CEM-
BCC/
BDC9

CEM-
BCM/
BDM9

LCMV-
BCC/
BDC9

LCMV-
BCM/
BDM9 E-FDPC38 IF29

EM-WAF
(proposed
method)

Grass-pasture 99.01 98.01 76.1 61.2 75.87 73.8 64.1 100 99.87

Grass-tree 93.03 92.03 76.1 61.2 75.87 73.8 64.1 97.33 99.1

Grass-pasture-
mowed

64.93 63.93 59.55 44.65 59.32 57.25 47.55 69.23 84.15

Hay-windrowed 90.08 89.08 74.48 59.58 74.25 72.18 62.48 94.38 99.08

Oat 68.89 67.89 58.44 43.54 58.21 56.14 46.44 73.19 83.04

Soybean-no till 59.93 58.93 65 50.1 64.77 62.7 53 64.23 89.6

Soybean-min till 88.9 87.9 73.3 58.4 73.07 71 61.3 93.2 97.9

Soybean-clean 57.93 56.93 63.77 48.87 63.54 61.47 51.77 62.23 88.37

Wheat 94.02 93.02 76.1 61.2 75.87 73.8 64.1 98.32 100

Woods 88.03 87.03 72.43 57.53 72.2 70.13 60.43 92.33 97.03

Buildings-
grass-trees-
drives

61.68 60.68 55.92 41.02 55.69 53.62 43.92 65.98 80.52

Stone-steel-
towers

99.03 98.03 76.1 61.2 75.87 73.8 64.1 100 99.25

OA 79.88 78.67 69.94 53.56 69.33 67.94 57.68 83.56 92.19

AA 77.97 76.59 67.65 52.75 67.43 65.36 55.65 81.9 91.96

K 0.7751 0.7639 0.6602 0.5276 0.6701 0.6601 0.5701 0.817 0.9085

Note: Highest value across the method is represented in bold font.
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the classes “alfalfa,” “corn-no till,” “corn-min till,” “corn,” “grass-pasture-mowed,” “hay-wind-
rowed,” “oat,” “soybean-no till,” “soybean-min till,” “soybean-clean,” and “woods” increases
from 54.63% to 94.01%, 41.59% to 81.09%, 47.54% to 87.24%, 51.65% to 91.15%,
44.65% to 84.15%, 59.58% to 99.08%, 43.54% to 83.04%, 53% to 89.06%, 58.4% to
97.9%, 48.87% to 88.37%, and 57.53% to 97.03%, respectively. In particular, in the class
“wheat” all the pixels are correctly classified through the use of the proposed method.
However, it is observed that the proposed method achieves slightly lesser accuracy for the indi-
vidual classes such as “grass-pasture” and “stone-steel-towers” when compared to the IF method
(achieves 100% accuracy for both classes) as shown in Table 1.

3.4.3 Results analysis by comparing the proposed method with different
classification methods on Pavia University dataset

The ground truth data of Pavia University dataset are shown in Fig. 6(a), where the different
colors denote the different categories. Figure 6(b) shows the spectral signature or the reflec-
tance of each category. The classification maps obtained for all the competing techniques
along with the proposed technique on Pavia University dataset are depicted in Fig. 7 and
the classification results (i.e., OA, class wise accuracy, AA, and k) are presented in
Table 2. Figure 7 and Table 2 show that the proposed EM-WAF technique achieving the
best result among all the competing methods in terms of OA, AA, and k. It is due to the
fact of EM clustering extracts more useful information and increases the separation among
the spectral classes. As shown in Table 2, the classification accuracy of the proposed EM-
WAF method is much better than the IF method showing the importance of the weight factor
in the fusion process. In other words, the proposed method preserves the complementary infor-
mation of all bands well.

A shown in Fig. 7, the proposed approach helps in the elimination of most of the noisy pixels
generated by the other methods, and the overall classification accuracy increases by more than
2%. For instance, the misclassified pixels are corrected in the green region at the center of Fig. 7,
which is very close to the ground truth and the classification map becomes smoother. When
compared to the other competing approaches, the proposed approach shows a significant
improvement in the class wise classification accuracy as shown in Table 2 (boldface). For in-
stance, the classification accuracy of class “Gravel” increases from 7.98% to 85.21%. Moreover,
the proposed method correctly classified the class “painted metal sheets.” However, EM-WAF

Fig. 6 Pavia University dataset information: (a) ground truth data and (b) spectral response of
each category.
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approach is seen producing lesser classification accuracy for individual class, namely, “self-
blocking bricks”when compared to LCMV-BCM/BDMmethod as shown in Table 2. The reason
is that fusion of the spectral bands eliminates the important spectral features of the respective
land cover class.

Fig. 7 Classification map of Pavia University dataset for all competing methods: (a) CBFE,
(b) DCCA, (c) CEM-BCC/BDC, (d) CEM-BCM/BDM, (e) LCMV-BCC/BDC, (f) LCMV-BCM/
BDM, (g) E-FDPC, (h) IF, and (i) EM-WAF.
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3.4.4 Results analysis by comparing the proposed method with different
classification methods on Salinas dataset

The ground truth data of the Salinas dataset are shown in Fig. 8(a), where the different colors
represent the different categories. Figure 8(b) shows the spectral signature or the reflectance of

Fig. 8 Salinas dataset information: (a) ground truth data and (b) spectral response of each category.

Table 2 Comparison of classification accuracies (%) obtained by the proposed method with other
competing methods for Pavia University dataset.

Class name

Clustering-based
methods

Constrained-based selection
methods

Clustering and
ranking-based

selection
method

Clustering and
fusion-based
methods

CBFE30 DCCA33

CEM-
BCC/
BDC9

CEM-
BCM/
BDM9

LCMV-
BCC/
BDC9

LCMV-
BCM/
BDM9 E-FDPC38 IF29

EM-WAF
(proposed
method)

Asphalt 89.88 93.53 76.15 72.69 88.88 90.98 91.46 92.48 95.87

Meadows 94.47 95.61 82.55 79.09 93.47 95.57 96.62 97.04 99.85

Gravel 31.15 72.30 11.44 7.98 45.67 32.25 72.60 65.46 85.21

Trees 82.54 89.02 69 65.54 81.54 83.64 90.33 89.11 91.36

Painted metal sheets 98.70 98.70 86.05 82.59 97.7 99.8 98.88 98.51 100

Bare soil 62.59 89.81 34.72 31.26 61.59 63.69 83.62 81.18 92.15

Bitumen 78.95 82.89 70.05 66.59 77.95 80.05 79.14 78.01 85.23

Self-blocking bricks 87.71 84.04 75.18 71.72 86.71 88.81 83.33 83.02 86.38

Shadows 100 99.87 87.31 83.85 90.02 98.43 99.60 100 100

OA 85.50 89.92 67.23 63.21 84.52 84.52 91.11 90.67 94.10

AA 80.66 89.75 65.82 62.36 80.39 81.76 88.40 87.20 92.89

K 0.8012 0.8831 0.6690 0.6287 0.8123 0.8102 0.8816 87.53 91.12

Note: Highest value across the method is represented in bold font.
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each category. The classification maps of all the competing techniques on Salinas dataset are
shown in Fig. 9 and the classification results (i.e., OA, class wise accuracy, AA, and k) are
reported in Table 3. Table 3 and Fig. 9 show that the proposed method achieves the best per-
formance in terms of the quantitative results and visual interpretation.

Though all the competing methods are quite useful for dimensionality reduction,
CBFE and DCCA methods attain noticeable performance over E-FDPC and other CBS
methods. However, the proposed method shows the significant performance over all the

Fig. 9 Classification map of Salinas dataset for all competing methods: (a) CBFE, (b) DCCA,
(c) CEM-BCC/BDC, (d) CEM-BCM/BDM, (e) LCMV-BCC/BDC, (f) LCMV-BCM/BDM, (g) E-
FDPC, (h) IF, and (i) EM-WAF.
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other competing methods. It is due to the fact that the clustering and weighted average
fusion of the highly correlated bands provide more discriminative information. It shows
the proposed EM-WAF technique extracting the significant features of the data.
Consequently, the superiority of the EM-WAF approach can be explained by the use of
weighted average of useful bands. When compared to the other competing methods, the per-
formance of the proposed method is superior in terms of OA, AA, and k. In most of the classes,
the class wise accuracy of the proposed method exceeds 90%. However, the proposed method
fails to obtain a good performance for a few classes. For instance, the pixels of class “grapes-
untrained” are misclassified with the pixels of “vinyard-untrained” class. This misclassifica-
tion occurs as the spectral signatures of these two classes are almost the same. Figure 9
shows that the region uniformity of the classes “fallow” and “corn-senesced-green-weeds”
(marked by red circles) as improved by the proposed method when compared to the other
competing methods.

Table 3 Comparison of classification accuracies (%) obtained by the proposed method with other
competing methods for Salinas dataset.

Class name

Clustering-
based

methods
Constrained-based selection

methods

Clustering and
ranking-based

selection
method

Clustering and
fusion-based
methods

CBFE30 DCCA33

CEM-
BCC/
BDC9

CEM-
BCM/
BDM9

LCMV-
BCC/
BDC9

LCMV-
BCM/
BDM9 E-FDPC38 IF29

EM-WAF
(proposed
method)

Brocoli-green-weeds1 96.33 88.03 85.03 79.41 84.41 83.41 97.76 94.83 97.83

Brocoli-green-weeds2 98.15 74.99 71.99 66.37 71.37 70.37 88.22 85.63 98.91

Fallow 85.89 81.14 78.14 72.52 77.52 76.52 52.41 94.54 97.94

Fallow-rough-plow 98.39 85.05 82.05 76.43 81.43 80.43 99.55 97.13 99.16

Fallow-smooth 93.46 94.6 91.6 85.98 90.98 89.98 90.01 98.50 95.26

Stubble 99.02 94.6 91.6 85.98 90.98 89.98 97.82 98.64 99.34

Celery 98.81 78.05 75.05 69.43 74.43 73.43 96.23 86.65 99.57

Grapes-untrained 83.88 92.98 89.98 84.36 89.36 88.36 84.70 85.62 88.54

Soil-vinyard-develop 96.45 76.94 73.94 68.32 73.32 72.32 95.57 98.51 97.48

Corn-senesced-
green-weeds

80.40 83.5 80.5 74.88 79.88 78.88 80.05 89.33 90.46

Lettuce-romaine-4 wk 80.80 91.8 88.8 83.18 88.18 87.18 78.57 89.57 87.7

Lettuce-romaine-5 wk 99.09 82.27 79.27 73.65 78.65 77.65 99.22 97.92 99.56

Lettuce-romaine-6 wk 98.36 94.6 91.6 85.98 90.98 89.98 99.04 96.85 97.28

Lettuce-romaine-7 wk 88.90 90.93 87.93 82.31 87.31 86.31 87.27 91.23 92.64

Vinyard-untrained 44.55 74.42 71.42 65.80 70.8 69.8 40.45 44.15 52.2

Vinyard-vertical-trellis 84.71 94.6 91.6 85.98 90.98 89.98 61.52 94.53 98.36

OA 85.14 89.94 84.01 78.86 83.18 83.14 81.55 85.85 93.96

AA 89.20 86.15 83.15 77.54 82.53 81.54 84.28 90.68 92.45

K 0.8339 0.8789 0.8289 0.7689 0.8145 0.8237 0.7937 0.8418 0.9036

Note: Highest value across the method is represented in bold font.
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3.4.5 Results analysis by comparing the proposed method with different
classification methods on Botswana Dataset

The ground truth information relating to Botswana dataset used for experimentation is
shown in Fig. 10(a), where the different colors signify the different land cover categories.
Figure 10(b) shows the spectral signature or the reflectance of each category. The classification
maps of all the competing techniques on Botswana dataset are shown in Fig. 11 and
the classification results (i.e., OA, class wise accuracy, AA, and k) are summarized in
Table 4.

The results reported in Table 4 lead to the observation of the proposed EM-WAF method
delivering a better performance than the other competing methods. Table 4 shows the clas-
sification results obtained by the proposed clustering and fusion-based method are very prom-
ising, which indicates the possibility of classification of the large-size dataset using the
proposed method. Table 4 shows the E-FDPC method obtains significant performance superior
that of other clustering and constrained-based selection methods, this is mainly due to the band
selection strategy of the ranking-based methods. However, the proposed method is better
than the E-FDPC method, since the latter technique only considers the intracluster distance
between the data points, whereas the former technique considers intercluster as well as intra-
cluster distance between the data points, resulting in good discriminative capabilities for the
classification. Table 4 shows that the proposed method achieves better class wise accuracies for
most of the classes. It is observed that the proposed method classifies all pixels of the class
“water” correctly. Compared to the other competing methods, classes such as “hippo grass,”
“Acacia woodlands,” “short mopane,” and “mixed mopane” are better distinguished by the
proposed method. The performance of the proposed method is better than that of the other
competing methods for the classes, “reeds1” and “riparian,” though it is not satisfactory.
The main reason is that the samples selected from such classes consist of more redundant
information.

Fig. 10 Botswana dataset information: (a) ground truth data and (b) spectral response of each
category.
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Table 4 Comparison of classification accuracies (%) obtained by the proposed method with other
competing methods for Botswana dataset.

Class name

Clustering-based
methods

Constrained-based selection
methods

Clustering and
ranking-based

selection
methods

Clustering and
fusion-based
methods

CBFE30 DCCA33

CEM-
BCC/
BDC9

CEM-
BCM/
BDM9

LCMV-
BCC/
BDC9

LCMV-
BCM/
BDM9 E-FDPC38 IF29

EM-WAF
(proposed
method)

Water 96.53 98.14 97.68 99.53 96.04 99.53 99.50 99.00 100

Fig. 11 Classification map of Botswana dataset for all competing methods: (a) CBFE, (b) DCCA,
(c) CEM-BCC/BDC, (d) CEM-BCM/ BDM, (e) LCMV-BCC/BDC, (f) LCMV-BCM/ BDM,
(g) E-FDPC, (h) IF, and (i) EM-WAF.
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3.4.6 Analysis of number of selected bands or features for all four
hyperspectral datasets

Table 5 shows the number of selected bands or features and OA for four hyperspectral datasets.
Table 5 shows the ability of the proposed approach to achieve a better classification accuracy
through selection of features of an optimal number. In other words, the proposed approach
selects the features that separate the land cover classes well.

As shown in Table 5, the features extracted by the proposed method for all datasets achieve
the highest classification accuracy. For the Indian Pines dataset, the proposed method provides a
maximum OA of 92.19% among all the competing methods for only seven features, which is
found to be optimal. For the Pavia University dataset, the proposed method delivers the highest
OA of 94.10% among all the competing methods for only 11 optimal features. For the Salinas
dataset, CBFE method provides 85.14% OA for only 12 features, which are the minimum num-
ber of features extracted by CBFE among all other competing methods. However, the proposed
method achieves a maximum OA of 93.96% among all the competing methods for an optimal
number of 13 averaged bands. For Botswana dataset, the proposed method provides OA, which
is slightly better than E-FDPC method. However, the proposed method achieves maximum OA
(84.92%) among all the competing methods for only 20 features, which is found to be optimal
one. Table 5 shows that the proposed approach extracts meaningful features from the hyperspec-
tral data. These features are suitable and adequate for the hyperspectral image classification.
These results indicate that: (a) the pairwise distance-based band separability is an important
aspect for feature extraction; (b) consideration of intracluster and intercluster distance provides

Table 4 (Continued).

Class name

Clustering-based
methods

Constrained-based selection
methods

Clustering and
ranking-based

selection
methods

Clustering and
fusion-based
methods

CBFE30 DCCA33

CEM-
BCC/
BDC9

CEM-
BCM/
BDM9

LCMV-
BCC/
BDC9

LCMV-
BCM/
BDM9 E-FDPC38 IF29

EM-WAF
(proposed
method)

Hippo grass 81.25 85.00 78.75 86.25 83.75 78.75 82.66 77.33 90.66

Floodplain
grasses1

77.50 86.00 82.00 92.00 89.50 85.00 91.45 90.95 91.48

Floodplain
grasses2

80.81 87.20 61.62 75.00 74.41 72.67 84.47 78.88 78.26

Reeds1 58.60 60.46 39.06 65.11 64.65 59.53 61.69 60.17 65.67

Riparian 61.60 46.51 53.02 50.69 42.81 50.69 45.87 47.78 61.69

Firescar2 94.20 98.55 96.13 97.10 93.10 98.55 96.90 97.42 96.90

Island interior 90.12 88.08 86.41 86.41 86.74 90.74 93.42 80.94 88.15

Acacia woodlands 65.33 68.22 60.55 60.15 57.37 57.37 64.25 68.31 73.19

Acacia shrublands 58.08 83.85 62.62 61.11 60.06 58.58 59.67 59.91 84.40

Acacia grasslands 88.93 89.11 93.03 92.62 86.88 93.44 87.71 90.01 94.29

Short mopane 45.13 87.50 62.50 53.47 67.47 50.69 59.25 67.44 94.81

Mixed mopane 75.23 89.25 70.56 61.21 76.63 73.36 60.19 78.10 91.04

Exposed soils 82.89 88.15 85.59 80.26 82.05 82.89 90.14 87.32 78.87

OA 75.25 81.73 72.86 75.33 74.60 74.87 83.01 77.53 84.92

AA 75.25 82.70 73.54 75.78 75.89 75.13 84.9 77.37 84.96

K 0.7319 0.8020 0.7058 0.7326 0.7249 0.7276 0.8253 0.7563 0.8336

Note: Highest value across the method is represented in bold font.
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more discriminative information; and (c) an appropriate weighting mechanism for the weighted
average fusion improves the performance of feature extraction significantly.

4 Conclusion

In this paper, EM clustering and weighted average fusion technique-based feature extraction for
hyperspectral image classification has proposed. The proposed method explores the information
among the clusters and removes redundancy among the bands. The EM algorithm converges to
the best number of clusters, thereby providing an effective way to determine an optimal number
of features. The weight factor of the bands is calculated on the basis of the criteria of minimizing
the distance inside each cluster and maximizing the distance among the different clusters, which
highlights the importance of the particular band in the fusion process. The significance of this
technique lies in its highly discriminative ability, which leads to a better classification perfor-
mance. Experimental results and comparison with the existing approaches prove the efficiency of
the proposed method for hyperspectral image classification. When compared with the other com-
peting methods on four standard datasets, the proposed method achieves higher classification
accuracy and better visual results. For the Botswana dataset, the proposed method provides better
OA among all other competing methods, which makes it evident that the proposed method can
classify a large-size dataset effectively. Moreover, the proposed method performs equally well
for all four hyperspectral datasets, showing the robustness of the proposed method in both small-
and large-size datasets.

In our future work, we will focus on integrating the spatial features with the spectral features
to improve the classification performance.
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