You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 February 2019Estimating residual uncertainties for lunar irradiance measurements due to imaging acquisition parameters
Lunar calibration is a commonly used method to track a climate satellite sensor’s long-term radiometric stability. We present a modeling approach to examine the satellite sensor lunar observation uncertainties due to several important aspects related to the lunar image acquisition by the satellite sensor: lunar pixel shift, point spread function (PSF), lunar orientation, pitch, and oversampling rates. Our analyses can be summarized as follows. (1) The sensor observed lunar irradiance can vary due to small lunar pixel shift if the PSF is less than ideal. (2) During lunar calibration, an unstable oversampling rate due to spacecraft control will result in errors in observed lunar irradiance. A drift in oversampling rate would result in a bias in observed lunar irradiance and a random variation in oversampling rate would cause random error in lunar irradiance. Increasing the overall oversampling rates can reduce random error in observed lunar irradiance but would not change the biases in the observation. (3) Furthermore, the biases can vary when the Moon is observed at different orientations. Our results show impacts on observed lunar irradiance are on the order of 0.1%, which is a significant part of the overall uncertainty for a lunar irradiance measurement of a climate satellite sensor.
The alert did not successfully save. Please try again later.
Shihyan Lee, Gerhard Meister, Frederick S. Patt, Robert E. Eplee Jr., "Estimating residual uncertainties for lunar irradiance measurements due to imaging acquisition parameters," J. Appl. Rem. Sens. 13(1) 014508 (4 February 2019) https://doi.org/10.1117/1.JRS.13.014508