You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 January 2019Implications of spectral and spatial features to improve the identification of specific classes
Dimensionality is one of the greatest challenges when deciphering hyperspectral imaging data. Although the multiband nature of the data is beneficial, algorithms are faced with a high computational load and statistical incompatibility due to the insufficient number of training samples. This is a hurdle to downstream applications. The combination of dimensionality and the real-world scenario of mixed pixels makes the identification and classification of imaging data challenging. Here, we address the complications of dimensionality using specific spectral indices from band combinations and spatial indices from texture measures for classification to better identify the classes. We classified spectral and combined spatial–spectral data and calculated measures of accuracy and entropy. A reduction in entropy and an overall accuracy of 80.50% was achieved when using the spectral–spatial input, compared with 65% for the spectral indices alone and 59.50% for the optimally determined principal components.
The alert did not successfully save. Please try again later.
Akhil Kallepalli, Anil Kumar, Kourosh Khoshelham, David B. James, Mark A. Richardson, "Implications of spectral and spatial features to improve the identification of specific classes," J. Appl. Rem. Sens. 13(1) 016504 (14 January 2019) https://doi.org/10.1117/1.JRS.13.016504