You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 2008Estimating live forest carbon dynamics with a Landsat-based curve-fitting approach
Direct estimation of aboveground biomass with spectral reflectance data has proven challenging for high biomass forests of the Pacific Northwestern United States. We present an alternative modeling strategy which uses Landsat's spatial, spectral and temporal characteristics to predict live forest carbon through integration of stand age and site index maps and locally calibrated Chapman-Richards curves. Predictions from the curve-fit model were evaluated at the local and landscape scales using two periods of field inventory data. At the pixel-level, the curve-fit model had large positive bias statistics and at the landscape scale over-predicted study area carbon for both inventory periods. Despite the over-estimation, the change in forest carbon estimated by the curve-fit model was well within the standard error of the inventory estimates. In addition to validating the curve-fit models carbon predictions we used Landsat data to evaluate the degree to which the field inventory plots captured the forest conditions of the study area. Landsat-based frequency histograms revealed the systematic sample of inventory plots effectively captured the broad range of forest conditions found inthe study area, whereas stand age trajectories revealed a temporally punctuated shift in landuse which was not spectrally detected by the inventory sample.
The alert did not successfully save. Please try again later.
Todd A. Schroeder, Andrew Gray, Mark E. Harmon, David O. Wallin, Warren B. Cohen, "Estimating live forest carbon dynamics with a Landsat-based curve-fitting approach," J. Appl. Rem. Sens. 2(1) 023519 (1 May 2008) https://doi.org/10.1117/1.2937821