You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 March 2012Adaptive regional feature extraction for very high spatial resolution image classification
An object-oriented, multiscale feature extraction approach is proposed for the land-cover classification of high spatial resolution images. The approach provides more discriminative features by considering the spatial context information from different segmentation levels. It consists of three successive substeps: segmentation by mean-shift algorithm, an iteratively merging process controlled by merging cost function and range-of-scale parameter, and feature extraction from linked multilevel image partitions. The mean-shift method is to get boundary-preserved and spectrally homogeneous over-segmentation regions. Then, a family of nested image partitions is constructed by a merging procedure. Meanwhile, every region of the finest scale is linked to image objects of its superlevels. Finally, every region in the finest scale is treated as a basic analysis unit, and the feature vectors are created by stacking statistics from the region and their superlevels. A support vector machine is used as a classifier and the method on two widely used high spatial resolution data sets over Pavia City, Italy, are evaluated. Compared with results reported in many papers, the result indicates superior accuracy.