You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 November 2014Classification of high resolution satellite images using spatial constraints-based fuzzy clustering
A spatial constraints-based fuzzy clustering technique is introduced in the paper and the target application is classification of high resolution multispectral satellite images. This fuzzy-C-means (FCM) technique enhances the classification results with the help of a weighted membership function (Wmf). Initially, spatial fuzzy clustering (FC) is used to segment the targeted vegetation areas with the surrounding low vegetation areas, which include the information of spatial constraints (SCs). The performance of the FCM image segmentation is subject to appropriate initialization of Wmf and SC. It is able to evolve directly from the initial segmentation by spatial fuzzy clustering. The controlling parameters in fuzziness of the FCM approach, Wmf and SC, help to estimate the segmented road results, then the Stentiford thinning algorithm is used to estimate the road network from the classified results. Such improvements facilitate FCM method manipulation and lead to segmentation that is more robust. The results confirm its effectiveness for satellite image classification, which extracts useful information in suburban and urban areas. The proposed approach, spatial constraint-based fuzzy clustering with a weighted membership function (SCFCWmf), has been used to extract the information of healthy trees with vegetation and shadows showing elevated features in satellite images. The performance values of quality assessment parameters show a good degree of accuracy for segmented roads using the proposed hybrid SCFCWmf-MO (morphological operations) approach which also occluded nonroad parts.
The alert did not successfully save. Please try again later.
Pankaj Singh, Rahul Dev Garg, "Classification of high resolution satellite images using spatial constraints-based fuzzy clustering," J. Appl. Rem. Sens. 8(1) 083526 (6 November 2014) https://doi.org/10.1117/1.JRS.8.083526