You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 March 2014Using mixture-tuned match filtering to measure changes in subpixel vegetation area in Las Vegas, Nevada
In desert cities, accurate measurements of vegetation area within residential lots are necessary to understand drivers of change in water consumption. Most residential lots are smaller than an individual 30-m pixel from Landsat satellite images and have a mixture of vegetation and other land covers. Quantifying vegetation change in this environment requires estimating subpixel vegetation area. Mixture-tuned match filtering (MTMF) has been successfully used for subpixel target detection. There have been few successful applications of MTMF to subpixel abundance estimation because the relationship observed between MTMF estimates and ground measurements of abundance is noisy. We use a ground truth dataset over 10 times larger than that available for any previous MTMF application to estimate the bias between ground data and MTMF results. We find that MTMF underestimates the fractional area of vegetation by 5% to 10% and show that averaging over multiple pixels is necessary to reduce noise in the dataset. We conclude that MTMF is a viable technique for fractional area estimation when a large dataset is available for calibration. When this method is applied to estimating vegetation area in Las Vegas, Nevada, spatial and temporal trends are consistent with expectations from known population growth and policy changes.
The alert did not successfully save. Please try again later.
Christa M. Brelsford, Douglas P. Shepherd, "Using mixture-tuned match filtering to measure changes in subpixel vegetation area in Las Vegas, Nevada," J. Appl. Rem. Sens. 8(1) 083660 (21 March 2014) https://doi.org/10.1117/1.JRS.8.083660