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Abstract. Appropriate field management requires methods of measuring plant height with high
precision, accuracy, and resolution. Studies show that terrestrial laser scanning (TLS) is suitable
for capturing small objects like crops. In this contribution, the results of multitemporal TLS
surveys for monitoring plant height on paddy rice fields in China are presented. Three campaigns
were carried out on a field experiment and on a farmer’s conventionally managed field. The high
density of measurement points allows us to establish crop surface models with a resolution of
1 cm, which can be used for deriving plant heights. For both sites, strong correlations (each R2 ¼
0.91 between TLS-derived and manually measured plant heights confirm the accuracy of the
scan data. A biomass regression model was established based on the correlation between
plant height and biomass samples from the field experiment (R2 ¼ 0.86). The transferability
to the farmer’s field was supported with a strong correlation between simulated and measured
values (R2 ¼ 0.90). Independent biomass measurements were used for validating the temporal
transferability. The study demonstrates the advantages of TLS for deriving plant height, which
can be used for modeling biomass. Consequently, laser scanning methods are a promising tool
for precision agriculture. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of

the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083671]
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1 Introduction

The cultivation of rice is increasingly important in consequence of its role as a staple food, in
particular for the rapidly growing Asian population. In 2011, about 90% of the estimated
world rice production, about 650 million tons, was produced in Asia.1 Due to a further grow-
ing population with a constant or even decreasing cultivation area, a field management aim-
ing at high production and sustainability of natural resources is required. Main goal is to
close the gap between potential and current yield in developed and developing countries.2

Therefore, in the context of precision agriculture, accurate crop monitoring should be based
on the remote and proximal sensing for improving the relationship between inputs and
outputs.3

Rice grain yield, for example, is positively correlated to biomass and nitrogen (N) trans-
location efficiency.4 However, the over-fertilization with N by farmers is a major problem
for soil and groundwater. Hence, ways for enhancing the field management are necessary.
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Overviews about the actual situation and recent trends in China are given in Refs. 5
and 6.

Considering that the biomass production of crops can be described as a function of N content,
an optimal fertilization requires the knowledge about the suitable N content of the plants as well
as the methods of determining the actual N content and the biomass.7–9 Awidely used indicator
for quantifying the actual status is the nitrogen nutrition index (NNI), as the ratio between mea-
sured and critical N content.10–12 The critical N content is determined by the N dilution curve,
which represents the relationship between N concentration and biomass.

In order to estimate the values for the calculation of the NNI, the use of nondestructive remote
sensing technologies is in the focus of research. Several studies exist using a chlorophyll
meter,13,14 a hand-held spectro-radiometer,15–17 or an airborne hyperspectral sensor18 for deter-
mining the N content of rice plants. Moreover, various approaches are presented for assessing the
actual biomass. Spaceborne data are commonly used due to the usually wide areal extent of
paddy rice fields.19–21 In addition, satellite remote sensing images enable the estimation of
rice yield based on the calculation of vegetation indices.22,23

Higher spatial and temporal resolutions are required for estimating the biomass more pre-
cisely and within-field variability. Few works on the virtual modeling of rice plants in a high
resolution exist,24,25 but the complex plant structure and growing process cause uncertainties
about the transferability to the field. Thus, in situ measurements for biomass estimation are use-
ful. In an early approach, the biomass of rice was predicted from reflectance data, measured with
a hand-held radiometer.26 Similar results are reported in Refs. 27 and 28. In Ref. 29, the authors
used an active hand-held optical reflectance sensor for monitoring the rice canopy during the
growing period and developed a precise N management strategy. Furthermore, the authors in
Ref. 30 emphasized that rice plant height is a key factor for predicting yield potential and estab-
lished a model for estimating the plant height increase, but methods for accurate in situ deter-
mination are rare.

Besides hyperspectral and optical sensors, the technology of light detection and ranging
(LIDAR) became increasingly important in a wide range of research fields, including the acquis-
ition of vegetation parameters. Advantages of airborne and ground-based LIDAR remote sensing
for ecosystem studies are highlighted in Refs. 31 and 32. Tremendous research is conducted in
forestry applications.33–38 The main benefits are the fast and accurate data capturing, the high
point density data, and therefore the highly realistic representation.

Several crops were already investigated with ground-based LIDAR approaches for various
purposes, for example, measuring height of perennial grass39 or biomass of grapevine,40 oilseed
rape, winter rye, winter wheat, and grassland.41,42 Furthermore, estimating crop density,43,44

nitrogen status,45 and leaf area index46 of wheat, or detecting spatial and temporal changes
of different sugar beet cultivars47 are evaluated. Single plant detection is possible based on
the analysis of the measured intensity values.47,48 In Ref. 49, the authors examined the use
of a portable scanner in combination with a mirror for assessing the vertical plant area density
in a rice canopy and achieved good results. They used the density values for estimating the dry
weight of plant organs (ears, leaves, and stems). As stated in Ref. 50, terrestrial laser scanning
(TLS) is a promising method for estimating the biomass of small grain cereals like barley, oat,
and wheat.

In this study, multitemporal crop surface models (CSMs) were established for determining
the plant height from TLS measurements on paddy rice fields at different growing stages. CSMs
are introduced in Ref. 51 for deriving spatial crop growth patterns on field level. Manual mea-
surements were performed for validating the TLS measurements. In addition, the CSMs are used
for estimating the actual crop biomass. Therefore, a regression model based on the findings from
a field experiment was established. The model was used for estimating the biomass of rice plants
on a farmer’s field on the base of multitemporal CSMs.

The presented research is part of the activities of the International Center for Agro-
Informatics and Sustainable Development (ICASD). It was founded in 2009 as an open,
international, and multidisciplinary cooperative research center. ICASD founding members
are the Department of Plant Nutrition of the China Agricultural University in Beijing and the
Institute of Geography at the University of Cologne, Germany (www.ICASD.org).
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2 Materials and Methods

2.1 Study Area

The surveys were conducted in the area of the city of Jiansanjiang (N 47°15′21″, E 132°37′43″)
in Heilongjiang Province in the far northeast of China (Fig. 1). The province with a continental
monsoon climate is an important basis for agricultural products in China.52 Situated in the east of
Heilongjiang, the Sanjiang Plain covers almost 100; 000 km2, which is about 1

4
of the provinces’

total area. Cold and dry winters and short but warm, humid summers are characteristic for the
middle temperate and humid climate of the Sanjiang Plain, which is marked by the East Asian
summer monsoon.53,54 The field campaigns were carried out at two sites: (1) a field experiment at
the Keyansuo experiment station (Fig. 1) where various treatments for the cultivation of rice were
applied and (2) a farmer’s field (Fig. 1) with a conventional management.

2.1.1 Field experiment

At the Keyansuo experiment station, various field management approaches for irrigated rice
cultivation were investigated in small-scale fields. The focus of the field experiment examined
in this contribution was on different N fertilizer treatments. Differences in plant height and bio-
mass were expected, related to the amount of N input. For the presented monitoring approach,
this variation is useful for capturing different plant conditions at one growing stage.

One half of the field experiment with a spatial extent of 60 m × 63 m was cultivated with
the rice variety Kongyu 131, the other half with Longjing 21. The plants that sprout in a green-
house were transplanted between the 17th and 20th of May and harvested on the 20th of
September 2011. Nine different treatments were repeated thrice for both rice varieties.
Thus, the area was divided into 54 plots, each about 10 m × 7 m in size. As shown in
Table 1, the treatments differ in the amount of applied N fertilizer during the growing period.
The amount of fertilizer was predefined for five treatments, whereas the amount for treatment 6
to 9 was adjusted based on in-season N content analysis. The content was approximated based
on spectral reflectance measurements, performed with GreenSeeker™ (Ntech Industries,
Ukiah, California, USA) and Crop Circle™ (Holland Scientific, Lincoln, Nebraska) and
the actual biomass, which was measured destructively several times within the vegetation
period. A detailed description of the experimental design is given in Ref. 55.

Fig. 1 Location of the study sites in China (modified from Ref. 27).
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2.1.2 Farmer’s field

The aim of investigating a farmer’s conventionally managed field was to provide an independent
validation dataset and check the transferability of the findings from the field experiment
described above. For this purpose, a farmer’s field with similar growing pattern but a consid-
erably larger spatial extent of 300 m × 500 m was chosen. The plants also sprouted in a green-
house were transplanted on the 17th and 18th of May, and harvested between the 25th of
September and 10th of October 2011. Unfortunately, it was not possible to find any field
with one of the rice varieties investigated at the Keyansuo experiment station, where the farmer
would have allowed us to enter the rice paddies and to take destructive samplings several times
within the growing season. The field was cultivated with the rice variety Kenjiandao 6. The dates
of fertilization differ from the field experiment (Table 1).

2.2 TLS Measurements

The chosen survey period of late June to July captures the key vegetative stage of the rice plants,
when the stem elongation process takes place. Remarkable differences in plant development
occur due to the increase of tillers and plant height during this stage. For the monitoring
approach, three campaigns were carried out on both fields, which were each time conducted
on two consecutive days. The campaign dates are given in Table 2.

For all field campaigns, the terrestrial laser scanner Riegl VZ-1000,56 provided by Five Star
Electronic Technologies located in Beijing, was used. The scanner operates with the time-of-
flight technique, where the time between transmitting and receiving a pulsed laser signal is mea-
sured. The time is used for calculating the distance between the sensor and target. Parallel scan
lines are achieved with a rotating multifacet polygon mirror and the rotation of the scanners head
itself, which implies a wide field of view, up to 100 deg in vertical and 360 deg in horizontal
direction. The infrared laser beam has a high precision of 5 mm and an accuracy of 8 mm. Apart
from a measurement rate of up to 122;000 points∕s, long range distance measurements of up to
1400 m are possible. In addition, the system is capable of an online full-waveform analysis and
according to echo digitization.

Table 1 Fertilizer application scheme for both study sites.

Treatment
Base

N (kg∕ha)
Topdressing 1

(kg∕ha)
Topdressing 2

(kg∕ha)
Topdressing 3

(kg∕ha)
Total

N (kg∕ha)

Field Experiment

Date May 6, 2011 May 30, 2011 July 09–21, 2011 July 29, 2011

1 0 0 0 0 0

2 28 14 19.6 8.4 70

3 40 20 28 12 100

4 52 26 36.4 15.6 130

5 64 32 44.8 19.2 160

6 to 8 40 20 N/Aa N/Aa N/Ab

9 40þ 55 SCUc 0 N/Aa 0 N/Ab

Farmer’s field

Date April 14–16, 2011 May 29, 2011 June 9, 2011 July 8, 2011

40 12 18 30 100

aAmount based on N content analysis.
bResulting from the calculated amount.
cSulphur-coated urea (slow release fertilizer).
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Additionally, a digital camera, Nikon D700, was mounted on the laser scanner. From the
recorded RGB-photos, the point clouds gained from the laser scanner can be colorized, resulting
in three-dimensional RGB point clouds and the corresponding surfaces can be textured. The
camera was connected to the scanner for adjusting the camera settings and ensuring an accurate
alignment between the devices. During the acquisition, the whole system was remotely con-
trolled with the RiSCAN Pro Software on a notebook, linked via an LAN connection.

During the campaigns at the field experiment, the scanner was fixed on a tripod which raised
the sensor up to 1.5 m above ground. Where possible, a small trailer behind a tractor was used for
achieving a greater height of about 3 m (Fig. 2). The study area was scanned from nine scan
positions for capturing all fields of the Keyansuo experiment station and minimizing shadowing
effects. Although the data from all positions were used for the analysis, four of them were of
major importance, as they were located closely to the investigated N field experiment. Two posi-
tions were accomplished without the trailer at the north edge and two positions with the trailer at
the south edge of the field. The whole setting is shown in Fig. 3.

On the farmer’s field (Fig. 4), the scanner was also mounted on the tripod. Accordingly, the
sensor height was about 1.5 m above ground. Due to a limited access on the small dikes between
the plots, it was impossible to use a trailer or to reach any lifted position. The field was scanned
from seven scan positions. For this study, the whole field is divided into the overall field and two
intensively investigated units (W and E in Fig. 4). In order to get a high resolution for the latter
ones, four scan positions were placed at their corners. Twelve thin, long bamboo sticks per unit
were stuck in the ground, placed in an equally spaced grid, which can be detected in the point
clouds and located in the field to ensure the spatial linkage to other plant parameter measure-
ments. An additional grid with 28 measurement points represented by bamboo sticks was placed
in the overall field.

Table 2 Dates of the scan campaigns and corresponding phenological stages.

Date Field Variety BBCH-scalea

June 21, 2011 Experiment Kongyu 131 13

Longjing 21 13

June 22, 2011 Farmer’s Kenjiandao 6 13

July 4, 2011 Experiment Kongyu 131 13 to 15; 22 to 23

Longjing 21 13 to 15; 22 to 23

July 5, 2011 Farmer’s Kenjiandao 6 13; 21

July 18, 2011 Experiment Kongyu 131 19; 29; 32

Longjing 21 19; 29; 32

July 19, 2011 Farmer’s Kenjiandao 6 19; 29; 34

aMultiple values due to several samples.

Fig. 2 Overview of the investigated field experiment from scan position six (Fig. 3). On the right
side the scanner with the tripod mounted on the small trailer can be seen (taken: July 4, 2011).
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Common tie points in all scans of each site are required to enable the merging of all scan
positions in the postprocessing. Therefore, high-reflective cylinders, which can be easily
detected by the laser scanner, were fixed on ranging poles built upon the dikes between the
fields.51 The reflectors had to be detected from all scan positions for computing the spatial rela-
tionship between all positions of the scanners and the cylinders. In the first TLS campaigns, the

Fig. 3 Experimental design and scan positions of the field experiment. Number in the plot represents
rice variety (1 ¼ Kongyu 131; 2 ¼ Longjing 21); treatment (1 to 9 in Table 1); and repetition (1 to 3).

Fig. 4 Experimental design and scan positions of the farmer’s field.
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position of each pole was marked in the fields. All scans of each date from a respective field can
be merged together by re-establishing the ranging poles for the other campaigns.

2.3 Manual Measurements

During the whole vegetation period, manual measurements were performed at both sites for
monitoring the development of the rice plants. The phenological stage of the plants and,
more precisely, the steps in the plant development are defined here by the BBCH-scale.57

The abbreviation BBCH was derived from Biologische Bundesanstalt (German Federal
Biological Research Centre for Agriculture and Forestry), Bundessortenamt (German Federal
Office of Plant Varieties), and Chemical Industry, who funded the development of the scale.
For both sites, the BBCH-values at the campaign dates are given in Table 2. The similar values
confirm the comparable phenological development of the rice plants on the field experiment and
the farmer’s field.

Corresponding to each TLS campaign, plant heights were manually measured. On the field
experiment, 8 to 10 hills per plot were regarded. Each hill consists of 4 to 6 rice plants.55 In both
intensively investigated units of the farmer’s field, the heights of four hills around each bamboo
stick were measured.

As mentioned above, destructive biomass sampling was performed several times during the
vegetation period at the field experiment. Samples were taken from both varieties for the respec-
tive three repetitions of treatment 1 to 5 (n ¼ 30). Due to the small plot size, it was not feasible to
take additional samples corresponding to the TLS campaigns. As the dates of sampling differ
from the TLS campaign dates, the biomass values were linearly interpolated.

On the farmer’s field, the four hills around each bamboo stick in the two intensively inves-
tigated units were destructively taken after the TLS measurements for measuring the biomass
(n ¼ 24). After each campaign, the grid of bamboo sticks was moved for having an undisturbed
area around the bamboo sticks for the following campaign. Furthermore, in the overall field
destructive samplings were taken around the mentioned 28 bamboo sticks on the 26th of
June, as an additional independent validation dataset (Fig. 4). For all samplings, the cleaned
above ground biomass was dried in a compartment dryer and weighed after dehydrating.
The average dry biomass per m2 was calculated, considering the number of hills per m2,
which was counted in the field corresponding to each sampling.

2.4 TLS Data Processing

The general workflow for the postprocessing of the TLS data is shown in Fig. 5. It consists of the
(1) registration and merging of all point clouds, (2) filtering and extraction of the area of interest
(AOI), (3) spatial, and (4) statistical analyses, considering the manual measurements.

Fig. 5 General overview of the workflow for the postprocessing of the terrestrial laser scanning
data.
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The first steps (1 and 2) were carried out directly in Riegl’s software RiSCAN Pro, which was
already used for the data acquisition. First of all, the scans from the respective three campaigns
were imported into one RiSCAN Pro project. The registration of the scan positions was executed
with an indirect registration method, based on the above mentioned high-reflective cylinders
acting as tie points. With an automatic algorithm, corresponding tie points between the scan
positions can be found. After the registration, the datasets still showed alignment errors, due
to nonoptimal reflector positioning, imprecise re-establishing of the ranging poles, or instabil-
ities during the measurements. A further adjustment was applied to minimize these errors.
RiSCAN Pro offers the Multistation Adjustment, which is based on the iterative closest
point algorithm.58 The position and orientation of each scan position were modified in multiple
iterations for getting the best fitting result for all of them.

The point clouds still contained noise, caused by reflections on water in the field or on small
particles in the air. Thus, a further filtering based on the reflectance, measured for each point
during the data acquisition, was performed. Points under a certain reflectance value, regarded as
noise, were removed. As the reflectance value depends on the distance from the sensor to the
field as well as other factors, the critical value was slightly different for each scan.

Subsequently, all point clouds of each respective date were merged to one dataset and the
AOI was manually extracted. For an easier orientation and the distinction between fields and
dikes, the point clouds were previously colorized from the recorded pictures. The AOI was fur-
ther separated for each date and plot to have a common spatial base. A filtering scheme was used
for selecting the maximum points and determining the crop surface. Finally, those filtered point
clouds were exported as American Standard Code for Information Interchange (ASCII) files for
spatial and statistical analyses.

2.5 Spatial Analysis

ArcGIS Desktop 10 by Esri was used for constructing the CSMs and following spatial analyses.
The exported ASCII files were converted to vector point data and interpolated with the inverse
distance weighting (IDW) algorithm for receiving a raster representing a digital surface model
with a consistent spatial resolution of 1 cm. IDW is a deterministic, exact interpolation method,
and retains a measured value at its sample location.59 Hence, the method is suitable for preserv-
ing the accuracy of measurements with a high density, like the TLS point clouds.

A common reference surface is required for the calculation of the plant heights. Usually a
high-accurate digital elevation model (DEM) is used; achievable from scanning the AOI without
any vegetation.51 Since it was not possible to obtain such data in this study, another method was
applied: the lowest parts in the point clouds from the first date, accordingly containing the least

Fig. 6 Corner of the field experiment showing the least dense vegetation (taken: June 21, 2011).
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dense vegetation, were manually selected for interpolating a DEM surface representing the real
ground. As it can be seen in Fig. 6, the rice plants were small enough for clearly identifying
points on the ground and the water height in the irrigated field was <4 cm at this stage. Hence,
enough ground points at the edges and around the hills remained for interpolating a DEM.

Finally, the CSMs, introduced in Ref. 51 for plant growth monitoring at field level, were
established for each date. The application of CSMs is presented in Ref. 60. A CSM represents
the crop surface with high spatial resolution at one campaign date, gained from the merged and
filtered point cloud. As shown in Fig. 7 (Ref. 61), CSMs are used for determining the actual plant
height for a given growing stage. Therefore, the DEM from the first acquisition date, represent-
ing the ground, is subtracted from the CSM, representing the crop surface. The result is the plant
height above ground with the same spatial resolution as the CSMs, which is visualized in maps of
plant height. By subtracting a CSM of an earlier date from a CSM of a later date, the plant growth
between the dates can be spatially measured, e.g., CSM_2 minus CSM_1 in Fig. 7. The spatial
patterns of the plant growth are visualized in maps of plant growth. In the following, plant growth
is always defined as the spatio-temporal difference in height.

2.6 Statistical Analysis

The statistical analyses were performed in Microsoft Excel 2010. For a better visualization, dia-
grams were plotted in OriginPro 8.5 by OriginLab. The plant height values, calculated pixel-wise
for the CSMs, were averaged for each plot of the field experiment and each circular buffer area
with a radius of 1 m around the bamboo sticks for the farmer’s field, respectively. The plots of the
field experiment were previously clipped with an inner buffer of 60 cm for preventing border
effects. Additionally, the manually measured heights were averaged for each plot (n ¼ 54) or
area around the bamboo sticks (n ¼ 24). These values were compared with the mean plant
heights derived from the CSMs of the same respective spatial feature for evaluating and vali-
dating the laser scanning results.

2.7 Biomass Regression Model

As mentioned before, the problem of the nondestructive estimation of crop biomass on field level
is not solved yet, while indirect approaches successfully used plant height as predictor. In order
to investigate the correlation between plant height and biomass of rice plants, a regression model
was derived from the results of the field experiment. The transferability of the model to the
farmer’s conventionally managed field was validated by comparing the simulated and measured
biomass. As mentioned, different rice varieties were cultivated on both test sites. The two rice
varieties from the field experiment were combined in the regression model to ensure an adequate
number of measured values (n ¼ 90) and attain a reasonable mean value for the transfer to the

Fig. 7 General concept of crop surface models (CSMs) (Ref. 61).
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farmer’s field. The combination of the different treatments covers the influence of the varying
amount of used fertilizer. Previously, three test models were established for testing the general
concept. For each test model, the regression equation from two repetitions of the field experiment
were used for simulating the biomass of the third repetition.

The workflow can be structured in five steps:

1. Generation of the test models, considering only the field experiment.
2. Evaluation of the correlation between all CSM-derived plant height and destructive bio-

mass sampling for the field experiment and derivation of the regression model.
3. Application of the regression model for simulating the biomass on the farmer’s field

based on the CSM-derived plant height.
4. Evaluation of the simulated and destructively measured biomass of the farmer’s field.
5. Validation of the regression model using the additional independent measurements of

biomass of the overall farmer’s field.

3 Results

3.1 Spatial Analysis

After the described data processing of the captured TLS point clouds, the CSMs for each date
and both sites were generated and the plant heights were calculated pixel-wise. Thus, the fol-
lowing spatial and temporal patterns and variations within one CSM and between different
CSMs can be obtained. As an example, Fig. 8 shows 12 maps of plant height derived from
the CSMs. For all three TLS campaign dates, the maps of two repetitions of the same fertilizer
treatment for Kongyu 131 (plots 162 and 163) and Longjing 21 (plots 261 and 262) are shown.

Fig. 8 CSM-derived maps of plant height for four selected plots of the field experiment (left:
Kongyu 131; right: Longjing 21, marked in Fig. 3).
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All field experiment plots and the whole farmer’s field are represented in the way it is shown
in Fig. 8.

The linear structure of the rice plant rows within the plots is detectable at the first campaign
but disappears later due to plant development. Regarding the field experiment, slight differences
between the rice varieties can be identified. The latter difference is captured by examining the
mean plant height per plot, which shows higher values for Longjing 21. The averaged difference
between the varieties increases over the time (4, 5, and 10 cm). In addition, the plant growth is
observable, which is determined as height difference between consecutive CSMs and visualized
as maps of plant growth. In Fig. 9, maps of Kongyu 131 (plot 133) and Longjing 21 (plot 232) for
both time intervals are shown as an example. In both intervals, the growth patterns are almost
homogeneous within the plots for both varieties. According to the increasing height difference
between the varieties over the time, the growth values are higher for Longjing 21.

The mean plant heights calculated from the CSMs were validated against the averaged man-
ually measured plant heights for each plot or area around the bamboo sticks for verifying the
results. Figure 10 shows the difference between these values for the first campaign on the field
experiment. The variance is quite small. About 40% of the plots show a difference of <2 cm,
further 45% differ by 2 to 5 cm, and just 15% show a higher error, reaching the maximum at
about 10 cm. The mean difference between all CSM-derived and manually measured plant
heights is about 3 cm for the plots of the field experiment and about 9 cm for the buffer
areas around the bamboo sticks of the intensively investigated units of the farmer’s field,
each with a standard deviation of about 5 cm.

3.2 Statistical Analysis

The CSM-derived and the manually measured plant heights, averaged for each plot or buffer
area, were used for executing correlation and regression analyses. Common statistical values
are shown in Table 3. For each campaign and both sites, the mean heights are quite similar.
The differences between the mean CSM-derived and manually measured plant heights are

Fig. 9 Maps of plant growth for two selected plots field of the field experiment, derived from the
difference between two consecutive CSMs (left: Kongyu 131; right: Longjing 21, marked in Fig. 3).
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about 3 cm for the field experiment and 9 cm for the farmer’s field. The standard deviation within
each campaign is about 5 cm for both sites. All minimum values are lower for the CSM-derived
mean plant heights, whereas the maximum values are more similar. All values and the resulting
regression lines for both fields are shown in Fig. 11. The correlation coefficients are very high for
each field (both R2 ¼ 0.91).

3.3 Biomass Regression Model

As mentioned earlier, for destructive biomass sampling on the field experiment, only treatments
1 to 5 were considered, with the main different levels of N fertilization. Hence, the number of
samples and accordingly the averaged plant height values differ from the comparison of the
height measurement methods (Table 3). In the intensively investigated units of the farmer’s

Fig. 10 Difference between the averaged manually measured plant heights and the CSM-derived
mean plant heights for each plot for the first campaign of the field experiment.

Table 3 Mean CSM-derived and manually measured plant heights for both fields.

Date

Plant height from CSM (cm) Measured plant height (cm)

N x̄ s Min Max x̄ s Min Max

Field experiment

June 21, 2011 54 24.84 3.63 17.90 32.99 24.37 2.06 19.13 28.88

July 4, 2011 54 34.62 4.36 24.59 42.71 37.94 2.42 32.38 44.13

July 18, 2011 54 55.38 7.22 44.28 70.30 63.56 4.25 53.10 70.70

Farmer’s field

June 22, 2011 24 20.80 4.82 13.39 31.44 29.18 2.87 23.25 37.00

June 5, 2011 24 34.09 4.52 27.13 44.60 40.62 1.93 38.25 43.75

July 19, 2011 24 59.49 4.87 51.79 72.58 71.64 2.63 67.50 76.50
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field, the biomass was taken around all bamboo sticks. For each campaign, the mean value,
standard deviation, minimum, and maximum were calculated for the plant height and dry bio-
mass (Table 4). The mean plant heights of each campaign are similar for the field experiment and
the farmer’s field, with a difference of <5 cm. In contrast, the averaged dry biomass values of the
field experiment are 20% to 30% lower than the values of the farmer’s field at the second and
third campaign.

The general concept of the biomass regression model was validated with three test models.
Therefore, the regression equation achieved from two repetitions of the field experiment was
used for calculating the biomass of the respective third repetition. The mean deviations of
the simulated values from the actual measured values are 3%, 16%, and 19%.

Considering now both fields, the relationship between the mean plant height and dry biomass
is visualized in a scatter plot (Fig. 12). The lower biomass values of the field experiment are also
visible, but the linear correlation is similar for both sites. The regression equation from the field
experiment (y ¼ 11.06x − 224.18) was used for deriving the biomass regression model.

Fig. 11 Regression of the mean CSM-derived and manually measured plant heights for the field
experiment (n ¼ 162) and the intensively investigated units on the farmer’s field (n ¼ 72).

Table 4 Mean CSM-derived plant heights and biomass values.

Date

Plant height from CSM (cm) Dry biomass (g∕m2)a

n x̄ s Min Max x̄ s Min Max

Field experiment

June 21, 2011 30 24.93 2.85 20.59 30.33 59.51 18.86 24.04 100.70

July 4, 2011 30 33.80 3.74 27.25 40.75 131.72 30.03 66.71 199.41

July 18, 2011 30 56.69 5.49 44.91 63.03 422.27 80.90 274.74 599.53

Farmer’s field

June 22, 2011 24 20.80 4.82 13.39 31.44 57.58 13.02 25.64 80.01

July 5, 2011 24 34.09 4.52 27.13 44.60 217.43 29.44 146.54 278.12

July 19, 2011 24 59.49 4.87 51.79 72.58 589.71 73.01 482.33 723.32

aValues for the field experiment are interpolated.
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Following, the biomass on the intensively investigated units of the farmer’s field was estimated
with the model, based on the CSM-derived plant heights. Figure 13 shows the simulated bio-
mass, with once the standard deviation calculated for each campaign, and the actual measured
values. The reliability of the established model is supported by the strong correlation between
simulated and measured values (R2 ¼ 0.90). The mean difference between the values is 90 g∕m2

(about 1
4
of the mean measured dry biomass), with a standard deviation of 80 g∕m2.

The regression model was validated and the transferability to any point in time within the
observation period was checked with the biomass measurements on the overall farmer’s field. As
the increase in plant height over the time is almost linear in the observation period, a linear
function achieved from all CSM-derived plant height values was used for interpolating the
plant heights for the 26th of June. The theoretical biomass was estimated with the regression

Fig. 12 Regression of the mean CSM-derived plant height and dry biomass for the field experi-
ment (n ¼ 90) and the intensively investigated units on the farmer’s field (n ¼ 72).

Fig. 13 Theoretical biomass simulated with regression model and the measured values for the
intensively investigated units on the farmer’s field (each: n ¼ 72).
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model and compared to the measured values. Table 5 gives the basic statistics for the simulated
and measured biomass values. The mean difference between both values is 15 g∕m2 (about 20%
of the mean measured dry biomass), with a standard deviation of 36 g∕m2.

4 Discussion

Generally, the data acquisition with the laser scanner in the field worked very well. The light-
weight build-up of the Riegl VZ-1000 is quite helpful. Nevertheless, problems occur from noise
in the point clouds, due to wind, rain, insects, or small particles in the air, reflections on water,
and other effects. These issues for TLS applications in agriculture are also reported in Refs. 42
and 50. The time-of-flight scanner, used in this study, reduces the noise already by the high
measuring speed. Further improvements are possible with the software filter options in
RiSCAN Pro. Earlier studies with a comparable setup51 already showed the usability of this
method, but further improvement is still desirable. Approaches for automatic corrections of inter-
nal errors focus on systematic error models and self-calibration methods.62

Further possibilities are the investigation of intensity values, which can be used for establish-
ing a filtering scheme of separating laser returns on canopy from ground returns63 or for
detecting single plants,47,48 as already stated. In addition, the application of full-waveform analy-
sis for identifying vegetation in point clouds is commonly known from airborne laser scanning
(ALS).33,64 New TLS systems are also capable for retrieving the full-waveform of the reflected
signal and their role for the detection of vegetation gets increasingly important.65,66

A major advantage of the terrestrial laser scanner is the easily achievable and fast data acquis-
ition of a whole field. Besides that, a higher spatial resolution and higher point density than
achievable with ALS67 are reachable, which enables an accurate differentiation between the
plots and allows the identification of small objects, like the bamboo sticks used on the farmer’s
field. Nevertheless, the approach leaves room for improvement, for example, enhancing the
evenness of the point cloud distribution. Recent developments in mobile laser scanning
(MLS) brought up promising solutions.68 In general, MLS comprises all measurement systems
with two-dimensional profiling scanners, attached to a moving ground vehicle for achieving an
areal coverage. This method was already used in several studies for crop monitoring and detec-
tion purposes.42,46,69,70 For the limited access on the small dikes of the paddy rice fields, the new
Akhka MLS system,70 where the laser scanner is attached to a backpack, has a promising
potential.

In the literature,71 the problem of overestimating the height of reflection points depending on
the scanning angles is examined. In this study, the point clouds of all scan positions from one
campaign date were merged for achieving an evenly distributed coverage of the field and a
scheme for filtering the maximum points was used for detecting the crop surface. However,
referring to Ref. 71, the influence of the scanning angles has to be taken into account for further
studies, in particular for MLS systems.

One source of error for validating the CSM measurements with the manual measurements is
the height variances within the observed spatial unit. Considering the manual measurements,
such within-field variations are already detectable. As mentioned, on the field experiment,
the heights of 8 to 10 hills per plot were measured. The mean standard deviations within
those measurements are already 4, 4.5, and 5.5 cm for the respective three campaigns,

Table 5 Biomass values for the overall farmer’s field.

Dry biomass (g∕m2)

n x̄ s Min Max

Simulated values 28 64.25 30.51 16.04 128.68

Measured values 28 79.32 15.91 50.02 113.23

Difference between related samples 28 15.07 36.36 0.50 84.88
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respectively. Regarding the CSM-derived plant heights, many more measuring points exist, with
one height value for each pixel. Hence, the whole area of the plot is captured, including lower
parts. With respect to those within-field variations and differences between the measuring tech-
niques, the mean difference of 3 cm between averaged CSM-derived and manually measured
plant heights is reasonable (Table 3). Considering Fig. 10, the few samples (15%) with
differences between 5 and 10 cm can probably be related to these uncertainties and variations.
Moreover, for the first campaign, a difference between the rice varieties on the field experiment
might be detectable. Although for Kongyu 131, mostly the manually measured plant heights are
higher than the CSM-derived values (positive difference), contrasting patterns, resulting in neg-
ative differences, are observable for Longjing 21. However, those tendencies are not observable
for the other campaigns.

Regarding the farmer’s field, similar patterns are clearly visible. In the intensively investi-
gated units, only the heights of four hills around each bamboo stick were manually measured,
which assumably leads to the lower standard deviation (3, 2.5, and 4 cm for the three campaigns).
However, the difference between the averaged manual measurements and CSM-derived plant
heights is larger (9 cm), as the manual measurements covered only small parts of the area, mostly
representing the highest parts of the crop surface. In contrast, the scanner captures the whole
area, including lower parts, resulting in a high number of measuring points. Thus, the mean
values of the pixel-wise stored CSM-derived plant heights per circular buffer area are lower,
which explains the overall lower minimum values for the CSM-derived plant heights (Table 3).

In summary, the manual measurements with strong correlations to the averaged CSM-derived
values validate the accuracy of the TLS results. Due to the very different numbers of samplings
per plot, only averaged values can be compared. As mentioned, the heights less than 10 hills per
each spatial unit were manually measured. In contrast, the resolution of 1 cm of the CSMs results
in a huge number of measuring points for each spatial unit (about 500,000 points for each plot
and 30,000 point for each buffer area on the field experiment and farmer’s field, respectively).
Through this high resolution, also smaller hills and lower parts of the plants are captured, which
decrease the minimum values and increase the standard deviation (Table 3). Nevertheless, the
comparable mean values of the measurement methods, with deviations of 2% to 15% for the field
experiment and 15% to 30% for the farmer’s field, lead to regressions with high correlation
coefficients (Fig. 11). The much higher spatial resolution and the acquisition of the whole
area are the main benefits of the TLS approach and required for accurate crop monitoring in
the context of precision agriculture.3 However, the precision of the CSMs can hardly be validated
with the manual measurements. Other studies show that TLS measurements are supposed to be
precise.40,48,50 The high accuracy and precision of the Riegl VZ-1000 are validated with the
performance test by the manufacturer.56 Moreover, the TLS approach immensely reduces the
human error factor, which cannot be neglected for the manual measurements.

Although the TLS data acquisition worked well, some uncertainties remain. Due to the field
management and construction, it was not possible to obtain a DEM from the AOI without any
vegetation and water. Thus, the DEM had to be estimated from the point clouds of the respective
first campaigns, containing already small plants. The low water height in the field of about 4 cm
and the remaining ground at the edges and around the hills enabled this approach. Nevertheless,
the high correlation coefficients and small differences between the CSM-derived and the man-
ually measured plant heights justify this assumption.

For paddy rice fields, border effects have to be regarded, resulting in differences between
internal and external rice plants in a plot.72 The executed application of a buffer, to cut off the
outmost rows, is suitable for avoiding border effects. However, uncertainties still remain, for
example, about the appropriate size. The compiled CSMs show the applicability of the presented
method of calculating crop heights in rice fields with a high spatial resolution (up to 1 cm, Fig. 8)
and accuracy. In contrast, spaceborne data, which are commonly used for rice field mapping
reach a spatial resolution not higher than 1 m.19–21 The results demonstrate the potential of
TLS for accurate in situ measurement on paddy rice fields, which could also be a validation
for spaceborne remote sensing data. Furthermore, the transferability of virtual modeled rice
plants to field level can be validated.24,25

Reconsidering the model presented in Ref. 30, the CSM-derived plant heights can be used for
predicting yield potential for rice. In this context, the mentioned influence of border effects is a
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general problem for estimating rice yield.72 The very high resolution of the TLS-derived CSMs
might be useful for quantifying this effect and estimate differences between internal and exter-
nal rows.

The strong correlation between plant height and biomass (R2 ¼ 0.86) enabled the derivation
of the regression model for estimating the actual biomass of rice plants. Strong correlations
between plant height and biomass were also reported in Ref. 42 for different crops. The trans-
ferability of the established model to a larger-scale farmer’s field was demonstrated. Differences
between the theoretical biomass, simulated with the regression model, and the actual measured
values can be related to the mentioned differences between the investigated fields. The BBCH-
values (Table 2) show that all varieties were almost in the same phenological stage, but
differences in plant height and biomass are measurable. The biomass values of the field experi-
ment are up to a third smaller than the values of the farmer’s field (Table 4). Hence, the simulated
values differ from the measured values with a mean difference of about 25% of the mean mea-
sured dry biomass. Regarding the general concept of the biomass regression model, better sim-
ulations were possible with the established test models, where only the rice varieties on the field
experiment were used. As mentioned, the mean differences between the simulated and measured
values are 3%, 16%, and 19%. Further investigations are required, regarding the differences and
whether they are caused by the different rice varieties or fertilizer treatments. Other influencing
factors might be different soil conditions or lower human impact and larger plot size on the
farmer’s field. In Ref. 49, the authors achieved good results for estimating the biomass of
rice plants based on the vertical plant area density, measured with a portable scanner in combi-
nation with a mirror. However, the setup might be less practical for the application on larger-scale
fields.

The estimated biomass values may be used for improving NNI calculations and N manage-
ment strategies,29 as the actual biomass is a key factor for the evaluation of the field status and
management decisions. Hence, the claimed improvement of the relationship between input and
output3 can be realized to reduce over-fertilization and shrink the gap between potential and
current yield.

Accurate captured rice fields can also be used for modeling purposes. In Ref. 73, a model is
presented for rating damages from rice field rats and corresponding yield losses. The extent of
damages was assumed, based on the experiences of the involved farmers. Damages can also be
caused by other sources like storms, rain, or plant diseases. Measurements with TLS could be
more accurate for predicting the damaged biomass. Furthermore, crop simulation models can be
used for estimating the potential and current yield.2 Therefore, the CSM-derived height and esti-
mated biomass values can be used as model input or validation data.

For the presented approach, the improvement of the temporal interpolation method for the
plant height values to any point in time is desirable. In this study, the CSM-derived mean plant
heights were interpolated. Better results might be reached with a pixel-wise raster interpolation
and subsequent averaging of the interpolated pixel values for estimating the mean plant height
for a given day in the investigation period.

5 Conclusion

The presented method of producing multitemporal CSMs based on TLS measurements is appli-
cable for nondestructive capturing and monitoring of rice growth. The very high spatial reso-
lution and accuracy of the point clouds are the most outstanding features of TLS. Regarding the
varying performance of plant growth on the field experiment, further studies might focus on the
different rice varieties and fertilizer treatments. Therefore, similar datasets of the same field
experiment of consecutive years should be considered.

The Riegl VZ-1000 is comparatively expensive. However, for this study, a TLS system,
known for high precision and accuracy, was required to avoid system-based errors. Recent devel-
opments brought up cost-effective system, like the Velodyne HDL-64E LiDAR sensor.74 Such
systems should be regarded for realizing the practical implementation and application for farm-
ers. Further, more cost-effective approaches are conceivable with MLS systems like the ibeo
ALASCA XT.71
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In the context of precision agriculture, biomass is a key factor for management decisions. As
mentioned, to this day, it is impossible to directly measure the actual crop biomass nondestruc-
tively. Hence, remote and proximal sensing measurements for estimating actual values in-season
are required. The results show the strong correlation between plant height and biomass
(R2 ¼ 0.86; R2 ¼ 0.90) for the analyzed time of the growing period. The transferability of
the established biomass regression model based on plant height measurements from a small-
scale field experiment to a larger-scale farmer’s conventionally managed field was supported.
Differences between the two sites, e.g., rice varieties, plot size, and fertilizer treatment, lead to
differences between the simulated and measured values, but the strong correlation (R2 ¼ 0.90)
demonstrates the coherence of the results. Furthermore, the independent biomass dataset from
the overall field was used for validating the temporal transferability. In further studies, the trans-
ferability to other farmers’ conventionally managed fields has to be checked. The accuracy of the
simulated biomass shows the suitability of the established model and reveals the presented
method as a promising approach for the nondestructive in-season estimation of biomass
within-field resolution in paddy rice.
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