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Image analysis methods for diffuse optical tomography
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Abstract. Three major analytical tools in imaging science are summa-
rized and demonstrated relative to optical imaging in vivo. Standard
resolution testing is optimal when infinite contrast is used and hard-
ware evaluation is the goal. However, deep tissue imaging of absorp-
tion or fluorescent contrast agents in vivo often presents a different
problem, which requires contrast-detail analysis. This analysis shows
that the minimum detectable sizes are in the range of 1/10 the outer
diameter, whereas minimum detectable contrast values are in the
range of 10 to 20% relative to the continuous background values. This
is estimated for objects being in the center of the domain being im-
aged, and as the heterogeneous region becomes closer to the surface,
the lower limit on size and contrast can become arbitrarily low and
more dictated by hardware specifications. Finally, if human observer
detection of abnormalities in the images is the goal, as is standard in
most radiological practice, receiver operating characteristic �ROC�
curve and location receiver operating characteristic curve �LROC� are
used. Each of these three major areas of image interpretation and
analysis are reviewed in the context of medical imaging as well as
how they are used to quantify the performance of diffuse optical im-
aging of tissue. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction
Imaging with light through tissue has been a major area of
research for the past two decades, and while several different
generations and geometries of imaging systems exist, the
tools for analyzing and comparing these systems are still ru-
dimentary. This work provides an overview of the three major
methods utilized for image analysis in the imaging science
and medical physics communities, and illustrates how they
can be applied to imaging through tissue with near-infrared
�NIR� light. The pertinent categories lie in the areas of 1.
spatial resolution, 2. contrast-detail analysis, and 3. human
perception of images. This overview is organized along these
three categories, and provides an introduction to the best ap-
proach in each area for diffuse optical imaging. Specific illus-
trative examples are taken from the medical community
where relevant, and from diffuse optical imaging research.

1.1 Light Transport in Tissue
Light propagation in tissue is dominated by multiple scatter-
ing and in the near-infrared �NIR� part of the spectrum, with
an especially low absorption window between the wave-
lengths of 610 to 940 nm. Here, the absorption is orders of
magnitude lower than that observed in the visible �blue-
green�, ultraviolet, or infrared regions. Light transport in all
wavelength regions is thought to be accurately modeled by
radiation transport methods �both deterministic and stochastic
models�, which can predict the optical fluence patterns based
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on knowledge of the microscopic interaction coefficients.
These coefficients are the absorption coefficient �a, represent-
ing the probability of photon absorption per unit pathlength,
the scattering coefficient �s, representing the probability per
unit pathlength of a scattering event, and the microscopic
phase function P���, which describes the probability distribu-
tion for the angular direction of outgoing scattered photons.
Radiation transport models can be simplified if the absorption
is low and the fluence is being detected in the far field �i.e.,
distance �1/ ��a+�s��. In this case, the fluence can be mod-
eled well by an assumption of isotropic scattering using a
modified scattering coefficient, called the transport or reduced
scattering coefficient, defined as �s=�s�1−g�, where g is the
average cosine of the scattering angle:

g =

�
0

2�

cos���P���d�

�
0

2�

P���d�

.

In this isotropic scattering regime, the field becomes diffuse,
and it can be shown that the Boltzmann transport equation,
used to analytically predict the irradiance, simplifies consid-
erably to the diffusion approximation,1–4 given by:
1083-3668/2006/11�3�/033001/16/$22.00 © 2006 SPIE
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− � · D � ��r� + �a��r� = S�r� ,

where D= �1/3�s� is the diffusion coefficient, ��r� is the
optical fluence, and S�r� is the isotropic source of photons.
Modeling the light fluence within tissue as “diffuse” has lead
to great advances in the ability to reconstruct images based on
diffuse projection tomography and to predict interior distribu-
tions of absorption, fluorescence, and luminescence concen-
trations within tissue.5 Several more exact radiation transport
modeling studies have been reported, but application to clini-
cal or preclinical imaging has not succeeded yet; however, as
computational power grows, it is likely that this will be
achieved soon.

In addition to analytic light transport modeling, stochastic
methods to predict light fluence have been developed and for-
malized for many years,6–9 and have lead to an improved
understanding of light transport in tissue, especially over
smaller distances where the light is not a true diffusive field.
These forward models provide the basis for understanding the
physical limitations of imaging with light through tissue,10,11

and are utilized in model-based imaging of tissue with light.
Application of this forward modeling approach to clinical or
preclinical imaging methods has not been successful yet.
Thus, in this review, diffusion-model-based imaging is ana-
lyzed and characterized in terms of resolution, contrast, and
detectability of objects.

1.2 Imaging with Light: Planar Techniques
The mechanisms to form functional and physiologically rel-
evant optical images of tissue with NIR light fall largely into
two broad categories, namely planar imaging and tomogra-
phic image reconstruction. In planar imaging, similar to single
photon emission corrugated tomography �SPECT� nuclear
medicine imaging, the remitted light from tissue is imaged
with a planar device, such as a charge-coupled device �CCD�
when using optical photons, which inherently captures the
image pixilated by the available detector resolution. This type
of imaging is predominant in clinical procedures such as en-
doscopy, colposcopy, and ophthalmology,12–14 and experimen-
tal studies in reflectance, fluorescence, and bioluminescence
imaging. The image resolution and performance of these pro-
cedures is highly dependent on the geometry and the specific
optical system used to acquire data. In fluorescence imaging,
the issue of background suppression is most often the domi-
nating factor affecting image quality, since rejecting the exci-
tation light from a diffuse body is a challenging problem. In
bioluminescence imaging of tissue, though there is little back-
ground signal, the intensity of the emitted light is orders of
magnitude lower than that seen in intrinsic optical
tomography,15–17 and thus low signal to noise typically domi-
nates imaging performance, but the noise is from the readout
or dark noise of the camera itself. In cases with ample signal,
the shot noise will dominate, but this is often not the case in
practical imaging where the light signal is low. In all of these
applications, imaging performance is still further affected by
the external shape of the tissue and the system’s ability to
compensate for irregular boundaries, as well as the light
propagation through overlying tissues. Indeed, accurate
knowledge of these parameters can improve the resulting im-
ages, and throughout NIR imaging of tissue, the problems

associated with knowledge of the tissue boundaries and opti-
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cal properties have been a key problem. As is discussed in
Sec. 2, even though the hardware may have good resolution in
the absence of scattering, ultimately as the depth increases the
resolution of localized emitting tissues below the surface will
be governed more by the light transport than by the specifics
of the hardware.

In absorption-based and fluorescence imaging, there is a
unique feature of having to introduce a light field into the
tissue, and then having to remove this light field from the
tissue prior to detection of the true remitted signal. The most
significant problem of all is specular reflectance from the sur-
face, which can be orders of magnitude larger than signals
remitted from the interior of the tissue. To reduce specular
reflection, using a crossed polarizer is standard, yet this does
not completely remove the reflection, and it still does not
compensate for differences in remittance due to the curvature
of the tissue. Interpreting all of these issues in the presence of
light that has traveled an unknown indirect path between the
time it went into and was remitted out of the tissue is prob-
lematic. While radiation transport models can be used, they
become most challenging for prediction at complex surfaces,
and the entire interpretation of background, reflections, tissue
coupling, and radiation transport can significantly degrade im-
age quality if not carefully designed. Here, the focus is on
using image analysis tools to interpret image quality, which
may or may not correctly account for or compensate for all of
these nontrivial issues. Planar imaging in particular as com-
pared to tomographic imaging is prone to errors due to cur-
vature of the tissue boundary. Corrective methods have been
successfully proposed, such as using a phase signal to correct
for tissue curvature,18 focusing on the second derivative of the
overall remission image,19 or utilizing scanner systems to out-
line the surface volume.20 Thus the problem is not insur-
mountable, yet in many commercial systems this issue is
largely ignored. Again, as in biolumeinscence imaging, the
deeper that the objects being imaged are located, the more
they are affected by blurring from the light transport process,
and inherently the lower the resolution will be. A more com-
prehensive analysis of this is provided in Secs. 2 and 3.

1.3 Imaging with Light: Tomographic Techniques
In tomographic imaging, the remitted signals are acquired,
and an analytical or numerical algorithm is used to calculate
images of the interaction coefficients or the distribution of
tissue constituents that would give rise to the measured data.
In-vivo absorption tomography, scatter tomography,21–25 and
fluorescence tomography26–29 are now all experimentally
demonstrated, and tools for quantitative analysis of these sys-
tems are required. The issues involved in interpreting tomog-
raphic images are distinctly different from planar imaging,
since the assumption of a nonscattered field for resolution
assessment is rarely possible. Indeed, resolution assessment
itself implies that the contrast is high and scattering is insig-
nificant, such that the dominant factor is the physical limita-
tions of resolution. Computed tomographic imaging is almost
always done in a manner that sacrifices spatial resolution for
improved contrast resolution; an unavoidable tradeoff due to
the need to choose a finite number of projections to keep the
computational burden within what is feasible. In comparison,

projection tomography without computational recovery can
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often use an arbitrarily large number of projects to maximize
detectability, as there is little computational burden. However,
in both cases, detectability of the object is more important
than resolution assessment. Thus, characterizing contrast reso-
lution becomes more important than high resolution assess-
ment of imaging performance. This assessment is readily
achieved through contrast-detail analysis of the imaging sys-
tem discussed in detail within Sec. 3.

In many cases, the recovery of images is done iteratively
using a Newton method, requiring inversion of a highly ill-
posed and ill-conditioned matrix. After acquisition of a set of
measurements of the outgoing optical flux at the boundary
�m, these data are simulated in a calculation numerically or
analytically with a light transport model �c. This calculation
is based on an initial estimate of the property distribution, and
then the difference between the �m and �c values is mini-
mized by iteratively updating the set of spatial absorption,
scattering, or emission coefficients �. This is done by solving
a matrix equation by precalculating a linear sensitivity matrix,
also known as the weight matrix or Jacobian matrix J, which
is used to map a change in � to a change in �, providing the
update equation:

�� = J�� .

The methods to formulate and solve this equation vary con-
siderably between research groups, but in general, J being a
nonsquare and ill-conditioned matrix cannot be directly in-
verted, requiring the solution to be of the form:

�� = �JTJ + �I�−1JT�� ,

for the overdetermined problem. Or for the underdetermined
problem, it is:

�� = JT�JJT + �I�−1�� ,

where � is a regularization parameter and I is the identity
matrix. The images are formed by starting with an initial ho-
mogeneous or heterogeneous guess of � and iteratively up-
dating this estimate with the matrix equation solution by cal-
culating �i+1=�i+��i. Detailed discussions of these
methods for diffuse tomography have been published
previously.4,30–33 The particular reconstruction algorithm used
in these studies has been tailored for the circular tomography
geometry and optimized for regularization and inclusion of a
priori information.34–37

2 Spatial Resolution
When image performance is analyzed in the classical ray op-
tics sense, the contrast between effectively black and white
regions is used to assess the minimum detectable size or sepa-
ration between any two points. This approach is routinely
used to test the resolution of telescopic imaging systems or
microscopic imaging system hardware performance.38,39 It
should be noted early on in this discussion that this approach
is rarely useful for analyzing routine medical imaging of soft
tissues, especially in-vivo optical imaging, as it assumes that
infinite contrast is available. Thus, the tools discussed in Sec.
3 are generally more appropriate for most analyses of optical

tissue imaging systems; however, this section on resolution
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assessment is included for completeness. Resolution analysis
is always useful for characterizing the limiting hardware and
software performance of an imaging system, and may be use-
ful for imaging thin tissues or tissues with minimal scattering,
where extremely high contrast is possible.

2.1 Line Pair Imaging Analysis
Line pair analysis is the standard in most imaging systems,
where the assumption of extremely high contrast makes sense,
and where the ultimate spatial resolution of the system needs
to be tested. Phantoms or test fields that do not cause signifi-
cant background scatter, and have effectively infinite attenua-
tion contrast, are standard tools to assess the limiting spatial
resolution. The United States Air Force �USAF� resolution
test chart, shown in Fig. 1�a�, is classically used as a universal
test field containing a range of line pairs per millimeter. It is
the ideal test field for mesoscopic or telescopic imaging fields,
where the field size ranges from the order of millimeters to
near 5 �m. Below the micron range though, this test field
does not provide sufficient resolution for useful imaging
analysis, and precalibrated microscopic line pair test fields
can be purchased. Resolution limits for a given imaging sys-
tem are measured by visually assessing the number of line
pairs per millimeter that are discernable in an image. More
quantitative measures can also be applied, such as determin-
ing the line pairs per millimeter grouping that shows a dis-
cernable decrease between the two dark lines. In the limit of
high resolution coherent light, this could be determined with
the Rayleigh criterion, where the peak of one object appears
to overlap the first Airy disk trough of the other.38

This method of line pair imaging analysis has been used in
several biomedical papers mainly focused on thin tissue im-
aging. Examples include investigations into the use of polar-
ization filtering,40 ultra-fast time-resolved detection,41 or co-
herent gating methods,42,43 all of which focus on rejecting
multiple scattered light from transmittance or reflectance
signals.44,45 The use of line pair resolution testing at depths
beyond the transport scattering length ���=1/�s�� is not very
informative, since the anticipated resolution is larger than the
maximum width between line pairs in the USAF test field.
Line pair analysis is usually restricted to imaging in high reso-
lution situations, since imaging multiple lines requires a large
field of view that has high resolution and can thus image
many lines within a field. For imaging systems with lower to
moderate spatial resolution, or systems that image in a scatter

Fig. 1 Images of the USAF test field, imaged �a� through air and �b�
through 2 mm of 1% intralipid solution. The ability to use this type of
resolution tool in a diffusing medium is very limited.
dominated field, it is more useful to discuss the resolution as
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assessed by the point spread, line spread, or edge spread func-
tion, or as interpreted by the Fourier transform of these, the
modulation transfer function. This is discussed in the next
section.

2.2 Point/Line/Edge Spread Functions
Assessment of the point spread function �PSF�, line spread
function �LSF�, or edge spread function �ESF� can provide
nearly equivalent information in imaging systems that have a
linear and spatially homogeneous response. Unfortunately,
this latter criteria is rarely true in most useful imaging sys-
tems, and so a comprehensive assessment of these systems
would involve assessing the PSF at multiple locations in the
imaging field46 to assess the spatial response. For example,
chromatic aberration effects lead to imaging field responses
that vary in space, and so assessment of the PSF at different
areas in the field is often required to characterize a system.
Similarly, in diffuse imaging, the point spread function can
easily be distorted by the boundaries of tissue, as the diffuse
response function is altered by orders of magnitude when near
a boundary.

Point spread function imaging in tomography has been a
standard practice to assess imaging system and algorithm
quality.47 However, many studies have blurred the line be-
tween point imaging and circular region imaging when defin-
ing spatial resolution. When infinitely high contrast is used,
the size of the object being imaged should not affect the size
of the resulting image, but rather as the object size decreases,
the resulting image response decreases in magnitude. PSF de-
termination can be achieved using black spherical inclusions
in the medium to simulate the small infinite absorbers present.
These types of studies are tedious, but when done exhaus-
tively can provide fundamentally important information about
the imaging response and the field.10,48,49

Measurements of the line spread function have been com-
pleted in many early studies of diffuse tomography, and illus-
trate the classic banana-shaped sensitivity function observed
between the source and detector. As a line is translated across
the path between source and detector and oriented perpen-
dicular to the path of the light travel, the change in intensity
obtained in this profile study is exactly proportional to the
intensity of the photon path, or the sensitivity function of each
source-detector pair.10,50–55 These basic measurements can be
obtained and compared to computational predictions to illus-
trate the accuracy of the forward model in predicting the Jaco-
bian matrix.54

One useful empirical observation applicable to imaging
through diffusely transmitting slabs is that the lowest spatial
resolution is most likely limited by the broadest point of the
photon path, which has been estimated at 20% of the slab
thickness.56 While this estimation is empirical and only true in
diffuse regimes, it provides a “rule of thumb” to estimate the
resolution at the center of a slab for a point source and point
detector. There are analytic predictions of the photon paths for
both reflectance and transmittance imaging.54,57 These pre-
dicted paths are effectively weights representing the ensemble
of statistical paths taken by photons, and are analogous math-
ematically to the adjoint Jacobian matrix, as developed for
image reconstruction.4,33 These mathematical expressions and

algorithms provide a useful way to estimate the lower resolu-
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tion limit for given source-detector and boundary geometries.
The use of an edge spread function provides a strong con-

trast that is readily imaged, and analytic derivations of the
transmission past an opaque edge in an otherwise scattering
medium have been shown58–60 for infinite medium geom-
etries. Measurements in bounded tomography regions show
considerably less predictable response,61 but still provide
strong insight into the nonlinear response across the imaging
field. The disadvantage of this approach is that most diffuse
reconstruction programs are inherently based on the concept
of the Newton method, where the background medium is as-
sumed to be homogeneous and the reconstruction algorithm
function is to recover the embedded regions within this. This
scenario is not true when a large and distributed field such as
the edge of a large absorber is present, and so the response of
most diffuse image reconstruction algorithms to a large flat
object can be substantially different than the response to
smaller round-shaped objects. Therefore, results of an ESF
assessment in diffuse imaging should probably be interpreted
alongside similar measures of the PSF or LSF.61

2.3 Modulation Transfer Function
In most medical imaging settings, the data of PSF/LSF/ESF
are interpreted in the frequency domain by Fourier transform-
ing the dataset to provide a modulation transfer function
�MTF�. While the information content is the same, represent-
ing the spatial frequencies provides a direct linear method to
spatially filter or modify the response function. In many sys-
tems, the standard approach has been to use a measurement of
the LSF and transform this to the MTF.62 However, in certain
systems, generating a line that is thin enough to test the sys-
tem satisfactorily may be problematic due to constraints on
the setup, and so it is often simpler to generate a sharp edge
for measurement of the ESF. The MTF for each of the PSF/
LSF/ESF curves in Fig. 2 are shown in Fig. 3. It can be seen
that similar information is provided in both the spatial and
frequency domains for this simple case. In this case, the re-
sponse at the center of the phantom is seen to have lower
spatial frequencies in content, corresponding to wider values
of the PSF/LSF/ESF functions. This difference is understood
to be caused by the diffusive path between source and detec-
tor, which is widest when most distant from a source or de-
tector. Narrowing the source detector distance is the only
physical way to decrease PSF/LSF/ESF values, and points
nearest either source or detector will always have the lowest
values. Decreasing scatter or increasing absorption will re-
duce the PSF/LSF/ESF values and increase the spatial fre-
quency bandwidth as well, throughout the entire imaging
field.

2.4 Application of Resolution Testing in the Field of
Diffuse Tomography

In diffuse light imaging, it has long been recognized that light
follows a statistical path in which the predominant path be-
tween source and detector is a line surrounded by a banana-
shaped distribution.63 This spreading of the photon paths is
induced by the inherent multiple scattering present, and de-
creases in width in a medium with lower scattering or in-
creased absorption. The effect of increased absorption is

somewhat counterintuitive, but generally leads to a loss of
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photons that have traveled farther in tissue that subsequently
narrows the average path of travel. These distributions have
been studied by many investigators, and specifically
quantified by papers in the early 1990’s.30,51,52,56,64,65 Imaging
of edges has not proven all that useful, as the wide spread of
photons really limits the ability to visualize the edge of ob-
jects clearly, and the spatial variation in the resolution ulti-
mately complicates the analysis.

In diffuse tomography imaging, it is easier to resolve a
smooth circular heterogeneity embedded in a field than step
changes.66 This is because of the fact that heterogeneities ap-
pear as symmetrically Gaussian filtered objects in the image.
Almost all papers in the field of diffuse optical imaging have
focused on assessing resolution by placing point objects or
line objects in the field to assess spatial resolution.4,30,64,67–73

Fig. 2 Graphs of the �a� point spread function �PSF�, �b� line spread
function �LSF�, and �c� edge spread function �ESF� for “pencil-beam”
transmission through a 60-mm slab, having diffuse interaction coeffi-
cients of �a=0.01 mm−1 �s�=1.0 mm−1. In all three cases, two loca-
tions were analyzed using a target near the edge �2 mm inside the
surface� and then at the center of the slab.
This focus has emerged from a fundamental limitation in the
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field of diffuse tomography stemming from the fact that all
currently used reconstruction algorithms are derived at some
level from perturbation theory. The Born, Rytov, and Newton
methods for minimizing an objective function are all based on
perturbing an initial field to find the solution. This approach is
inherently optimized for imaging point objects, and the ill-
posed nature of the problem, combined with significant regu-
larization, leads to a solution that is significantly smoother
than the original test field.

Once a system or algorithm is established in its ability to
recover point objects, extension to multiple objects has been a
common theme; however, this step is both important and
problematic. The most significant problem is the nonlinear
response of the measured field to multiple or extended inho-
mogeneities, requiring an infinite number of heterogeneity
configurations to fully analyze system performance.

Perhaps the only reasonable approach to characterizing the
imaging field response to multiple heterogeneities is to simu-
late the expected distributions of values possible in vivo and
use this as the limited calibration of the system and corre-
sponding algorithm. Even with these measures taken, it is
critical to evaluate these distributions with the full range of
object sizes and contrasts expected in vivo, as is discussed in
Sec. 3 on contrast-detail analysis.

2.5 Analysis of Luminescence and Fluorescence
Diffuse Imaging Resolution

Imaging of the minimum spatial resolution is only reasonable
when an effectively infinite contrast is expected. Fluorescence
protein imaging or bioluminescence imaging are two of the
few situations in optical imaging in vivo where it may be
reasonable to expect nearly infinite contrast, when the back-
ground emission issues might be neglected or corrected.74–77

When cells are specifically transfected or modified to express
an optical signal, such as a specific organ or a tumor, the
background emission in the neighboring organs should be ef-
fectively zero. In green or red fluorescent protein �GFP or
RFP� imaging, the background and leakage of excitation light
through the filters does provide the most significant back-
ground signal; however, this can be significantly reduced

Fig. 3 MTF profiles of the graphs shown in Fig. 2, illustrating the
information contained as a function of spatial frequency, with LSF
having highest resolution, PSF having next highest, and ESF having the
lowest. Resolution is always considerably worse in the interior of the
diffusing medium than at the edge near a source or detector.
when wavelength-dependent fitting or wavelength-based
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background subtraction is used. In bioluminescence, little real
background is present in most cases, and background is often
simply the dark noise in the camera or light leakage into the
enclosure from the room. Thus, the spatial resolution of bi-
oluminescence or fluorescence protein imaging in vivo can be
assessed by point spread function or line spread function im-
aging, yet little study of this has been reported. One compre-
hensive paper on this issue by Troy et al.77 showed effective
point spread functions as measured in phantoms and in vivo,
using small numbers of cells to assess the minimum detect-
able number of photons and cells. This analysis illustrated that
bioluminescence is a more sensitive imaging technique in the
remission geometry, by a considerable margin, due to the de-
crease of fluorescent protein imaging sensitivity caused by
background autofluorescence. However, recent reports of
fluorescence imaging in the transmission geometry will likely
be more sensitive. In most applications of fluorescence or
bioluminescence, the actual resolution was not the most im-
portant parameter in distinguishing the two systems, but actu-
ally the sensitivity. Resolution of bioluminescence and fluo-
rescence appeared to be similar, because the photon spread
within a spectral window was effectively equivalent. This
study and other similar studies focus on minimum contrast or
signal detectable, because the issue of resolution is not gov-
erned by system constraints, but rather by the physical con-
straints of the light transport in tissue. Resolution limits in this
regime have less to do with system design than with the depth
of the object to be resolved in the tissue. While the resolution
of objects at the surface of a tissue can, in principle, be as
high as the diffraction limit of light �i.e., near 250 nm� given
sufficient contrast, the presence of tissue motion and the qual-
ity of the imaging system typically contribute to the real im-
aging resolution being lowered to typically near 1 to 2 �m
when imaging at the surface of the tissue. Again, resolution
clearly degrades by orders of magnitude in just a few milli-
meters of depth into the tissue, due to the overwhelming pres-
ence of scattering.

3 Contrast-Detail Analysis
Resolution of an imaging system is a common term that is
often used inappropriately in medical imaging. While resolu-
tion refers to the lowest resolvable size in the field of view, it
does not have any appreciation of the contrast of that object
being imaged. In most cases where there is a finite contrast
between the region to be detected and the background, the
pertinent measure is whether the object is “detectable” with a
given size at a given contrast. This measure is more subjective
than resolution, as it implies some human imposed decision of
what is “detectable.” The process of contrast-detail analysis
was developed precisely for this purpose.

3.1 Contrast-Detail Curves
Contrast-detail �C-D� analysis is commonly used to determine
the performance of medical imaging systems and is an effec-
tive method for assessing the imaging capabilities of proto-
type systems. This technique was introduced to medical im-
aging in the 1970’s and has since been used extensively for
CT78–81 magnetic resonance imaging,82 ultrasound,83

mammography,84,85 fluoroscopy,86 whole body x-ray
87 88,89
systems, as well as imaging displays. This technique is
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used to quantify the combined performance of the imaging
system and the image reader in detecting objects representing
a clinically relevant range of sizes and contrasts within a do-
main, focusing on assessing the lower limits of each possible
range.90,91 A C-D graph of minimum detectable contrast level
for all sizes of objects provides limiting data on two major
regimes of system operation, namely 1. the spatial resolution
for high contrast objects �high contrast, small object size�, and
2. the lower level of contrast detectable for larger-sized
objects.81

Typical contrast-detail study test fields contain a series of
objects representing a range of contrasts and diameters often
in a regularly spaced pattern. The phantom can have either
discretely sized objects or continuously varying sizes, and
each object size is repeated with varying contrasts relative to
the background. A theoretical representation of a C-D phan-
tom is shown in Fig. 4�a�, with object size increasing from left
to right and contrast increasing vertically. The phantom is
imaged tomographically by simulating x-ray computed to-
mography transmission data with the addition of varying
amounts of Gaussian distributed noise in each detector. The
noise and geometry of the system contribute to the resulting
image quality, as represented by the recovered images in Figs.
4�b� through 4�f�.

In assessing each image, the lower limit of detection for a
given size is determined for each column, so the minimum
“detectable” contrast level is determined for each size. This is
repeated for all sizes, and a curve �as shown in the images of
Fig. 4� is displayed representing the minimum detectable
range of contrasts for all sizes. In this analysis, “contrast”
represents the real object contrast prior to image reconstruc-

Fig. 4 An example of contrast-detail analysis is shown for a simulated
computed tomography test phantom having six different sized objects
at six different contrast values from the background. This type of
phantom is used routinely to test imaging system performance, by
imaging and determining the minimum contrast detectable for each
object size. As seen in �b� and �c�, the reconstructed images show a
degradation of the image quality due to noise and sampling error, and
in �c� the line of minimum detection is shown. In �d�, �e�, and �f�, a
5% noise level was used, and the number of sampling �or projection�
angles was systematically decreased to show the degradation of the
image and the resulting increase in the position of the contrast-detail
curve.
tion, relevant to the imaging modality, rather than the contrast
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within the generated image. In Fig. 4, it can be seen that an
increase in noise results in an increased contrast required to
detect an object of a given size. Furthermore, a decreased
number of projection angle samples results in a higher C-D
curve, and therefore lower contrast resolution. In tomography
systems, the ability to resolve subtle contrast changes is typi-
cally most important, and a lower C-D threshold curve indi-
cates the better system contrast resolution and therefore a
higher level of imaging performance.90

3.2 Contrast-Detail Analysis in Medical Imaging
Detection thresholds usually are determined by human
readers,92 but automated assays of the image can also be
based on contrast-to-noise ratio �CNR� and have been used in
prototype systems.93–96 In the clinical setting, human readers
are the gold standard through which comparisons are made,
since all radiological images are read by radiologists for di-
agnosis. There has been significant research to develop auto-
mated algorithms that systematically “detect” objects by act-
ing as ideal observers or appropriately mimicking human
observers.92

Contrast-detail phantoms are commercially available for
all conventional clinical imaging systems, and the American
College of Radiology has established guidelines for phan-
toms, which should be used for calibration and validation of
specific imaging modalities. Common applications of these
studies include periodically assuring clinical system image
quality, optimizing developing technologies, and comparing
intersystem performance. Figure 5 is an example of contrast-
detail curves illustrating the typical performance of a mam-
mography system85 and an x-ray CT system.97–99 Objects with
sizes and contrasts in the range above and to the right of the
curves are considered detectable, while those below and to the
left are too small or have too little contrast to be detected in
the image. Therefore, imaging systems with curves closer to
the x and y axes indicate a lower contrast detection threshold
for all objects and are considered to have better imaging per-
formance for the phantom being imaged.

As a performance measurement tool for standard radiogra-
phy and mammography, contrast-detail analysis is used for

98,99

Fig. 5 Contrast-detail curves showing the values for a mammography
system and for a CT system, illustrating the inherent strengths and
weaknesses of each system. The mammography system is strongest for
imaging smaller objects, below 2 mm diam, as lower contrasts can be
detected. In comparison, CT cannot image objects smaller than
1 mm, but can image subtle changes in contrast better when the ob-
jects are larger than 2 mm.
scheduled quality assurance, optimizing system settings,
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assessing and comparing digital and film-screen detection
methods,87,100–104 and determining minimum requirements for
image viewing and digital file storage protocols.88,105–107

Contrast-detail analysis is an efficient means to complete
these studies, since a given C-D plot often requires only a
single image and minimal time commitments by professional
readers. Some C-D studies in radiography seek to optimize
the tradeoff between image contrast and x-ray dose to the
patient by extending the analysis to include total dose levels.
This is particularly important for computed tomography sys-
tems, where patient dose is a major concern. A series of stud-
ies in the late 1970’s and early 1980’s by Cohen et al. were
the first to directly apply contrast-detail analysis to the assess-
ment of CT scanners.78–80,90,108 Faulkner et al. published a
fairly comprehensive set of contrast-detail results to explore
the effect on CT imaging performance using different filtering
techniques, reconstruction algorithms, and CT scanners.81

Contrast-detail analysis has also been used in assessing
ultrasound,83,109–112 fluoroscopy,86,113–115 and magnetic reso-
nance �MR� systems.82,116 The key in this process is to utilize
a contrast-detail phantom, which is representative of the size
and contrast scale of the tissues that the system will be used to
image routinely. The shape of the C-D curve then allows com-
parison between systems with the same settings and analysis
of which applications would be suitable for the system.

3.3 Contrast-Detail Applications in Planar Versus
Tomographic Imaging

Contrast-detail studies for planar imaging systems with rela-
tively large and flat response fields can be completed using a
phantom containing the full set of object contrasts and diam-
eters. This allows the full C-D analysis to be performed with
a single, or limited number of, image�s�. Applying contrast
detail to NIR tomography presents a more difficult problem,
since the presence of multiple optical contrast objects in the
test field has a substantial effect on image quality117 due to the
inherent soft field nature of the problem. However, this has
been addressed by using a series of images, each with a single
object within the test field.94 The object size and contrast are
varied between images, and detection thresholds are extracted
and compiled to produce the C-D curve. Additionally, simu-
lated studies are easily completed to quantify expected
contrast-detail system performance for best case and a variety
of other simulated conditions.95,96

Further imaging performance assessments for emerging
technologies should be reported following current medical
imaging protocols. Contrast-detail analysis can provide a rea-
sonably comprehensive method for quantitatively and system-
atically assessing system capabilities. Though other
techniques, such as receiver operating characteristic �ROC�
analysis, may be more rigorous, these tests are not
always practical due to professional reader time
constraints.91,109,112,118 The relative ease of producing contrast-
detail plots makes this type of analysis attractive as a prelimi-
nary or primary method for ranking and optimizing medical
imaging systems.

The key factor in the observation of higher spatial resolu-
tion in planar imaging is that tomographic image reconstruc-
tion spatial resolution is limited by the number of projects that

can be obtained, due to the image reconstruction problem be-
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coming overwhelming computationally at higher numbers of
projections. This computational limit on the image reconstruc-
tion often limits the resolution that can be achieved; however,
in projection imaging there is typically no major computation
required, and so larger numbers of projections can be taken,
and hence the resulting resolution can be maximized for ob-
jects near the surface of the tissue. This is certainly true in
x-ray imaging throughout tissue volumes, but the scattering
process in diffuse tomography complicates this a little further.
It is generally believed that diffuse image reconstruction for
interior objects �distant from any surfaces� could be recovered
with higher resolution in tomography, than with projection
imaging.

3.4 Applications in Endogenous Versus Exogenous
Contrast Imaging

With the recent advent of absorption, scattering, and
fluorescence tomography methods,26,27,119,120 and potentially
bioluminescence tomography,121,122 it is important to fully un-
derstand the capabilities and limitations of each approach for
characterizing tissues, in terms of the minimum detectable
contrast, or cell number in vivo. As stated before, it should be
anticipated that in most cases tomography is not the best way
to improve spatial resolution, but rather is the optimal way to
recover low contrast information �i.e., optimal contrast reso-
lution� when a limited number of projects are able to be ob-
tained due to computational limits. An illustration of this is
shown in Fig. 6, where the contrast-detail curve of absorption-
based imaging is compared to tomographic imaging. Recent
breakthroughs in enzymatically activatable fluorphores have
created a significant interest in the possibilities for molecular
imaging.26 Systematic characterization of fluorescence tomog-
raphy is important for the implementation of this modality to
imaging tumors, where specific markers of cellular or vascu-
lar expression may be localized.

The contrast-detail response of fluorescence tomography is

Fig. 6 Contrast-detail curves are shown for diffuse optical imaging
simulations, comparing transmission imaging with projection data
through a 6-cm-diam slab, to NIR tomography of an 8-cm cylinder.
These geometries are chosen to mimic that of breast imaging, and the
test object is placed at the center of the imaging field to simulate the
most difficult lesion to detect. The minimum detectable contrast for
each size object is shown as a square, illustrating that for reconstruc-
tion tomography, the minimum detectable contrast is lower than that
for projection imaging. Objects smaller than 4 mm are not easily
simulated in these calculations, but are presumably more readily de-
tected with projection imaging than with tomographic imaging, as is
observed in Fig. 5.
expected to be similar to that of near-infrared absorption to-
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mography, as the path of light propagation is similarly diffuse
in nature. Computational studies of this type have recently
been completed96 and the results, shown in Fig. 7, illustrate a
best-case C-D curve for imaging through 86 mm of tissue.

Future studies with experimental systems can demonstrate
how the experimental apparatus and extension to real tissue
affects the contrast-detail performance reported in Fig. 7. Ul-
timately, this will help determine the potential role of the
system in a research or clinical setting.

Though most current studies in fluorescence optical to-
mography focus on small animal studies, the high tissue ab-
sorption and small size of these test subjects results in a less
diffuse light field, which departs from the diffusion approxi-
mation of photon propagation and thus can complicate the
image reconstruction process. This problem has been well
studied, yet no clear solution exists other than attempting to
model the light propagation with radiation transport theory or
Monte Carlo models.10,123 An emerging approach is to incor-
porate high absorption coefficients into a diffusion-based
model. This technique has been reported with visible wave-
lengths and has been shown to work considerably well in
small animal imaging.124 Further work in this area is ongoing,
and a clearer analysis of contrast-detail characterization of
these systems would be a significant benefit.

3.5 Contrast-Detail Application in Assessment
of Hybrid Imaging Systems

In recent years, there has been a significant interest in devel-
oping near-infrared imaging systems that are coupled to stan-
dard clinical systems, or systems that can contribute structural
prior information to the image reconstruction process. This
has been shown with MRI21,125–128 and ultrasound.129–131 The
hypothesis driving the development of these hybrid tech-
niques is that the accuracy of the image or the image property
values will be somehow improved. While this is implied, it

Fig. 7 Contrast-detail analysis of diffuse imaging demonstrating the
difference in sensitivity for objects located at the center and near the
edge of the imaging field. These simulations are based on fluores-
cence tomographic imaging, and are similar quantitatively to
absorption-based imaging. The simulation field size was 86 mm diam,
using scattering and absorption parameters typical of soft tissue imag-
ing in the near-infrared ��s�=1.0 mm−1, �a=0.01 mm−1�. The points
present the contrast at which a minimum contrast-to-noise ratio of 3 is
recovered in the resulting tomographic images.
has not clearly been proven, and must be demonstrated for
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each system. Indeed, there is thought to be a delicate balance
between forcing the solution to converge to a solution im-
posed by the a priori constraints, versus allowing the con-
straints to minimally coerce the solution toward the most ac-
curate image. In recent studies, Brooksby et al.21,125–128 have
demonstrated in-vivo imaging with MRI-coupled NIR tomog-
raphy, and used the MRI information to segment the adipose
from the glandular tissue, providing input spatial information
about the two tissue regions. This approach provides impor-
tant a priori information, which then improves the image re-
construction. Analysis of this improvement can be accom-
plished through contrast-detail analysis, thereby quantifying
the improvement in contrast that can be expected for each size
object, given a decision criterion. This is demonstrated in
Fig. 8 with contrast-detail curves for images generated with
and without structural a priori information. These curves were
determined using CNR=3.0 as the threshold for assessing
object detection; however, this study can also be completed
using human observers or a computer-generated “ideal
observer.”

The shift of the curve to the left in Fig. 8 with the inclusion
of a priori information from MRI is a quantitative indication
that the CNR of the imaging system is superior to the imaging
capability without a priori information. The experimental ex-
tension of this work is ongoing, and use of contrast-detail
analysis in this application will demonstrate improved con-
trast resolution with increasing levels of spatial constraints
that can be implemented. As hybrid imaging systems become
more established, as are PET/CT systems, this type of analysis
will become increasingly important to quantitatively evaluate
the system capabilities.

4 Analysis of Human Observer Interpretation
of Images

4.1 Sensitivity, Specificity, and Receiver Operating
Characteristic Analysis

The receiver operating characteristic �ROC� methodology has

Fig. 8 Contrast-detail analysis of diffuse imaging with and without a
priori information about the fat and fibroglandular layer of the breast,
estimating the detectable levels of contrast for given object sizes. With
the inclusion of a priori fat/glandular tissue layers, the minimum con-
trast required for each size is decreased to achieve the same CNR
value.
been widely used to address the clinical efficacy of medical
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imaging systems.132–135 In an ROC study, the readers view a
cohort of normal and abnormal radiology images and assign
numeric ratings �typically four to six� to each image as an
indication of their confidence level that the image shows a
clinical abnormality. The resulting rating data are then ana-
lyzed, summarized, and plotted on an ROC curve. This graph
reveals the relationship between the true-positive fraction
�TPF� and the false-positive fraction �FPF� as the reader’s
confidence level varies. Summary measures of the curve are
typically used as an objective measure of the ability of the
reader to detect objects in the images, representing the quality
of the medical imaging modality when applied in a human
diagnosis task. These summary measures include the area un-
der the entire curve and the partial area under the curve in a
particular region of interest.

ROC analysis is widely employed to evaluate observer di-
agnostic performance in a possible situation in which two
alternatives exist. In this case, the classification of the stimu-
lus �patients’ real condition� and response �radiologists’ diag-
nosis� have only one of two possible choices, normal �nondis-
eased� or abnormal �diseased�. For a diagnostic test of N
patients, of which n1 patients are abnormal and n0 patients are
normal �here N=n0+n1�, there is a 2�2 diagnostic table that
completely describes the observer’s diagnostic performance,
as shown in Fig. 9�a�. The table is a listing of all the possible
combinations for a pair of binary variables, and the data rep-
resent the number of occurrences of combinations of the two
variables. In Fig. 9�a�, the two variables are the patient’s real
condition and the observer’s diagnosis. The observer gives m1
positive and m0 negative diagnosis readings �where also N
=m0+m1� for patients of which n1 are diseased and n0 are
nondiseased. Within this, the true positives �TP� and false
positives �FP� are the number of diseased and nondiseased

Fig. 9 Statistical analysis of data given two distributions. �a� The 2
�2 diagnosis table. The observer gives m1 positive and m0 negative
diagnosis to N patient images of which n1 are diseased and n0 are
nondiseased. �b� Example of probability density distributions of an
observer’s confidence in a diagnostic test, which are analyzed by
translating the threshold criteria through all possible values, and then
plotting the sensitivity versus specificity for the test. �c� The resulting
graph from �b� represents the ROC curve, and imaging tests that maxi-
mize the area under this curve are considered more beneficial for
accurate clinical classification of lesions. The square point on the
curve corresponds to the observer’s confidence threshold line shown
in �b�.
patients who are diagnosed as diseased �i.e., positive�, respec-
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tively, while the true negatives �TN� and false negatives �FN�
are the number of nondiseased and diseased patients who are
diagnosed as not diseased �i.e., negative�, respectively.

From the 2�2 diagnostic table, the sensitivity and speci-
ficity can be calculated and are commonly used as indications
of discriminatory accuracy of the diagnostic study. The sensi-
tivity is the conditional probability of a positive diagnosis
�T+ �, given that the patient is in fact diseased or abnormal
�D+ �, i.e.:

sensitivity = P�T + �D + � =
TP

n1
.

Sensitivity represents the proportion of truly diseased persons
in a screened population who are identified as being diseased
by the test, and is a measure of the probability of correctly
diagnosing a condition. The specificity is the conditional
probability of negative diagnosis �T− �, given that the patient
is, in fact, normal �D− �:

specificity = P�T − �D − � =
TN

n0
.

Specificity is the proportion of truly nondiseased persons who
are identified by the screening test. It is a measure of the
probability of correctly identifying a nondiseased person.
More clearly, in some medical literature, the sensitivity and
specificity are also called “true positive rate” and “true nega-
tive rate.”

In practice, the diagnostic discrimination capacity of an
observer in a specific diagnostic test is usually not perfect,
because diagnoses are made from various states of symptom
or evidence. In other words, the diagnosis depends on the
confidence level of diagnostic evidence, i.e., the confidence
threshold. Thus, it is more informative and meaningful to de-
sign the diagnostic tests on a confidence rating scale, either on
a fixed number of discrete response categories or a continuous
test variable, and then calculate different sensitivity and speci-
ficity pairs, which are used to generate a receiver operating
characteristic �ROC� curve.

The probability density distribution function of a radiolo-
gist’s confidence in a positive diagnosis for a particular diag-
nostic task is shown schematically in Fig. 9�b�. The degree of
overlap of the diseased and nondiseased distribution functions
completely determines the ability of the test to distinguish
diseased patients from nondiseased. As shown in Fig. 9�b�, for
a specific decision or confidence threshold value xc, the sen-
sitivity and specificity values can be calculated. As xc in-
creases, the specificity increases at the expense of sensitivity.
To graphically present the relationship of sensitivity and
specificity, the ROC curve is generated �Fig. 9�c��, which
plots sensitivity versus false positive rate �FPR�, defined as
�1-specificity�. This graph provides the sensitivity and speci-
ficity for a given imaging system/reader combination for a
range of reader confidence thresholds.

4.2 Interpretation of the Receiver Operating
Characteristic Curve

In practice, human-generated ROC curves for a full range of
confidence thresholds require a substantial time commitment

from the professional image readers involved. This is com-
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monly addressed by reducing the number of confidence
thresholds required to be assessed by the reader and complet-
ing the curve by using various techniques to model the prob-
ability density distributions shown in Fig. 9�b�. This provides
a more continuous representation of the sparse study data.
There are several algorithms that have been published to con-
struct ROC curves based on discrete or continuous test data.
These algorithms can be divided into two basic categories,
nonparametric or parametric, depending on whether the
implementation of the algorithm assumes a parametric model.
The empirical, nonparametric approach is used to calculate
the ROC curve using empirically determined histogram distri-
butions, in which there is no need for structural assumptions
and parameters for modeling or fitting. Though the empirical,
nonparametric method is easy to implement and robust in
general cases, it does not provide a smooth fitted curve and
there are no standard statistical measurements, such as confi-
dence levels, available for evaluation. A nonparametric kernel
smoothing technique can significantly improve the empirical
nonparametric method,134,136 but must be done with a careful
interpretation of how the smoothing kernel affects the data. In
this method, a kernel function estimating the densities of the
distribution functions in the diseased and nondiseased popu-
lations and a bandwidth is applied and optimized to numeri-
cally represent the distribution functions. This analysis results
in the generation of a smooth and optimal ROC curve. Having
stated this, parametric modeling of the data is most often cho-
sen and provides a strong proven approach to generating
smooth ROC curves with statistically useful estimates of the
confidence intervals. The standard normal distribution is most
commonly used, and provides a mean and standard deviation
value, which are used in generation of the confidence interval
lines.

One of the great practical challenges in ROC analysis in a
typical observer performance study is how to deal with the
variation of skill levels among different observers. Although
the basic concept of ROC analysis has been understood since
the early 1980’s,137 the analytical techniques or research tools
available at the time had limited practical applicability, until
the introduction of the so-called multiple-reader multiple-case
�MRMC� ROC paradigm138 in the early 1990’s. The MRMC
ROC paradigm uses a theoretical model and proposes apply-
ing procedures such as the jackknife method �jackknife read-
ers or jackknife cases� or the bootstrap method, to the area
under the ROC curve obtained for each reader. These ap-
proaches have allowed inclusion of multiple readers into ROC
analysis.

4.3 Location Receiver Operating Characteristic
Analysis

In standard ROC methods, the major focus is assessing the
diagnostic utility of the medical images, where the complexity
of the target object location is often eliminated by clearly
specifying the region of interest �ROI� in the images. Recent
developments in localization-response ROC �LROC� analysis
offers more understanding of medical imaging methodology,
in terms of measuring the ability to detect and correctly local-
ize the actual target within the reconstructed image. These
developments include simultaneous ROC/LROC fitting139 and

140
alternative free-response ROC �AFROC� analysis. The
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LROC measures the probability of successfully detecting and
locating objects within images, versus the probability of
falsely detecting objects in normal images, as a function of
the detection criteria.

Despite the essential simplicity of the fundamental concept
of ROC/LROC analysis, the reproducibility and repeatability
of human observers depends on many nonimage-related con-
ditions such as experience, physiological or ambient condi-
tions, number of tests, etc.141 ROC/LROC analysis therefore
must be carried out with careful attention to these possibly
confounding conditions.

4.4 Receiver Operating Characteristic/Location
Receiver Operating Characteristic Analysis
in Diffuse Optical Imaging

In diffuse optical imaging, little attention has been paid to
assessing the detectability of objects, as assessed by human
observers. Yet ROC analysis can be readily applied here, and
has been shown useful in assessing diffuse images of arthritic
finger joints.142 It is also likely that assessing how humans
perceive nonlinearly reconstructed images may help interpret
how image reconstruction algorithms should be tailored. As
part of this assessment, the ROC analysis of simulated NIR
tomography images were completed and are shown in Song et
al.143 The purpose of the study was to evaluate diffuse optical
imaging by determining the limitation of human readers’ abil-
ity to detect objects within the image by ROC and LROC
analysis. Given a fixed system noise level, four key param-
eters determine the quality of a reconstructed image: 1. the
size of the heterogeneities, 2. the absorption and scattering
coefficients’ contrast between the heterogeneities and the ho-
mogeneous tissue, 3. the number of reconstruction iterations
used in the image formation, and 4. the location of the region
of interest �ROI� in heterogeneous images. Human observer
performance is reported in terms of the related area under the
curve �AUC� value with error correction of ROC and LROC
curves.

Typical reconstructed images are shown in Fig. 10. Each
image contains an inclusion with a different size and contrast
level located to the right of the image field. These images are
shown to illustrate the visible quality of the tomographic im-
ages, and how decreasing size or contrast diminishes detect-
ability of the object within the reconstructed image. The hu-
man observer analysis was completed on a large number of
images, similar to the ones in Fig. 10. The resulting ROC data
of area under the curve �AUC� is shown in Fig. 11, using 600
images for each object size, and four observers, as discussed
in Song et al.143 The data are separated into studies, one in
which the contrast was held constant while the size was varied
�Fig. 11�a��, and the other in which the effect of varying con-
trast was considered for a constant anomaly size �Fig. 11�b��.
For each of these studies, the location of the object was ran-
domly moved around within the imaged domain, and control
images with no objects were also used. Not surprisingly, as
the object size or contrast decreases, the ability of humans to
detect the objects decreases. One interesting observation is
that the LROC AUC values drop to almost zero for the small-
est anomaly sizes and lowest anomaly contrast values, as seen
in Figs. 11�a� and 11�b�, while the ROC AUC values remain

high in these regimes. These numbers indicate that humans
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are still able to detect the presence of local abnormalities in
the images, even when their ability to determine the location
of the object is diminished or near zero.

In Fig. 11�c�, ROC and LROC AUC analysis was used to
examine the effect of the number of iterations in the nonlinear
reconstruction algorithm by presenting the observers with im-
age sets at different levels of iterations. The object size was
maintained at 10 mm, and the contrast and location of the
object were varied randomly. The AUC values for both ROC
and LROC are nearly constant, but with a subtle but signifi-
cant rise in LROC at lower iteration numbers. This indicates
that observers are better able to localize the region at fewer
numbers of iterations. This may be somewhat counterintui-
tive; however, it is explained by understanding that even
though the modeled and measured data more closely match
after more iterations, these reconstructed images may also
contain a higher degree of spatial noise.

In Fig. 11�d�, the effect of the location of the object was
assessed by similar LROC and ROC analyses. It is well
known that the imaging field response is highly spatially vari-
ant in diffuse tomography, and this is demonstrated directly
from the images using LROC curves. The ability to localize
objects increases �i.e., the AUC of the LROC increases� as the
object moves toward the edge of the imaging field. This re-
flects the fact that the diffuse imaging provides a better recon-
struction of objects closer to the edge of the field.

Further use of ROC analysis in detection of objects will
allow improved assessment of the factors that limit the use of
diffuse tomography methods in detection tasks.

4.5 Receiver Operating Characteristic Analysis
of Mammography with Adjuvant Imaging

Near-infrared tomography is now in clinical trials at several
centers for breast cancer tumor imaging. The use of NIR as a
screening tool has been the subject of research for several
years. A clinical study of multispectral NIR tomography in

Fig. 10 Diffuse optical tomography images reconstructed from simu-
lated data showing the effect of ROI size and contrast on image qual-
ity. The ROI location was held constant in each test field, as was the
reconstruction iteration number, while the size and absorption con-
trast was varied. In the top row of images, the size was fixed at 12 mm
diam, and the contrast values were varied in the original data with �a�
1.1, �b� 1.4, and �c� 2.0. In the bottom row of images, the contrast was
fixed at 2.0 and the size was varied with �d� 4 mm, �e� 10 mm, and �f�
16 mm diam. The background optical properties were �a
=0.004 mm−1 and �s�=1.0 mm−1.
breast cancer imaging was recently summarized by Poplack et
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al.144 In this study, a six wavelength, multispectral imaging
system was used to recover images of breast hemoglobin,
oxygen saturation, water, and scattering properties in more
than 100 patients. ROC analysis was not completed on this
study; however, quantification of the contrast for each tumor
region relative to the background breast tissue was completed.
The tumor location information from mammographic images,
such as size, distance from the chest wall, and depth within
the breast, were provided prior to NIR imaging to allow quan-
tification of the ROI values. Typical images of total hemoglo-
bin �HbT�, oxygen saturation �StO2�, water, scattering ampli-
tude, and scattering power values are shown in Fig. 12�a�.

Using the compiled values of contrast in the cancer and
benign tumors, the curve of sensitivity and specificity was
generated using a parametric analysis of the relative contrast
data. The decision criterion was continuously varied to draw
the complete ROC curve. Figure 12�b� shows the ROC curves
based on the normalized hemoglobin values of both cancer
tumors relative to benign tumors. The data in the graph were
processed for two tumor sizes, those above 6 mm and those
below 6 mm, to illustrate the fact that the size of the tumor
plays a major factor in detectability of the cancer. If the tumor
size was greater than 6 mm, the NIR tomography images
have reasonably high diagnostic accuracy, with the AUC

Fig. 11 ROC analysis of diffuse optical tomography images with area
In �a�, the heterogeneity size study is shown. The objects all have the
contrast study is shown. The diameter of ROI was equal to 10 mm for
number was studied. In �d�, the results of a heterogeneity location stud
of the field. In �c� and �d�, the object was a fixed diameter of 10 mm
equal to 0.88. However, if the tumors were smaller than
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6 mm, the system would fail to distinguish normal and abnor-
mal cases.

The analysis presented here cannot strictly be termed ROC
analysis, due to the lack of a human observer detecting the
presence or estimating the likelihood of an object being
present; however, the quantification of the relative contrast
values allowed analysis of the sensitivity-specificity tradeoff,
similar to what is determined in a formal ROC curve analysis.
The inability to achieve high AUC performance for all tumor
sizes indicates that the imaging modality may be inadequate
as a screening tool to detect small cancers. Alternatively, rela-
tively high AUC values for larger tumors indicate that the
modality is efficient at differentiating malignant versus benign
tumors above 6 mm in diameter. Further analysis of diffuse
tomography used for an imaging medium to large sized can-
cers is likely to be a promising avenue for this modality. A
similar analysis for fluorescence tomography would also be
beneficial.

5 Summary
In summary, the tools for imaging system characterization,
evaluation, and analysis of performance and use are well de-
veloped in the medical physics and radiology research com-

the curve �AUC� values of ROC and LROC and their standard errors.
ontrast C=2.0, and six iterations were used. In �b�, the heterogeneity
d six iterations were used. In �c�, the reconstruction process iteration
hown, where the object location is varied from the center to the edge
e absorption contrast was varied randomly from 1.1 to 2.0.
under
same c
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y are s
and th
munities. As new imaging modalities such as diffuse tomog-
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raphy become tools that enter the clinical realm, it will be
increasingly important to characterize the systems and images
based on these well known and accepted standards. In this
review, the initial stages are introduced and discussed in the
context of diffuse tomography. The tools of image resolution
are perhaps least well suited for analysis of the imaging sys-
tem performance, as the systems generally have poor and spa-
tially variant resolution, complicating the analysis consider-
ably. If the value of diffuse tomography lies in the area of
characterizing contrast due to hemoglobin, water, lipids, scat-
tering, or luminescence, it will likely become increasingly im-
portant to use contrast-detail analysis to assess performance
and compare individual systems and algorithms. Objective
and automated use of contrast-detail analysis is possible using
CNR thresholding; however, complete analysis will require
the use of observers to analyze multiple images.

Implementation of ROC analysis will be useful when the
imaging systems enter clinical trials, and are being evaluated
in sufficient numbers of subjects to warrant use of this meth-
odology. Current implementations of NIR tomography for
breast cancer imaging are perhaps the most clinically ad-
vanced of any diffuse imaging application, yet insufficient
numbers exist today to systematically evaluate these systems
based on ROC analysis. The predominant role of the type of
analysis is assessing an imaging modality used in a screening
or detection mode. If diffuse imaging is not used in a screen-
ing mode, but rather a characterization or quantification mode,
then ROC analysis has little role in assessing the system per-
formance.

Further attention to these and other image analysis tools is
imperative for diffuse imaging to grow and blend into current
radiology practice, as well as provide the language for trans-
lating these systems into the clinical research world.
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