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Abstract. Coronary calcified plaque (CP) is both an im-
portant marker of atherosclerosis and major determinant
of the success of coronary stenting. Intracoronary opti-
cal coherence tomography (OCT) with high spatial res-
olution can provide detailed volumetric characterization
of CP. We present a semiautomatic method for segmen-
tation and quantification of CP in OCT images. Follow-
ing segmentation of the lumen, guide wire, and arterial
wall, the CP was localized by edge detection and traced
using a combined intensity and gradient-based level-set
model. From the segmentation regions, quantification of
the depth, area, angle fill fraction, and thickness of the CP
was demonstrated. Validation by comparing the automatic
results to expert manual segmentation of 106 in vivo images
from eight patients showed an accuracy of 78 ± 9%. For a
variety of CP measurements, the bias was insignificant (ex-
cept for depth measurement) and the agreement was ad-
equate when the CP has a clear outer border and no
guide-wire overlap. These results suggest that the proposed
method can be used for automated CP analysis in OCT,
thereby facilitating our understanding of coronary artery
calcification in the process of atherosclerosis and helping
guide complex interventional strategies in coronary arter-
ies with superficial calcification. C©2010 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.3506212]
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1 Introduction
Coronary calcified plaque (CP) is an important marker of
atherosclerosis and can provide an estimate of total coronary
plaque burden for a patient.1–6 Although no clear relation-
ship between calcification and plaque vulnerability has been
established,4 an automatic method to segment and quantify CP
in medical images would facilitate our understanding of its role
in the clinical coronary heart disease (CHD) risk assessment.1

Moreover, heavily calcified lesions are often associated with a
lower success rate of coronary stenting and require usage of ad-
ditional devices, such as rotational atherectomy.7 Quantification
of calcified lesions, such as their depth and thickness, can pro-
vide valuable information for guiding complex interventional
strategies in vessels with superficial calcification.

Both noninvasive and invasive methods can be used for CP
detection and quantification. Noninvasive methods, such as mul-
tislice spiral computed tomography (MSCT)/multidetector CT
(MDCT), and electron beam CT (EBCT), are the natural choices
for general calcium-score evaluation,1, 3, 5, 6, 8 but their limited
spatial resolution (∼1 mm) provides inadequate morphological
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lesion assessment. Invasive methods include intravascular
ultrasound (IVUS)9–11 and optical coherence tomography
(OCT).9,12–14 IVUS has a resolution of ∼200 μm and is able to
detect CP, but cannot measure the distance between the super-
ficial CP and the lumen, nor can it assess the thickness of CP
due to the strong acoustic shadowing caused by calcium.11 In-
tracoronary OCT, with much higher resolution (10–20 μm), can
provide detailed volumetric characterization of CP. It is also a
powerful tool to study the association of CP with other noncalci-
fied types of plaques with higher sensitivity and specificity.9, 14, 15

OCT is able to differentiate superficial CP from deep CP. The
superficial CP is of primary clinical concern because it can result
in underexpansion of the stent, which increases the risk of stent
thrombosis.

OCT image analysis has already become the most speed-
limiting step in the CHD risk-evaluation process. This is be-
cause current OCT image analysis is still a frame-based process
involving time-intensive manual image segmentation and quan-
tification. Appropriate automatic image processing, if possible,
would greatly increase the efficiency of image analysts, enabling
them to focus on the more important decision-making tasks.
One such example is the automatic lumen segmentation already
utilized in commercial OCT systems (LightLab Imaging Inc.,
Massachusetts, Westford). Tearney et al. performed automatic
quantification of macrophages in OCT images16 and utilized this
method in 3-D visualization of a coronary artery.17 But overall,
few automatic image segmentation or quantification methods
for intracoronary OCT applications were reported. In particular,
no automatic methods are available for CP assessment by OCT.
As intracoronary OCT is becoming a mature imaging modality
for diagnosis of vulnerable plaques or evaluation of coronary
stenting, rapid and accurate quantification of CP can greatly im-
prove the efficiency of OCT-based CHD risk evaluation or stent
intervention in clinical environments.

The purpose of this study is to demonstrate a semiautomatic
method for segmentation and quantification of CP in coronary
artery OCT images. The method is “semiautomatic” because the
starting and ending frames of the image stack containing CPs
are manually preselected as the input to the algorithm. After seg-
mentation, false-positive (FP) regions are manually removed by
single mouse clicks. No manual input of initial contours or seed
points are required nor are any training images needed. The
design aims at minimizing operator interactions involved and
serves as an important milestone toward a fully automatic ap-
proach. The method consists of a series of sequential procedures,
including preprocessing, CP localization, CP segmentation, and
postprocessing, and finally provides clinical relevant quantita-
tive measures of CP, including depth, area, angle fill fraction
(AFF), and thickness.11

2 Experimental Methods
2.1 OCT Images
Images used in this study were collected by LightLab
prototype Fourier-Domain OCT (FDOCT) systems (CV-M4,
LightLab Imaging Inc., Massachusetts). The system is equipped
with a tunable laser light source with a center wavelength of
1310 nm and full-width-at-half-maximum bandwidth of 80 nm,
providing ∼15-μm axial resolution in air. The lateral resolution

is ∼30 μm. The scan characteristics of the M4 system are
100 fps, 45,000 lines/s, 456 lines/frame, 20-mm/s pullback, and
5-mm scan range in air (3.8 mm in saline).

All the intracoronary OCT images were acquired from
the database in the image reading center at the Core Lab
(Harrington-McLaughlin Heart & Vascular Institute, University
Hospitals Case Medical Center, Cleveland, Ohio). Stents were
implanted in a large spectrum of clinical presentations varying
from asymptomatic to acute myocardial infarction patients. OCT
images from nine pullbacks (eight patients) were arbitrarily se-
lected from our database. Out of these images, only nonstented
segments containing CPs were selected (∼10% of the total im-
ages). Frames with substantial luminal blood, unclear lumen,
or inadequate contrast for CP recognition by human observers
were excluded. This gave a total of 106 images used for analysis
and validation. The rectangular-view raw data, instead of the
end-user polar-view images provided by the LightLab worksta-
tion, were log transformed and then used as the starting point
for automatic image analysis.

2.2 Manual Classification of CPs
CPs were manually detected and classified for further validation
experiments. The signal-poor regions and sharply delineated
borders,15 as shown in Fig. 1(a), are the two primary features
of CP. One limitation of the current intravascular OCT sys-
tem is that the imaging probe is delivered by a standard guide
wire, which may block the CP being imaged. Depending on the
guide wire’s position, CPs are classified as GW0 if not blocked
[Fig. 1(a), 8 and 12 o’clock], GW1 if they only appear on one
side of the guide-wire shadow [Fig. 1(a), 3–5 o’clock], and
GW2 if they appear on both sides of the shadow [Fig. 1(b)].
We name the near-lumen CP border as the inner border (IB),
and the far-lumen CP border as the outer border (OB) (Fig. 1).
Because of the limited penetration depth of infrared light, the
CP is categorized as C-OB if its OB is clear, and UnC-OB if the
arc of its unclear part OB is ≥30 deg (the center of the arc is
the centroid of lumen). CPs blocked by the guide wire or hav-
ing unclear OB impose additional challenges for manual and
automatic segmentation.

(a) (b)

*
*

Fig. 1 Polar OCT images containing CPs. IB is near the lumen (arrows)
while OB is far from the lumen (arrow heads). Stars refer to the guide
wire. (a) CPs with clear OB. The CP at 3–5 o’clock is partially blocked
by the guide wire (GW1). (b) The OB of a large CP is clear from 7 to12
o’clock, but is obscured from 12 to 2 o’clock. The CP is truncated by
the guide wire shadow at 12–1 o’clock (GW2).
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2.3 Validation Experiments
Two independent expert OCT image observers blinded to auto-
matic segmentation results were involved in the manual contour
tracing process, which was performed on commercial LightLab
OCT workstations. OCT observer 1 finished all 106 images,
while OCT observer 2 randomly analyzed 63 of the 106 im-
ages. The 63 images were used to evaluate interobserver and
computer-observer variability. Automatic and manual segmen-
tation results were compared using a Dice coefficient (DSC),
defined as DSC = 2 |A ∩ M | /(|A| + |M |), where A and M are
the automatic and manual binary segmentation results, respec-
tively. A more stringent metric, Hausdorff distance19 was also
used to assess the performance. It is defined as the maximum
of the set of minimum distances between the points on two
boundaries. The Williams Index (WI)19 was utilized to evaluate
the ratio of the average human-human agreement to the average
computer-human agreement. Quantitative parameters derived
from the automatic and manual segmentation results were com-
pared, and the mean and standard deviation of the differences
were reported.

3 Image Analysis Algorithm
Figure 2 summarizes the entire image analysis algorithm. After
the preprocessing steps, including segmentation of the lumen,
guide wire, and arterial wall, the CP was localized by edge
detection and traced using a combined intensity and gradient-
based level-set model. Postprocessing and quantification were
then performed based on the segmentation results.

3.1 Preprocessing
3.1.1 Lumen segmentation

A binary image was generated from the input rectangular view
image using Otsu’s automatic thresholding method,18 and this
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Fig. 2 Flowchart of the entire method. Following segmentation of the
lumen, guide wire, and arterial wall, the CP was localized by edge
detection and traced using an active contour model. Quantification
was performed based on the segmentation results.

(a) (b)

Fig. 3 Illustration of lumen segmentation: (a) BSL after automatic
thresholding and morphological processing of original image and
(b) automatic segmentation of lumen contour.

produced three large structures: the arterial wall, the guide wire,
and the sheath of the catheter. The guide wire and catheter sheath
were removed by applying an area constraint (i.e., any isolated
region with an area smaller than a threshold was removed). A
morphological closing was used to fill in small holes inside
the arterial wall, generating a bright superficial layer (BSL),
the polar view of which was shown in Fig. 3(a). The border
of the lumen was easily identified by searching the first BSL
pixel in the light-propagation direction along each A scan in
the rectangular view. The lumen edge may break into several
segments due to presence of guide wire or side branches. The
piecewise border of the lumen was connected by interpolation of
the missing border, which became a smooth contour after polar
transformation [Fig. 3(b)].

3.1.2 Guide wire segmentation

The guide wire is highly reflective and manifests itself in OCT
images as a bright body protruding into the lumen with a long
shadow behind it (Fig. 1). Our guide-wire segmentation tech-
nique exploits these two characteristics. It can be seen that the
guide-wire shadow is a gap in the BSL. If more than one gap is
present (e.g., a side branch), then the gap with the brightest pixels
(guide-wire body) along the A lines within the gap is considered
to be the guide-wire shadow. If the guide wire is misidentified
in an individual frame, then the detected guide-wire position of
individual frames can be reconciled by morphological opening
along the longitudinal direction. After the guide wire is detected,
all the A lines of the guide-wire shadow are excluded from fur-
ther analysis.

3.1.3 Arterial wall segmentation

Adventitia is commonly, but not always, seen in OCT im-
ages, depending on the thickness of intima and the presence
of plaques. The presence of CP will hide the adventitia inter-
face [Fig. 4(a)] due to light attenuation. The aim of arterial wall
segmentation is to exclude the adventitia tissue from the CP
search region because adventitia may generate FP responses in
CP localization. Apart from relatively low intensity and edge
information, which may be shared by CP as well, the unique
texture was used to exclude adventitia. We applied a texture-
based level-set model following the work of Sandberg et al.19

and Cham and Vese.20 Texture information was extracted using
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1mm

(a) (b)

Fig. 4 (a) An OCT image containing adventitia (arrow) and a CP
(9 o’clock). (b) Arterial wall segmentation result. Arrow head: pre-
defined contour depth limit. The yellow contour indicates the ROI
after arterial wall segmentation. Note that the guide wire shadow was
removed from the ROI.

Gabor filters19, 21 with five orientations (60, 75, 90, 105, and
120 deg; angles were with reference to the incident light). This
resulted in five different texture images, which were incorpo-
rated into a vector-based energy function in the active contour
model. The active contour framework was similar as that used
in the CP segmentation step and will be discussed in detail in
Section 3.3. The contour was initialized to the lumen contour
as shown in Fig. 3(b); it evolved based on the texture informa-
tion of the image and stopped at the boundary where the texture
difference between the regions outside and inside the contour
was maximized. Before arterial wall segmentation, the contour
depth limit was set as ∼2 mm [Fig. 4(b)].

3.2 CP Localization
The localization was conducted in rectangular view images and
based on edge detection, the purpose of which was also to pro-
vide a gradient image for the active contour model in the follow-
ing segmentation step. Before edge detection, the original image
was smoothed by a median filter to reduce speckle noise. A spe-
cial matched filter22 was designed to detect the CP boundary
[Fig. 5(a)]. The edge detection was performed in a sequential
approach. First, the strong IB in the rectangular view was de-
tected by the filter rotating from –15 to 15 deg by a 5-deg interval
(angles were with reference to the incident light), and the max-
imum response at each pixel was set as the final gradient value
for that pixel, thereby generating a gradient image. A binary

-3  -2  -1  0  1  2  3
-3  -2  -1  0  1  2  3
-3  -2  -1  0  1  2  3
-3  -2  -1  0  1  2  3
-3  -2  -1  0  1  2  3
-3  -2  -1  0  1  2  3
-3  -2  -1  0  1  2  3

(a) (b) (c)

Fig. 5 (a) The matched filter used for edge detection. (b) Binary edge
image. The edges of the guide wire detected in the guide wire segmen-
tation step were also kept for making up the GW1/2 CP edge that was
blocked by the guide wire. (c) The initial contour generated from the
binary edge image by morphological dilation.

edge mask was obtained by hysteresis thresholding.23 A hori-
zontal Prewitt operator was then used to fix any possibly missed
extremely shallow IB with a depth smaller than the size of the
matched filter. The gradient image for OB was obtained follow-
ing the same procedure but by the filter oriented along different
directions. The corresponding binary edge image was generated
such that only the edges connected to or were behind the IB
were included. The final gradient image and binary edge image
were obtained by combining the individual responses from IB
and OB together [Fig. 5(b)].

After edge detection, the Region of Interest (ROI) was up-
dated by locating edge aggregations along the arterial wall. Once
the binary edge area within a 40-deg segment translating the
vessel wall exceeded a threshold of 0.02 mm2, the segment was
marked as the initial ROI. The segment length was increased
until there was no change in edge intensity and was stored as
the final ROI for the CP.

3.3 CP Segmentation Based on an Active Contour
Model

We used a level-set approach based on the work of Li et al.24

and Chan and Vese.20 The initial contour was created from the
polar transformed binary edge image by morphological dilation
[Fig. 5(c)]. We define φ as a signed distance function (SDF) with
its zero-level curve represented by C = {(x, y)|φ = 0}. φ < 0
if φ is outside C and φ > 0 if φ is inside C . The initial contour
C0 is driven to the desired CP boundary by minimizing the
following energy term:

E = μ

∫
�

1

2
(∇φ − 1)2dxdy + λ

∫
�

g′δ(φ)|∇φ|dxdy

+ υ

∫
�

g′ H (−φ)dxdy + κ

(∫
�

|I0(x, y) − c1|2 H (φ)dxdy

+
∫

�

|I0(x, y) −c2|2(1−H (φ))dxdy

)
, (1)

where δ(φ) is a 2-D smoothed Dirac function; H is the Heav-
iside function; I0 is the original polar transformed image after
removing the A lines of the guide wire; g′ = 1/(1 + g), where
g is the gradient image from the edge-detection step; C1 is the
average intensity inside C; and c2 is the average intensity of
an outer ring of thickness w surrounding C; and μ, λ, ν, and
κ are weighting terms. The first term is to keep φ as a SDF.
The second term is a length term regulating the smoothness of
the contour. The third term is an area term indicating whether
the curve will grow or shrink. In our implementation, it was set
positive to shrink the contour. The fourth term contains region-
based intensity information. κ is adaptively changed such that
the evolving contour is first driven by the gradient term and then
driven by both the gradient and intensity term toward the desired
CP boundary, where the gradient value is high and the intensity
difference between the regions outside and inside the boundary
is maximized.

The evolving contour was stopped if it hit the boundary in
the binary edge image and its speed was close to zero. Unlike
traditional level-set methods, the starting contour C0 was ini-
tialized not as one SDF but as nSDFs, where n was the number
of separate regions in C0. The stopping criterion for every SDF
was evaluated separately. Each SDF used the same parameters,
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defined above, and evolved independently. Because of the flex-
ible topology of the level set and the positive value of the area
term, existing SDFs could have broken into multiple contours.
In these cases, each separate contour was reinitialized into a
daughter SDF and began its own evolution. Because tiny cal-
cified lesions are assumed to be of little clinical relevance, any
contour islands <0.03 mm2 were removed during the contour
evolution process.

A slightly different energy function [Eq. (2)] was used for
arterial wall segmentation in Section 3.1.3,

E = μa

∫
�

1

2
(∇φ − 1)2dxdy + λa

∫
�

δ(φ) |∇φ|dxdy

+υa

∫
�

1

1 + DM
H (−φ)dxdy

+ κa

(
1

N

N∑
i=1

{∫
�

∣∣T i
0 (x, y) − ci

1

∣∣2
H (φ)dxdy

+
∫

�

∣∣T i
0

(x, y) − ci
2

∣∣2
[1 − H (φ)]dxdy

})
. (2)

In the energy term, the gradient image g′ is removed and I0 is
replaced by T0, the texture images after Gabor filtering along
different orientations. The model becomes a vector-based active
contour model25 [see Eq. (2)]. In addition, a distance map DM
obtained by two-dimensional Euclidean distance transformation
of the binary lumen image is incorporated to expand the con-
tour while anchoring the contour origin inside the lumen. The
coefficient for the area term was set as negative to expand the
contour. The thickness of the ring for calculating c2 is indicated
by wa (not shown in Eq. (2)), μa, λa, νa, and κa are constants.

3.4 Postprocessing
If there were segmented regions on both sides of the guide-wire
shadow, the gap between the two separate regions was padded
by interpolation to restore the part of the CP blocked by the
guide wire (case GW 2). Because it is very unlikely for a CP
to appear in one single frame, any CP that did not appear in
adjacent frames was removed. All the longitudinally connected
regions were labeled as one CP, and other unconnected regions
in individual frames were labeled in a clockwise order, starting
from 12 o’clock. FP regions were manually removed before the
validation and quantification.

3.5 Quantification
Four quantitative measures, the depth, area, thickness, and AFF
were calculated automatically. The calculation of area was triv-
ial. The depth, thickness, and AFF were all calculated with
reference to the centroid (indicated by O) of the lumen for each
individual CP. Figure 6 illustrates the methodology. The depth
and thickness are defined as

Depth = 1

n

n∑
i

Di Thickness = 1

n

n∑
i

Ti , (3)

where n is the maximum number of the nonoverlap rays radiating
from O spanning across the CP. The AFF θ is the largest angle
between the spanning rays.

1mm1mm

O

Fig. 6 Quantification metrics. The yellow dotted lines radiating from
the centroid of the lumen serve as the direction along which the depth
and thickness are measured. The red and green double arrows indicate
the depth and thickness measurement, respectively. AFF is the largest
angle between the rays across the CP boundaries. (Color online only.)

4 Results
4.1 Determination of Algorithm Parameters
All the input images or intermediate images used during the
image processing were normalized to the 0–1 range. All the
thresholds used in the method were either represented in ab-
solute unit, which was proportional to the size of the original
image, or in relative unit, represented by r%, indicating that
the brightest r% pixels of the original images were kept after
thresholding. Suppose the size of the input raw image (rectangu-
lar view) was M×N , the size of the polar transformed image was
P×P , we generally chose the area constraint used in the lumen
segmentation to be 0.016M N . The intensity threshold for edge
detection was 1%, and the threshold for capturing the edge ag-
gregations was set as 0.002M N . The coefficients of the energy
terms in the CP segmentation and the arterial segmentation steps
were chosen as follows: w = 0.02P , μ = 0.02, λ = 20, υ = 1,
and κ = 5 if there was no overlap between the evolving con-
tour and the lumen; κ = 0 otherwise, wa = 0.08P , μa = 0.02,
λa = 15, υa = −15, and κa = 100.

4.2 Lumen Segmentation and Guide Wire
Segmentation

Although lumen segmentation and guide-wire segmentation are
not the primary focus of this study, they do serve as the basis
for CP segmentation and quantification. Comparison between
automatic lumen segmentation and semiautomatic lumen tracing
on LightLab OCT workstations (automatic lumen tracing with
manual postcorrection) revealed high accuracy (Table 1). The
performance of the guide-wire segmentation was evaluated by
observation. The segmentation result was considered correct if
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Table 1 Lumen and guide wire segmentation results.

Lumen Segmentation Guide Wire Segmentation

Dice Coefficient Hausdorff Distance Accuracy

0.97 ± 0.015 0.07 ± 0.05 mm 100%

the detected guide-wire shadow agreed with the real position.
An accuracy of 100% was achieved.

4.3 CP Segmentation, Validation, and
Quantification

Out of the 106 images, a total of 138 CPs were identified and
traced by both human observers. The algorithm segmented all
the CPs, but also gave 88 FP regions. All the longitudinally
connected FPs were removed at once by a single mouse click
on the FP regions.

Figure 7 shows three examples of automatic segmentation
results. Figure 7(a) contains three CPs with clear OB. Although
the CP at 3–4 o’clock is partly blocked by the guide wire, the
effect on the automanual agreement is negligible. We show in
Fig. 7(e) that our method can guess and approximate the part of
the CP blocked by the guide wire. A FP region is also shown at
1–2 o’clock. We next demonstrate the performance of the

0
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0.5

0.6

0.7
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0.9

 

 

Dice Coefficient

* *

C-OB UnC-OB        GW0/1 GW2 Total

Fig. 8 Dice coefficient for CPs with or without a clear outer border
(C-OB or UnC-OB), blocked (GW1, GW2), or not blocked (GW 0) by
the guide wire, and total. *P < 0.01 (unpaired Student t-test).

method on a large CP with irregular shape and unclear OB
[Fig. 7(f)]. A large disagreement between humans and computer
appears on the OB.

We evaluated the performance of the method on different
categories of CP as shown in Fig. 8. Out of the 138 CPs,

(a) (b) (c)

(d) (e) (f)

Fig. 7 (a–c) Original images and (d–f) corresponding manual and automatic segmentation results. Red: observer 1; blue: observer 2; yellow:
automatic method. The CPs in (a) and (b) have clear OB, and the CP in (c) has unclear OB. The CPs in (b) and (c) are blocked by the guide wire. A
false positive region is also shown in (e). (Color online only.)
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Fig. 9 WI calculated from (a) Dice coefficient and (b) Hausdorff distance. If WI is close to 1, then the agreement between the automatic method
and humans is close to that between humans.

48 of them were blocked by the guide wire (GW2) and 77
of them had unclear OB. The DSC for C-OB is significantly
higher than UnC-OB (unpaired Student’s t-test: P < 0.01).
The method also performed better on GW0/GW1 than on GW2
(P < 0.01). The overall DSC for all the CPs is 0.78 ± 0.09.
In comparison, the DSC between two human observers is
0.89 ± 0.07.

Figure 9 shows the WI calculated based on DSC and
Hausdorff distance (HD), respectively. The higher WI for C-
OB compared with UnC-OB, and that for GW0/GW1 compared
with GW2 indicates that there is more disagreement between
computer and humans than human and human for UnC-OB and
GW2. However, an overall WI of 0.85 for DSC and 0.7 for
HD suggest reasonable agreement between the automatic and
manual segmentation.

Because there is a large interobserver variability for UnC-
OB or GW2 CP segmentation, we only performed quantifica-
tion in CPs with a clear outer border and no guide-wire over-
lap (42 CPs). Individual measurements of each CP are shown

in Fig. 10. The area, AFF, and thickness of the CPs have a
large distribution, while the depth is constrained within a shal-
low layer under the lumen. Table 2 gives the unsigned and
signed differences between the automatic and manual method
in both absolute and relative units. Overall, accuracies >80%
are achieved for all the quantitative measurements except for the
depth measurement, which results in a 23.9% unsigned error.
Also, there is insignificant bias except the depth measurement.
Figure 10(c) indicates that the automatic method tends to over-
estimate the depth of very superficial CPs.

4.4 3-D Visualization
Figure 10 shows a 3-D rendered coronary artery segment from
one of the data sets used in this study. A comparison be-
tween the manual and automatically rendered CP was shown in
Figs. 10(a) and 10(b). Although there are segmentation errors in
single frames, automatically rendered CP does not differ signif-
icantly from the manual result.
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Fig. 10 Quantification results for each CP with clear outer border and no guide wire overlap: (a) Area, (b) AFF, (c) depth, and (d) thickness.
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Table 2 Mean ± standard deviation of quantitative measurement differences between the automatic and manual method for CPs with clear outer
border and no guide wire overlap.

Area AFF Depth Thickness

Unsigned Absolute 0.12 ± 0.13 mm2 7.6 ± 9.8 deg 0.04 ± 0.04 mm 0.06 ± 0.07 mm

Relative 15.4 ± 15.6% 13.4 ± 17.4% 23.9 ± 23.9% 14.3 ± 16.7%

Signed Absolute 0.06 ± 0.18 mm2 0.5 ± 12.4 deg 0.05 ± 0.05 mm 0.01 ± 0.10 mm

Relative 7.9 ± 22.4% 0.9 ± 22.0% 32.2 ± 33.4% 3.3 ± 24.4%

5 Discussion
5.1 Limitations of CP Segmentation and Potential

Improvement
In clinical applications, OCT images can be noisy, bad quality, or
simply do not exhibit the typical tissue characteristics discussed
above. We evaluate some possible circumstances when each part
of the algorithm might fail and provide corresponding strategies
if possible.

5.1.1 Lumen segmentation

The catheter may be erroneously identified as vessel wall when
they are in contact with each other. One approach to correct the
catheter artifact is to apply prior information of the catheter size.
A more complicated case is when there is substantial luminal
blood in contact with the arterial wall. If so, manual interaction
is required.

5.1.2 Arterial wall segmentation

If the adventitia exists but does not exhibit the typical texture
similar to that shown in Fig. 4, the arterial wall segmentation
algorithm may fail and FP may be generated. Research is being
conducted to develop a more robust method for arterial wall
segmentation. For example, more texture features of the adven-
titia can be included and built into a classification scheme and
the smoothness of the contour in 3-D space also adds more
information.

5.1.3 CP edge detection

When most of the CP IB is in contact with the lumen border, the
edge-detection algorithm may fail because the IB could not be
differentiated from the lumen border. Under such circumstances,
users may provide some auxiliary points on the IB to help the
algorithm identify the CP.

5.1.4 Level-set segmentation

The algorithm tends to fail around the connecting region be-
tween the IB and OB. The CP boundary here is usually blurred
due to its relatively parallel direction to the incident light and
is even completely missing in some cases [e.g., Fig. 7(f)].
Often, this region extended into the surrounding tissue without
intensity changes and neither the gradient term nor the intensity
term could easily stop the algorithm at the desired boundary.

As shown in Figs. 8 and 9, the algorithm also performs less
satisfactorily for GW2 or UnC-OB, which are also difficult
for humans, as indicated by the relatively low DSC between
the two observers (0.88 ± 0.07 for GW2 and 0.86 ± 0.06 for
UnC-OB). Collectively, these results indicate that unlike lumen
segmentation, the CP segmentation is intrinsically much more
complex.

5.1.5 FP generation

One limitation of our automated segmentation is the occurrence
of FP, which may result from oversensitive parameters set in
the edge-detection procedure and also because the tissue struc-
tures have similar appearances as CP. Figure 7(e) gives such an
example. The FP has a similar dark region as CP but with a
more diffuse border. Its specific tissue type remains unknown
due to the lack of histology. Besides such unknown dark struc-
tures, side branches and small pieces of adventitia tissue without
the typical texture shown in Fig. 4 may also cause FPs. In our
method, removal of FPs was performed manually with a single
mouse click. This does not complicate the process significantly
because all longitudinally connected regions can be removed
at once. Additional analysis may enable achievement of full
automation. One possibility is post-tissue classification using
image features extracted from the isolated segmented regions to
remove FPs. Or, a separate automatic CP detection technique
may be considered.

5.2 Quantification and 3-D Volumetric Analysis
We demonstrated that coronary CPs with clear OB and no guide-
wire overlap can be quantified automatically with adequate
accuracy. The absolute unsigned error of the automatic depth
measurement is only 0.04 ± 0.04 mm, approximately twice as
much as the OCT resolution. However, this represents a rela-
tive error of 23.9 ± 23.9% because the average depth is only
0.17 ± 0.09 mm. When the IB protrudes into the luminal sur-
face, the estimated border is always below the luminal bound-
ary, thus resulting in a large signed error of the automatic depth
measurement. As for other measures, the AFF is analogous to
the calcium arc used in IVUS.11 The area serves as the ba-
sis for 3-D volumetric analysis (Fig. 11). In our method, the
lumen, guide wire, and CP are all segmented automatically,
enabling automated 3-D rendering of an entire calcified coro-
nary artery segment within seconds, which is practical for the
clinical environment.
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(a) (b)

(c) (d)

Fig. 11 3-D rendering of a volumetric OCT image set: (a) 3-D render-
ing from manual segmented CP and (b) 3-D rendering from automatic
segmented CP. Lumen and guide wire are automatically segmented in
both (a) and (b). (c, d) Fly-through view of automatic segmentation re-
sults at different zoom levels. White: CP; blue: guide wire; and orange:
coronary arterial wall. The intima layer blocked by the guide wire is
not rendered, while the underlying CP is rendered.

5.3 Clinical Implications
It is generally accepted that coronary artery calcification in-
creases with the extent and severity of atherosclerosis, and
its progression may correspond with cardiovascular event
rates.1–5,11 Currently, the coronary calcium score calculated by
multiplying the CP area by an X-ray attenuation coefficient8 is
routinely evaluated by cardiac CT to predict the total plaque
burden of a patient. With superior resolution and the ability to
penetrate calcium, OCT provides the potential for more pre-
cise volumetric calcium assessment. Furthermore, in addition
to the numerical calcium score, the morphological information
as provided by OCT may reveal more about the role of calcifi-
cation associated with atherosclerosis. Automatic segmentation
and quantification will be important for volumetric calcium as-
sessment by OCT.

Superficial CP plays a determinant role in successful stent
deployment. Compared to IVUS and CT, OCT has the unique
capability to quantify the depth and thickness of superficial CP.
Over half the CPs involved in this study had a depth lower
than the resolution of IVUS (<0.2 mm). The thickness of most
CPs was <0.7 mm [Fig. 10(d)], which could not be resolved
by CT. As an example, the spatial resolution of the EBCT and
MDCT used in the large multi ethnic study of atherosclero-
sis (MESA) was 0.68×0.68×3.00 mm and 0.68×0.68×2.50 mm,26

respectively. Superficial CP may cause underexpansion of the
stent, but what degree of superficial CP requires additional treat-
ment remains unknown. The thickness of CP directly determines
whether rotational atherectomy should be used to expand the
vessel before coronary stenting and therefore affects the success
rate associated with the procedure. Automatic CP quantifica-
tion by OCT brings new information for interventional strate-
gies, especially for a decision on the necessity of rotational
atherectomy.

Another application of our method is for plaque characteriza-
tion. A recent study27 has shown that different types of plaques
(fibrous, lipid, and calcified) can be classified based on com-
bined backscattering and attenuation coefficients. An important
prerequisite for accurate plaque characterization is that indi-
vidual plaque types should be isolated for fitting the first-order
scattering model.27, 28 In addition, some plaques are in nature
mixed together (e.g., fibrocalcified plaque). The automatic seg-
mentation of CP may facilitate the automation of the plaque
characterization process.

5.4 Conclusions
We demonstrated for the first time that the coronary CP in
OCT images can be segmented and quantified by the proposed
semiautomatic method. This will contribute to the general volu-
metric calcium assessment and superficial calcium evaluation
for necessity of rotational atherectomy before percutaneous
coronary intervention.
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