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Abstract. Cancers of oral cavities are one of the most common malignancies in India and other south-Asian coun-
tries. Tobacco habits are the main etiological factors for oral cancer. Identification of premalignant lesions is
required for improving survival rates related to oral cancer. Optical spectroscopy methods are projected as
alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal,
premalignant, and malignant oral ex-vivo tissues. We intend to evaluate potentials of Raman spectroscopy in detect-
ing premalignant conditions. Spectra were recorded from premalignant patches, contralateral normal (opposite to
tumor site), and cancerous sites of subjects with oral cancers and also from age-matched healthy subjects with and
without tobacco habits. A total of 861 spectra from 104 subjects were recorded using a fiber-optic probe-coupled
HE-785 Raman spectrometer. Spectral differences in the 1200- to 1800-cm−1 region were subjected to unsuper-
vised principal component analysis and supervised linear discriminant analysis followed by validation with
leave-one-out and an independent test data set. Results suggest that premalignant conditions can be objectively
discriminated with both normal and cancerous sites as well as from healthy controls with and without tobacco
habits. Findings of the study further support efficacy of Raman spectroscopic approaches in oral-cancer
applications. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105002]

Keywords: oral cancer; premalignant lesions; optical spectroscopy; in vivo Raman spectroscopy; LDA; leave-one-out.

Paper 11685SS received Nov. 24, 2011; revised manuscript received Mar. 3, 2012; accepted for publication Sep. 4, 2012; published
online Oct. 1, 2012.

1 Introduction
Oral cancer constitutes about 10% of all cancer cases in India
and is most common cancer among males. Despite significant
advances in treatment modalities, the five-year disease-free sur-
vival rate is around 50 percent, which is often attributed to the
late detection of disease.1 Squamous cell carcinoma is the most
common representing 90% to 95% of all oral malignancies.
Oral squamous cell carcinomas are preceded by clinically visi-
ble changes in oral mucosa, which are termed as premalignant
lesions and conditions. Common precancerous conditions asso-
ciated with oral cavity are leukoplakia, erythroplakia, oral sub-
mucous fibrosis, erosive lichen planus, and changes associated
with sideropenic dysphagia. Surveillance and biopsy of precan-
cers are mammoth tasks, especially in populous countries like
India. For example, incidence of leukoplakia itself is up to 1%
of general population. Clinical examination followed by
microscopic examination of biopsies, studying morphological
alterations in the architecture, and arrangement of epithelial
strata is the current practice of diagnosis of premalignant pathol-
ogies. The premalignant pathosis are reported as varying grades
of dysplasia, which ranges from mild to severe depending
upon histopathological parameters suggested for denoting the
grades of dysplasia. But it lacks accuracy, reproducibility,
and requires significant experience on part of the clinician.
Marked inter-observer subjectivity among the pathologists
while reporting the grades of dysplasia is the greatest obstacle
in accurately diagnosing and predicting the treatment outcome

of premalignant pathologies. The biopsy procedures are trau-
matic, painful, and time consuming. It has also been shown
that early diagnosis leads to better prognosis, i.e., increased five-
year survival rates up to 90%. Hence it would be ideal to have
a noninvasive tool for risk characterization, which can be used
even in those areas where expert clinicians or pathologist may
not be available.

Optical-based diagnostic aids are promising new technolo-
gies for improving screening and detection of epithelial malig-
nancies in several organ sites. During oral carcinogenesis
structural and biochemical changes occur in both the epithelium
and stroma altering the optical and biological properties of
dysplastic and cancerous tissue. These changes act as molecular
signatures and optical methods like fluorescence, Raman and
Fourier-transform infrared spectroscopy can exploit the same
for classification of cancerous and normal conditions.2–7

Raman effect is based on inelastic scattering of photons
where energy is exchanged between incident light and the mole-
cule leading to change in wavelength. Only a tiny fraction of
photons show this behavior resulting in weak Raman signals.
High fluorescence background is an additional problem for
biological specimens. With the invention of lasers and sensitive
detectors such as charged-coupled-devices (CCDs), Raman
spectroscopy of weakly scattering substances such as tissues
is now possible. Further, use of excitation photons in near
infrared region reduces fluorescence interference from biologi-
cal tissues. Use of optical fibers for guiding laser light to the
desired site and to collect Raman photons facilitates in vivomea-
surements.8–10 Raman spectroscopic differentiation of normal
and cancerous conditions of prostate, esophagus, skin, cervix,Address all correspondence to: C. Murali Krishna, Chilakapati Laboratory,
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and other forms of cancer have already been reported in the lit-
erature.10–15 As far as oral cavity is concerned, very few studies
including ours have shown potential in recording good quality in
vivo Raman spectra under clinically implementable time.16,17 In
a recent study we have demonstrated that contralateral normal
and cancerous sites in oral cancer subjects can be discriminated
by in vivo Raman spectroscopy.18 In the present study we have
aimed to evaluate potentials of Raman spectroscopy in discrimi-
nating premalignant conditions. We have recorded in vivo spec-
tra from premalignant patches, contralateral normal, and
cancerous site of malignant subjects as well as of healthy con-
trols with and without tobacco habits. Spectra were subjected to
multivariate tools unsupervised principal component analysis
(PCA) and supervised linear discriminant analysis (LDA) fol-
lowed by evaluation with leave-one-out cross-validation
(LOOCV) and independent test data. Findings of the study
have been discussed in the paper.

2 Materials and Methods

2.1 Sample Details

A total of 104 subjects under four categories, subjects with oral
cancer, subjects with oral cancer and premalignant patches, age-
matched healthy controls without any history of tobacco use,
and healthy habitual tobacco users were recruited in the
study. Spectra were recorded on tumor and opposite normal
site of subjects with buccal mucosa cancerous lesion, which
are referred to as “tumor” and “contralateral normal,” respec-
tively. We have also recorded spectra from healthy subjects
with and without tobacco habits referred to as “habitual tobacco
users” and “healthy controls,” respectively. Informed written
consent of each participant was taken. History of all subjects
was documented to ensure cause of cancer as well as type
and duration of tobacco habits. Subjects only with tobacco-
related cancers were recruited in the study. Median age of sub-
jects with oral cancer, cancer subjects with premalignant
patches, habitual tobacco users, and healthy control were 46,
51, 41, and 50 years of age. To ensure uniformity in spectral
acquisition, spectra were recorded from opposing buccal sur-
faces of canine, first premolar, second premolar, first molar,
and second molar on both right and left sides. On an average
eight spectra (four from contralateral mucosa and four from
tumor) from 50 subjects with oral cancer corresponding to
215 spectra from contralateral normal side and 225 from
tumor side were recorded. For 30 healthy controls (15 with
and 15 without tobacco habits) on an average 10 spectra
from right and left buccal mucosa corresponding to 150 each

from habitual tobacco users and healthy controls were recorded.
Tobacco habits of these subjects were recorded and subjects
with smoking habits ≥10 years were recruited. Average time
of tobacco habit was ∼14.3 years. A total of 121 spectra
from premalignant patches on contralateral side of 24 subjects
with oral cancer were also recorded. To avoid any differences
because of the mouth environment, subjects were allowed to
wash their mouths with water before spectral acquisition.
These details are also summarized in Table 1.

The lesions were diagnosed clinically and verified histo-
pathologically by incisional biopsy from the tumor site. Normal
mucosa, i.e., healthy controls and habitual tobacco users, and
premalignant patches were verified by clinical assessment by
a trained senior oral pathologist. No biopsy was taken from nor-
mal mucosa owing to ethical limitations.

In view of interlesional and intralesional variability in a tis-
sue, each of the 861 spectra was treated as individual sample.
This is due to the fact that clinically homogenous appearing
pathologic patches can be heterogeneous at microscopic
view. Also often an epithelial tissue specimen can have adjacent
normal and anaplastic regions, therefore a pathologist has to
examine several sites to decide a sample as normal or abnor-
mal.19,20 Moreover, for prospective RS applications like surgical
demarcation, which requires knowledge on exact boundaries of
malignancy, such an approach would be more practical.

2.2 Raman Spectroscopy

In vivo spectra were recorded with a fiber-optic probe coupled
HE-785 commercial Raman spectrometer (Jobin-yvon-Horiba,
France). Briefly, this system consists of a diode laser (Process
Instruments) of 785-nm wavelength as excitation source, a high-
efficiency (HE) spectrograph with fixed 950 gr∕mm grating
coupled with CCD (Synapse). The instrument has no movable
parts and spectral resolution as per manufacturer’s specification
was ∼4 cm−1. Commercially available InPhotonics (Inc, Downy
St. USA) probe consisting of 105-μm excitation fiber and 200-
μm collection fiber (NA-0.40) was used to couple excitation
source and detection system. As per specifications of manufac-
turer of the Inphotonics probe, theoretical spot size and depth of
field are 105 μm and 1 mm, respectively. Equal distance during
spectral acquisition for all measurements was maintained by
adding a spacer at the tip of the probe. To avoid contamination
among subjects prior to record spectra from any individual
probe was disinfected with CIDEX (Johnson and Johnson,
Mumbai, India) solution. Spectral acquisition parameters
were λex-785 nm, laser power-80 mW, spectra were integrated

Table 1 Summary of total number of cases analyzed in the study.

Sr.
no. Category Site

Median
age

Total no. of
spectra/cases

Spectra/cases used
for standard model

Spectra/cases used
for test prediction

1. Contralateral normal site of oral cancer subjects Buccal mucosa 46 yrs 215∕50 125∕27 90∕23

2. Tumor site of oral cancer subjects Buccal mucosa 46 yrs 225∕50 139∕27 86∕23

3. Premalignant patches on oral cancer subjects Buccal mucosa 51 yrs 121∕24 85∕18 36∕6

4. Healthy controls (no tobacco habits) Buccal mucosa 50 yrs 150∕15 100∕10 50∕5

5. Habitual tobacco users Buccal mucosa 41 yrs 150∕15 100∕10 50∕5
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for 3 s and averaged over three accumulations. Photographic
representation of the instrument is shown in Fig. 1.

2.3 Data Analysis

In vivo spectra from all five groups were corrected for CCD
response with a NIST certified SRM 2241 material followed

by subtraction of spectral contribution from optical elements.
To minimize influence of slow-moving background first deriva-
tive of spectra were computed using Savitzky-Golay method.
Typical spectrum at different preprocessing steps is shown in
Fig. 2. Our previous studies related to oral cancers have demon-
strated the utility of 1200 to 1800 cm−1 region in successfully
classifying normal and malignant conditions, we have used the

Fig. 1 Photographic representation of instrument set up used in the study.

Fig. 2 Spectral preprocessing for a typical in vivo spectrum (1200 to 1800 cm−1): (a) raw spectrum; (b) spectrum after CCD response correction;
(c) spectrum after background subtraction; (d) first derivative spectrum.
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same region for analysis.17,18 Further, this region is less influ-
enced from fiber interference.

Spectra in the 1200 to 1800 cm−1 region were then subjected
to unsupervised PCA as well as supervised discrimination ana-
lyses (LDA) using algorithms implemented in MATLAB based
in-house software.21 In the first step, unsupervised PCAwas per-
formed to bring out classification among different groups. Score
of factors were used for classification. These findings were also
verified by supervised PC-LDA using significant principal com-
ponents (P < 0.05) as input. In order to avoid overfitting of data
factors accounting up to ∼95% variance were chosen for LDA.22

Classification efficiency of standard models was evaluated by
LOOCV and independent test dataset. A summary of patient
accrual in designing the study is shown in Table 1.

Average spectra were computed from background subtracted
underivatized spectra for each class and baseline corrected by
fitting a fifth-order polynomial function. Baseline corrected
spectra were used for spectral comparisons among different
groups.

3 Results and Discussion

3.1 Spectral Features

Mean baseline-corrected spectra from contralateral normal-site,
age-matched healthy controls without any tobacco habit, prema-
lignant patches, habitual tobacco users. and tumor sites are
shown in Fig. 3. Spectral features from contralateral normal,
healthy controls, and habitual tobacco users are dominated
by lipid rich features indicated by C ¼ O band of esters, strong
δCH2 bend, two sharp features in amide III region, and a sharp
peak in amide I region. Tumor spectra are dominated by protein

bands indicated by broad amide III, broad and shifted δCH2, and
broad amide I. These findings corroborate earlier reports of ex
vivo and in vivo conditions.5–7,17,18,23,24 Spectra from habitual
tobacco users are also dominated by lipid bands but exhibit
minor differences, as compared with healthy controls, such as
a minor shift in amide III and δCH2 bend as well as broadening
of amide I region, which could suggest changes in protein sec-
ondary structures. Spectra from premalignant patches show
similarities such as broadening of amide III, amide I, and
δCH2 region with spectra from tumors. Long-term tobacco
use can cause an increase in the number of proliferating epithe-
lial cells in the upper-aero digestive tract of tobacco users lead-
ing to inflammation and can be considered as a preliminary
event for changes culminating in the development of oral
SCC.25 Spectral differences observed between healthy controls,
tobacco users, and contralateral normal could be due to varying
degree of hypercellularity, which can be considered as
indicative of transformation prone mucosa. Under normal con-
ditions, clear-cut stratification between different layers like
epithelium (superficial portion), lamina propria (subepithelial
connective tissue), and submucosa (deeper portion of connective
tissue) can be seen. Biochemically, lamina propria contains reti-
culin and collagen fibers, while submucosa is rich in adipose
tissue. In case of tumors or other pathological conditions,
there is loss in architectural arrangement of different layers;
therefore, loss of lipid features is expected as content of different
layers are mixed. In addition to this, pathological conditions
cells have large amounts of surface proteins, receptor proteins,
enzymes, antigens, and antibodies, which may give rise to a
protein-dominated spectrum.26 In our recent study we have
shown that architectural and morphological organization of tis-
sue components are the hallmark of spectral signatures.27

Observed variations in Raman spectra of normal and pathologi-
cal conditions could also be attributed to this.

3.2 Statistical Analysis

In first step 125 spectra from contralateral normal, 139 from
tumor site, and 85 from premalignant patches were pooled
and analyzed by PCA. It is an unsupervised method that
explores patterns in the data set. It decomposes spectra data
into a small number of independent variations called factors
and contributions of these factors to each spectrum are called
score. A total of 10 factors were used and score of factor 1
and 2 provided the best classification. Loading plots of the
same and scatter plot are shown in Fig. 4. Minimally overlap-
ping clusters belonging to normal, tumor, and premalignant
spectra were obtained. Since PCA is often used as a data over-
view tool, which helps in identifying trends and patterns in data,
supervised classification method LDA was also explored. It is
method of classification that maximizes variability between
groups and minimizes within group variability by maximizing
the ratio between-class variance to the within-class variance in
any particular data set. A total 24 factors contributing ∼95%
variance were chosen for analysis [Fig. 5(a)]. First, three factors
contributing maximum variance were visually analyzed to deter-
mine extent of partition among groups. Scatter plot shown in
Fig. 5(b) suggests that clusters belonging to spectra from pre-
malignant patches makes separate clusters as compared with
minimally overlapping clusters of contralateral normal and
tumor groups. These results are also summarized in Table 2.
As can be seen, 117, 80, and 134 spectra from contralateral
normal, premalignant, and tumors, respectively, were correctly

Fig. 3 Mean in vivo Raman spectra from (a) contralateral normal;
(b) healthy controls; (c) premalignant patches; (d) habitual tobacco
users; (e) tumor sites.
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classified. Average classification efficiency of ∼94.7% was
observed. None of the contralateral normal or tumor spectra
were misclassified as premalignant. LOOCV was performed
to evaluate classification efficiency. Cross-validation, also called
as rotation estimation, is a technique for assessing performance
of a predictive model with a hypothetical validation set when an
explicit validation set is not available. As the name suggests,
leave-one-out (LOO) involves using a single observation
from the original sample as the validation data, and the remain-
ing observations as the training data. This is repeated such that
each observation in the sample is used once as the validation
data, and results are averaged over the rounds. LOOCV results
are shown in Table 2. 109 of 125 spectra from contralateral sites
were correctly classified. Of the 16 misclassifications, one was
premalignant and 15 were tumors. In case of tumors, 121 out of
139 spectra were correctly classified. Among the 18 misclassi-
fications, only four were premalignant while 14 were contralat-
eral normal. In the premalignant group, 66 out of 85 spectra
were correctly classified. Of the 19 misclassifications, 12
were contralateral normal, and seven were tumors. Further,
the test prediction efficiency of the classifier model was

evaluated using remaining 90, 86, and 36 spectra from contral-
ateral normal, tumor, and premalignant sites, respectively, as
independent test data set. Of the 90 test normal spectra, 67
(74%) were correctly predicted, while 21 (23%) as premalignant
and two as tumor (2%). In the case of tumor, of the 86 test spec-
tra, 74 (86%) were correctly predicted. Out of 12 wrong predic-
tions, four (5%) were premalignant, and eight (9%) were
contralateral normal. Of the 36 premalignant test spectra,
26 (72%) were correctly predicted—seven (19%) as contralat-
eral normal, and the remaining three (8%) as tumor. These
results are summarized in Table 2. As a whole prediction effi-
ciency of standard model for tumor spectra was highest as com-
pared with models of contralateral normal and premalignant.
Spectra from premalignant patches are specific and can be
objectively discriminated with contralateral normal and tumor
spectra.

As mentioned earlier, tobacco chewing and smoking are one
of the etiological factors for development of oral cancers. Long-
term exposure of tobacco-related carcinogens to mucosa of a
healthy individual results in morphological and biochemical
changes finally leading to development of a premalignant lesion.

Fig. 4 PCA of contralateral normal (□), tumor (▴), and premalignant spectra (•): (a) loading plots of factor 1 and factor 2; (b) scatter plot.
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Ideal diagnostic methods should be able to differentiate between
premalignant and healthy subjects with and without tobacco
habits. Therefore in the next step to evaluate potentials of
Raman spectroscopy in discriminating premalignant conditions
with closely related habitual tobacco users, we have analyzed
spectra from premalignant patches against healthy subjects
with and without tobacco habits. 100, 100, and 85 spectra
from healthy controls, habitual tobacco users, and premalignant
patches, respectively, were pooled and subjected to PCA to iden-
tify pattern in data. A total of 10 factors were used and score of
factor 1 and 2 provided the best classification. Loading plots of
the same and scatter plot are shown in Fig. 6. Separate cluster
belonging to premalignant spectra and two minimally overlap-
ping clusters of habitual tobacco user and healthy control spec-
tra, respectively were obtained. In the next step, LDA was
performed to explore feasibility of classification. A total of
18 factors corresponding to ∼95% variance were used. The
first three of the total of 18 factors were visually analyzed to
determine degree of separation [Fig. 7(a)]. As shown in
Fig. 7(b), three independent clusters belonging to healthy con-
trol, premalignant, and habitual tobacco users were obtained. As
can be seen from Table 3, 97, 96, and 78 spectra from healthy
controls, habitual tobacco users, and premalignant patches,
respectively, were correctly classified. Overall classification
efficiency of ∼92% was observed. LOOCV results are shown
in Table 3, 97 of 100 spectra from healthy controls were cor-
rectly classified, and the remaining three were misclassified

as habitual tobacco users. 95 out of 100 spectra from tobacco
users were correctly classified. The five misclassifications
were as healthy controls. Of the total 85 spectra from premalig-
nant patches 68 were correctly classified. Most of misclassifica-
tions (15 out of 17) were with closely related habitual tobacco
users and only two as healthy controls. Prediction efficiency of
the standard model was evaluated using 50, 50, and 36 spectra
from healthy controls, habitual tobacco users, and premalignant
patches, respectively, as independent test data set. Of the 50
healthy test spectra, 47 (94%) were correctly predicted, and
three (6%) wrong predictions were tobacco users. 43 (86%)
out of 50 test tobacco users spectra were correctly predicted,
and the remaining seven (14%) wrong predictions were healthy
controls. Of the 36 test premalignant spectra, 20 (55%) were
correctly predicted as premalignant. Of the 16 wrong predic-
tions, 15 (44%) were as habitual tobacco users and only one
was as healthy control. These results are summarized in Table 3.
Most of the misclassifications of premalignant test spectra are
with habitual tobacco users and are consistent with results
shown in Table 2; i.e., misclassifications of premalignant spectra
as contralateral normal. Since both the contralteral mucosa of
subjects with oral cancer and mucosa of habitual tobacco
users are exposed to tobacco-related carcinogen for longer
time similar changes in comparison to healthy controls are
expected. These findings corroborate our own study on long-
term exposure related changes in buccal mucosa.24

In this study we have attempted to delineate premalignant
spectra from contralateral normal and tumor spectra as well
as from healthy subjects with and without tobacco habits. In
the first stage, tumor spectra gave best prediction efficiency
(86%) as compared to contralateral normal (74%) and premalig-
nant (72%). In this case most of the misclassification seemed to
occur between contralateral normal and premalignant spectra.

Fig. 5 LDA of contralateral normal (□), tumor (•), and premalignant
spectra (▴): (a) scree plot; (b) scatter plot.

Table 2 Confusion matrix for LDA, leave-one-out cross validation,
and independent test data prediction analysis of contralateral normal,
premalignant, and tumor spectra (diagonal elements are true positive
predictions and ex-diagonal elements are false positive predictions).

Normal Pre Mal Tumor Class. Eff.

Normal 117 0 8 93.6%

Pre Mal 2 80 3 94%

Tumor 5 0 134 96%

Leave-one-out cross validation

Normal Pre Mal Tumor Class. Eff.

Normal 109 1 15 87%

Pre Mal 12 66 7 77.6%

Tumor 14 4 121 87%

Independent test data predictions

Normal Pre Mal Tumor Prediction Eff.

Normal 67∕90 21 2 74%

Pre Mal 7 26∕36 3 72%

Tumor 8 4 74∕86 86%
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This is probably due to the fact that premalignant patches in the
study were from the contralateral side. Further, our probing area
is around 100 to 200 μm, since transformation of a premalignant
zone may not be uniform, possibility of acquiring data from a
normal site (under tobacco exposure) cannot be completely
ruled out. This also explains observed misclassification across
premalignant and malignant, as numbers of instances in this case
are few as malignant conditions represent a higher degree of
transformation as compare to premalignants.

When we consider the second system, i.e., discrimination
of premalignants from healthy controls with and without
tobacco habits, prediction efficiency of healthy controls with-
out any tobacco habits was the highest (94%). Very few

misclassifications with habitual tobacco users was observed,
which can be explained on the basis of the fact that extent of
tobacco related exposure may not be uniform across whole
mucosa. There is always a possibility that mucosa at few places
is still healthy. Most of the misclassifications were observed
between premalignant and habitual tobacco users spectra.
Once again the argument of nonuniformity of mucosa as well
as effect of long-term tobacco exposure might explain the
observed misclassifications. Overall, our study demonstrated
the feasibility of discriminating premalignants from contralat-
eral normal and tumor sites of subjects with oral cancer as
well from healthy controls with and without tobacco habits. Pro-
spectively, further studies incorporating pure premalignants,

-8

-6

-4

-2

0

2

4

6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

score of factor 1

sc
or

e 
of

 fa
ct

or
 2

0.2

0.1

0.0

-0.1

-0.2

1300 1400 1500 1600 1700
Wavenumber (cm-1) Wavenumber (cm-1)

0.10

0.05

0.00

-0.05

-0.10

1300 1400 1500 1600 1700

(a)

(b)

F
ac

to
r 

lo
ad

in
g

 (
F

2)

F
ac

to
r 

lo
ad

in
g

 (
F

1)
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unlike premalignant patches, should be carried out. Another
aspect, site-wise histopathology should also be considered in
view of possible nonuniformity of buccal mucosa. Nevertheless,
findings of the study demonstrate the applicability of noninva-
sive, in vivo Raman spectroscopic methods in oral cancer
applications such as discrimination of normal, tumor, and
premalignants.
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