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Abstract. The solution of the forward problem in fluorescence molecular imaging strongly influences the successful
convergence of the fluorophore reconstruction. The most common approach to meeting this problem has been to
apply the diffusion approximation. However, this model is a first-order angular approximation of the radiative trans-
fer equation, and thus is subject to some well-known limitations. This manuscript proposes a methodology
that confronts these limitations by applying the radiative transfer equation in spatial regions in which the diffusion
approximation gives decreased accuracy. The explicit integro differential equations that formulate this model were
solved by applying the Galerkin finite element approximation. The required spatial discretization of the investigated
domain was implemented through the Delaunay triangulation, while the azimuthal discretization scheme was used
for the angular space. This model has been evaluated on two simulation geometries and the results were compared
with results from an independent Monte Carlo method and the radiative transfer equation by calculating the
absolute values of the relative errors between these models. The results show that the proposed forward
solver can approximate the radiative transfer equation and the Monte Carlo method with better than 95% accuracy,
while the accuracy of the diffusion approximation is approximately 10% lower.© 2012 Society of Photo-Optical Instrumentation
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1 Introduction
Fluorescence molecular imaging has been extensively studied in
recent years as a possible tomographic tool for the geometrical
and molecular assessment of regions of diseased tissue, such
as malignant tumors embedded into tissues.1,2 Possible
applications include themonitoring and evaluation of therapeutic
and/or diagnostic actions of pharmaceutical substances2,3 and
breast cancer diagnosis.1 Other medical imaging applications
that have been proposed include lung inflammation, as well as
applications in immunology and cardiology.4–6

The above potential applications, together with the interest-
ing properties of fluorescence molecular imaging, make it an
attractive technique for integration into specific preclinical, clin-
ical and pharmaceutical applications. Using fluorescence mole-
cular imaging avoids the exposure to ionizing radiation and
allows biocompatible fluorescence probes to be used. Further,
data with a good signal-to-noise ratio can be obtained.7,8 Recent
advantages in both computational units and fluorescence probe
technology have been important for the development of the
field. Modern workstations possess multicore processors and
at least 4 GB RAM, permitting the rapid processing of large
data volumes. Other advances that have boosted the develop-
ment of molecular imaging based on fluorescence techniques
include the progress in fluorescent probes, where the recent

development of the up-converting nanoparticles9–11 is highly
promising, and the progress in optical imaging modalities,
with extremely sensitive fluorescence acquisition modules and
high-quality optics.

However, despite the scientific attention that fluorescence
molecular imaging has received in recent years and the afore-
mentioned technological advances, some fundamental chal-
lenges have not yet been overcome. One of these challenges
is the accurate and robust description of light propagation
through tissue, which constitutes the core of what is known
as the “forward problem.” The most commonly applied solu-
tion to the forward problem currently available is the
diffusion approximation.12,13 This model, being a first-order
angular approximation of the radiative transfer equation,14,15

although very fast in convergence, it also suffers from some
important limitations. The output from this model has poor
accuracy close to the boundaries and to the light
sources, even in the case of scattering dominated media.14

An alternative method that is often used, the Monte Carlo
approximation, requires intense computational power to
converge to a solution and thus most of the approaches pub-
lished are basically two-dimensional solutions of the forward
problem.16–18

The radiative transfer equation is the model considered by
many researchers as the most accurate solution to the forward
problem. The numerical solution methods are the gold standard
to solve this model, and the methods most commonly used forAddress all correspondence to: Dimitris Gorpas, Information Technologies Insti-
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spatial discretization are the finite difference, the discrete ordi-
nates, the finite volume, and the finite element methods.19–22 The
last two methods are generally considered to be more flexible
than the others in dealing with multiple boundary conditions or
complex geometries, and thus they are most commonly used to
solve problems related to light propagation through scattering-
dominated media, such as tissue.22 The angular discretization is
numerically assessed using discrete ordinates, finite elements,
and spherical harmonics.21–23

This manuscript proposes a methodology for solving the for-
ward problem in fluorescence molecular imaging that success-
fully confronts the limitations of the diffusion approximation,
while requiring less computational power than the Monte Carlo
method. It is based on a hybrid model initially proposed as a
two-dimensional forward solver in diffuse optical tomogra-
phy,23–25 known as coupled radiative transfer equation and dif-
fusion approximation model. The methodology described in this
manuscript is an extension of that model in three dimensions and
for the fluorescence molecular imaging application. Since fluor-
escence molecular imaging requires the model to be applied
twice, for the excitation and emission fields, the term “dual
coupled” is introduced to describe the proposed model. Further-
more, the method presented in this manuscript uses a simplified
phase function,26 instead of the Henyey-Greenstein phase func-
tion that is used in most radiative transfer equation solutions
presented in literature.13,21,23–25

The first three-dimensional solution of the coupledmodel was
presented in a fluorescence molecular imaging application,27

where the forward solver was confronted with the finite element
method, based on an unstructured spatial mesh. This nonadaptive
discretization scheme introduced significant computational load,
especially in the case of radiative transfer equation. Its solution
with a single computational unit required coarse spatial and angu-
lar discretization schemes that produced oscillating results. In
order to solve the forward problem on a single computational
unit, either an adaptive discretization scheme should be adopted
or a structuredmesh should be constructed. The later technique is
morepreferable inapplications involvingevaluationofalgorithms
and thus it was the one adopted in this work.

In this work, the proposed model was evaluated on two
nonhomogeneous simulation geometries, and we have investi-
gated in depth its applicability as a forward solver in fluores-
cence molecular imaging. The first geometry was a cube
enclosing ellipsoids that corresponded to different tissues
and was used to evaluate the proposed model against an inde-
pendent Monte Carlo forward solver.28 This work is among
the very few that compare the results of a three-dimensional
radiative transfer equation forward solver with the results
derived from Monte Carlo method22 and it is among the first
reports in literature where the three-dimensional coupled
radiative transfer equation and diffusion approximation model
is verified against an independent Monte Carlo method.

The second geometry was the MOBY digital mouse, devel-
oped at the Duke Center for In Vivo Microscopy.29 This simula-
tion geometry has been used in many medical imaging studies,
especially computed tomography and single-photon emission
computed tomography.30–33 A few studies have used this digital
mouse in fluorescence molecular imaging.21,34,35 Using this
simulation geometry, various scenarios were assessed, so to
compare the proposed model against the widely used diffusion
approximation and the more accurate model of radiative transfer
equation.

The outline of this paper is as follows. Section 2 briefly pre-
sents the dual-coupled radiative transfer equation and diffusion
approximation model, and outlines the most important
approaches to its solution. The digital mouse is presented, and
the optical properties of its various organs are summarized. Sec-
tion 3 presents the scenarios developed to evaluate the model,
while Sec. 4 presents and discusses results obtained with the
method. Finally, Sec. 5 discusses future work and the prospects
for this forward solver.

2 Methodology
The proposed methodology for solving the forward problem in
fluorescence molecular imaging is based on the coupled radia-
tive transfer equation and diffusion approximation model,25,36

expanded to form a dual-coupled model that can deal with
both the excitation field and the emission field. Figure 1 is a
block diagram that summarizes the solution of the dual-coupled
radiative transfer equation and diffusion approximation model.
The use of this model for developing a solution in the frequency
domain is briefly described below.

2.1 Dual-Coupled Radiative Transfer Equation and
Diffusion Approximation

The coupled radiative transfer equation and diffusion approxi-
mation model was initially proposed for diffuse optical tomo-
graphy measurements, and the results presented were mainly
two-dimensional.23–25 The model was extended to fluorescence
molecular imaging in 2010, and three-dimensional simulations
were presented,27 while an investigation into applying the model
to solve the inverse problem in diffuse optical tomography was
carried out in 2011.36 We present here the results of an in-depth
study into applying the dual-coupled radiative transfer equation
and diffusion approximation model in fluorescence molecular
imaging, and present results obtained from a tissue-like simula-
tion phantom.

Fig. 1 A block diagram of the dual-coupled radiative transfer equation
and diffusion approximation model. The inputs (In0i, i ¼ 1; : : : ; 5) and
the outputs (Out0j, j ¼ 1; 2) are shown.
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The analytical expression of this model is as follows:23

i · ω
c

· Ix∕mðr; ŝÞ þ ŝ · ∇Ix∕mðr; ŝÞ þ ½μα;x∕mðrÞ þ μs;x∕mðrÞ�

· Ix∕mðr; ŝÞ − μs;x∕mðrÞ ·
Z
4π
px∕mðŝ; ŝ 0Þ · Ix∕mðr; ŝ 0Þ · dŝ 0 ¼ Λx∕mðr; ŝÞ

��������
r∈VRTE

(1a)

Ix∕mðr; ŝÞ ¼
�
0 r∈ SRTE;out \ dSsrc; ŝ · n̂ < 0

Isrcðr; ŝÞ r∈ dSsrc; ŝ · n̂ < 0
; (1b)

Ix∕mðr; ŝÞ ¼ Ux∕mðrÞ −
3

4 · π
· ½Dx∕mðrÞ · ∇Ux∕mðrÞ� · ŝjr∈Sinterface ; (1c)

i·ω
c · Ux∕mðrÞ − ∇½Dx∕mðrÞ · ∇Ux∕mðrÞ� þ μα;x∕mðrÞ · Ux∕mðrÞ

¼ Λ0;x∕mðrÞ
����
r∈VDA

; (1d)

Ux∕mðrÞ ¼ −2 · A · Dx∕mðrÞ ·
∂
∂n̂

Ux∕mðrÞ r ∈ SDA;out; ŝ · n̂ < 0; (1e)

Ux∕mðrÞ ¼
1

4 · π
·
Z
4π
Ix∕mðr; ŝÞ · dŝ r ∈ Sinterface; (1f)

where ω is the angular modulation frequency of the exci-
tation source in rad · s−1, c is the average speed of light in
the medium, μsðrÞ and μaðrÞ are the scattering and absorp-
tion coefficients of the medium, both expressed in cm−1,
Λðr; ŝÞ is the power radiation from sources inside the med-
ium, and Iðr; ŝÞ is the radiance at location r in direction ŝ
within the medium, measured inW · cm−2 · sr−1. Further-
more, n̂ is the surface normal unit vector, pointing out-
wards, Isrcðr; ŝÞ is the radiance of the excitation source,
UðrÞ is the fluence rate or photon density in W · cm−2,
DðrÞ is the photon diffusion coefficient,37 and A is
the boundary reflection coefficient, which depends on
the mismatch of the refractive indices between the tissue
and the air.38 Finally, pðŝ; ŝ 0Þ is the scattering phase
function.

The well-known Henyey-Greenstein formula39 is the most
commonly used phase function in biomedical optics, but we
used a phase function that fits better with Mie theory. This
phase function is:26,40

pðŝ; ŝ 0Þ ¼ K · ½1þ ε · cosðŝ; ŝ 0Þ�np ; (2)

where ε and np are two independent parameters and K is a
normalization factor, which for ε ¼ 1 can be expressed as

KSAM ¼ np þ 1

2npþ2 · π
; (3)

and is known as the “simplified approximate MIE (SAM)”
phase function.40

Equation (1a) corresponds to the radiative transfer equation,
which can be applied in the corresponding subregion, VRTE, of
the inspected volume, while Eq. (1b) is the vacuum boundary
condition.14 Similarly, Eq. (1d) corresponds to the diffusion
approximation, solved within the related subregion, VDA, and
Eq. (1e) is its Robin-type boundary condition.41,42 Those two
light transport models were coupled at the interface Sinterface
through Eqs. (1c) and (1f). The location of the interface bound-
ary was determined by the scattering coefficient of the medium,
and it was chosen far enough from the surface to ensure that the
diffusion is a valid approximation. Furthermore, it was consid-
ered that this interface was located within the diffusion approx-
imation subdomain.25

The excitation case is described by the index x in the equa-
tion system of Eq. (1), and the only source that existed in this
case was the incident excitation light source Isrcðr; ŝÞ. All inter-
nal light sources had a radiated power of zero, Λxðr; ŝÞ ¼ 0. The
fluorescence emission is described by the index m, and here, in
contrast, no external sources were present, but only the internal
fluorescence sources. Thus, Isrcðr; ŝÞ ¼ 0 and

Λmðr; ŝÞ ¼ Λ0;mðrÞ ¼
η · μfluoα;x ðrÞ

1þ i · ω · τðrÞ · UxðrÞ; (4)

where η and τðrÞ are the quantum yield and lifetime of the fluor-
ophore, respectively. The index fluo describes the optical prop-
erties of the fluorophore. The model described by Eq. (1) was
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based on the assumption that the presence of the fluorophore did
not alter the scattering coefficient of the medium. The absorp-
tion coefficient varied with the fluorophore concentration and
was modeled as the sum of the absorption coefficients of the
tissue and of the fluorophore.

2.1.1 Numerical solution of the forward problem

We have used the finite element method to solve the equations
of the proposed dual-coupled radiative transfer equation and
diffusion approximation model. The integro-differential equa-
tion system presented in Eq. (1) was transformed to a weak
variational formalism by applying the Galerkin finite element
method43 and using the streamline diffusion modification44 in
the radiative transfer equation subdomain, in order to minimize
the convergence oscillating results. The final linear algebraic
system, in its matrix formalism, is as follows:23

�
ARTE;x∕m BRTE;x∕m
BDA;x∕m ADA;x∕m

�
·

�
αx∕m
ax∕m

�
¼

�
CRTE;x∕m
CDA;x∕m

�
; (5)

where αx∕m ¼ ½αil;x∕m� is the radiance at the nodal points i and
in directions l of the radiation transfer equation subdomain,
and ax∕m ¼ ½ak;x∕m� is the fluence rate at the nodal points k of
the diffusion approximation subdomain. Moreover, the matrix
ARTE;x∕m contains the finite element approximation of the radia-
tive transfer equation, and is of the form

ARTE;x∕mðh1; h2Þ ¼ Ax∕m
0 ðh1; h2Þ þ Ax∕m

1 ðh1; h2Þ
þ Ax∕m

2 ðh1; h2Þ þ Ax∕m
3 ðh1; h2Þ

þ Ax∕m
4 ðh1; h2Þ; (6)

where h1 ¼ Na · ðj − 1Þ þ q, h2 ¼ Na · ði − 1Þ þ l, i ¼ 1; ... ;
Nn, l ¼ 1; ... ; Na, j ¼ 1; ... ; Nn and q ¼ 1; ... ; Na, where
Nn is the number of spatial nodes and Na is the number of angu-
lar directions in the radiative transfer equation subdomain. The
matrices on the right side of Eq. (1) are given by

Ax∕m
0 ðh1; h2Þ ¼

i · ω
c

·
Z
VRTE

ψ iðrÞ · ψ jðrÞ · dr ·
Z
4π
ψ lðŝÞ · ψqðŝÞ · dŝ

þ i · ω
c

·
Z
VRTE

Z
4π
δx∕mðrÞ · ŝ · ∇ψ jðrÞ · ψqðŝÞ · ψ lðŝÞ · dŝ · ψ iðrÞ · dr; (7a)

Ax∕m
1 ðh1; h2Þ ¼ −

Z
VRTE

Z
4π
ŝ · ∇ψ jðrÞ · ψqðŝÞ · ψ lðŝÞ · dŝ · ψ iðrÞ · dr

þ
Z
VRTE

Z
4π
δx∕mðrÞ · ŝ · ∇ψ jðrÞ · ψqðŝÞ · ŝ · ∇ψ iðrÞ · ψ lðŝÞ · dŝ · dr; (7b)

Ax∕m
2 ðh1; h2Þ ¼

Z
SRTE

ψ iðrÞ · ψ jðrÞ · drSRTE ·
Z
4π
ðŝ · n̂Þþ · ψ lðŝÞ · ψqðŝÞ · dŝ (7c)

Ax∕m
3 ðh1;h2Þ¼

Z
VRTE

½μα;x∕mðrÞþμs;x∕mðrÞ� ·ψ iðrÞ ·ψ jðrÞ · dr ·
Z
4π
ψ lðŝÞ ·ψqðŝÞ · dŝ

þ
Z
VRTE

Z
4π

�
δx∕mðrÞ · ½μa;x∕mðrÞþμs;x∕mðrÞ�
· ŝ ·∇ψ jðrÞ ·ψqðŝÞ ·ψ lðŝÞ · dŝ ·ψ iðrÞ · dr

�
;

(7d)

Ax∕m
4 ðh1; h2Þ ¼ −

Z
VRTE

μs;x∕mðrÞ · ψ iðrÞ · ψ jðrÞ · dr ·
Z
4π

Z
4π
px∕mðŝ; ŝ 0Þ · ψ lðŝ 0Þ · dŝ 0 · ψqðŝÞ · dŝ

−
Z
VRTE

Z
4π

�
δx∕mðrÞ · ½μa;x∕mðrÞ þ μs;x∕mðrÞ� · ŝ · ∇ψ jðrÞ · ψqðŝÞ
·
R
4π px∕mðŝ; ŝ 0Þ · ψ lðŝ 0Þ · dŝ 0 · dŝ · ψ iðrÞ · dr

�
: (7e)

In Eq. (7), ψ iðrÞ and ψ lðŝÞ are the nodal basis functions of
the spatial and angular finite element discretization of the
radiative transfer equation subdomain, while ψ jðrÞ and
ψqðŝÞ are the spatial and angular basis functions of the
radiative transfer equation piecewise linear functions.
The Galerkin methodology is prone to the formation of
unstable systems and oscillating results. In order to

avoid this, the radiative transfer equation test function,
ψðr; ŝÞ, was expanded using the following formalism:

ψðr; ŝÞ∶ ¼ ψðr; ŝÞ þ δðrÞ · ŝ · ψðr; ŝÞ; (8)

which expresses the streamline diffusion modification.44

The smoothing parameter, δðrÞ, is a spatial nodal-wise
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varying constant that depends on the local absorption and
scattering coefficients. It can be estimated from:

δðrÞ ¼min

×
�

1

μα;x∕mðrÞþμs;x∕mðrÞ
;

25

ðμα;x∕mðrÞþμs;x∕mðrÞÞ · rj

�
;

(9)

where rj is the distance between spatial node j and the
excitation source location.27

The matrix of diffusion approximation finite elements is
ADA;x∕m in the system of Eq. (1). This matrix is given by:

ADA;x∕mðp; kÞ ¼ Kex∕mðp; kÞ þMex∕mðp; kÞ
þ Pex∕mðp; kÞ; (10)

where p ¼ 1; ... ; N and k ¼ 1; ... ; N, with N being the number
of nodal points in the diffusion approximation subdomain.
Furthermore, the mass matrix,43 Kex∕mðp; kÞ, the stiffness
matrix,43 Mex∕mðp; kÞ, and the boundary condition matrix,
Pex∕mðp; kÞ, of the finite element approximation are given by

Kex∕mðp; kÞ ¼
i · ω
c

·
Z
VDA

ykðrÞ · ypðrÞ · dr

þ
Z
VDA

μα;x∕mðrÞ · ykðrÞ · ypðrÞ · dr; (11a)

Mex∕mðp;kÞ¼
Z
VDA

Dx∕mðrÞ ·∇ykðrÞ ·∇ypðrÞ · dr; (11b)

Pex∕mðp; kÞ ¼
1

2 · A
·
Z
SDA

ykðrÞ · ypðrÞ · drSDA ; (11c)

where ykðrÞ are the nodal basis functions of the finite element
discretization of the diffusion approximation subdomain, and
ypðrÞ are the spatial basis functions of the diffusion approxima-
tion piecewise linear functions.

The matrices BRTE;x∕m and BDA;x∕m of Eq. (1) contain the
finite elements of the interface boundary conditions and are
given by

BRTE;x∕mðh1; kÞ ¼ −
Z
Sinterface

ykðrÞ · ψ jðrÞ · drSinterface

·
Z
4π
ðŝ · nÞ− · ψqðŝÞ · dŝþ

3

4 · π

·
Z
Sinterface

Dx∕mðrÞ ·
Z
4π
ðŝ · n̂Þ− · ½∇ykðrÞ · ŝ�

· ψqðŝÞ · dŝ · ψ jðrÞ · drSinterface ; (12a)

BDA;x∕mðp; h2Þ ¼ −
1

4 · π
·
Z
Sinterface

Dx∕mðrÞ · ½n̂ · ∇ψ iðrÞ�

· ypðrÞ · drSinterface ·
Z
4π
ψ lðŝÞ · dŝ:

(12b)

The matrix on the right of Eq. (5) is the finite element matrix of
the sources, and it can be rewritten in the form

�
CRTE;x∕m
CDA;x∕m

�
¼

�
cRTE;x∕m · α
cDA;x∕m · a

�
: (13)

The only light source in the excitation field was the incident
source, Isrcðr; ŝÞ, which was also located only in the radiative
transfer equation subdomain. Thus, the diffusion approximation
part of Eq. (13) equals zero, while the finite element matrix
cRTE;x is

cRTE;xðh1; h2Þ ¼
Z
SRTE

ψ iðrÞ · ψ jðrÞ · drSRTE

·
Z
4π
ðŝ · n̂Þ− · ψ lðŝÞ · ψqðŝÞ · dŝ: (14)

Further, α ¼ αsrc ¼ ½αil;src� is the intensity of the excitation
source at the surface nodal points i in the directions l.

The finite element matrices cRTE;m and cDA;m that describe
the emission field are

cRTE;mðh1; h2Þ ¼
1

4 · π
·
Z
VRTE

η · μfluoα;x ðrÞ
1þ i · ω · τðrÞ · ψ iðrÞ · ψ jðrÞ

· dr ·
Z
4π
ψ lðŝÞdŝ ·

Z
4π
ψqðŝÞ · dŝ; (15a)

cDA;mðp; kÞ ¼
Z
VDA

η · μfluoα;x ðrÞ
1þ i · ω · τðrÞ · ykðrÞ · ypðrÞ · dr;

(15b)

while α ¼ αx and a ¼ ax are the radiance and fluence rate cal-
culated from the dual-coupled radiative transfer equation and
diffusion approximation model for the excitation case. The
importance of applying the same finite element approximation
and region discretization between the excitation and emission
cases becomes apparent at this point. If these were not applied,
the outcome of the excitation field should be translated to the
emission approximation, which would increase the complexity
of the method and decrease its time efficiency.

The block diagram of Fig. 1 shows that the assembly of the
diffusion approximation finite element matrix was implemented
in one step, while the radiative transfer equation was divided
into spatial and angular finite element approximations. Thus,
after the solution of all the spatial and angular nodal integrals,

Fig. 2 The MOBY phantom as a volume image (a) and under the dis-
cretized scheme (b) with the body tissue excluded, allowing the inner
organs to be seen clearly.
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the radiative transfer equation finite element matrix was
assembled by applying the Kronecker product.35

2.2 Digital Tissue Geometry and Region
Discretization

Most forward problem solvers used for fluorescence molecular
imaging and for diffuse optical tomography are evaluated using
simulation geometrics with homogeneous background optical
properties.13,27,36 Furthermore, only a few forward solvers are
based on the radiative transfer equation, and only a few reports
have presented three-dimensional results.22,27,45 We have studied
a forward solver based on the radiative transfer equation,
and examined its application to imaging a three-dimensional
tissue-like simulation geometry. We have compared results
from the proposed model with those obtained from the three-
dimensional radiative transfer equation solution from the same
digital phantom.

The virtual phantom we have used was based on the MOBY
mouse.29 The various organs of this digital mouse phantom have
been implemented using nonuniform rational b-spline surfaces.
High-resolution three-dimensional magnetic resonance micro-
scopy data, obtained from the Duke Center for In Vivo Micro-
scopy, was used as the basis for the formulation of the
surfaces.29

This virtual animal model was discretized using the open-
source Amide medical image data analysis tool with a step size
of d ¼ 0.05 cm on the x, y and z axes. This animal model is

presented in Fig. 2, where both volume visualization and the
discretized version are shown, with the superficial tissue
excluded to reveal the various organs.

Each organ of the digital mouse was labeled with a unique
number, which corresponds to a color label in Fig. 2. These
numbers were assigned during the discretization process and
were used to assign optical properties to the organs of the
MOBY phantom. Table 1 summarizes the optical properties
in the near infrared (NIR) spectral region, in the wavelength
range 600 to 800 nm, obtained from Refs. 13, 21, 46, and 47.

All optical properties were considered to be independent of
wavelength in order to simplify the simulation. Furthermore, the
mean cosine was considered to be independent of the tissue type
and equal to g ≅ 0.9.

The digital phantom was initially simulated to be in a cham-
ber filled with an Intralipid-ink solution that matched the bulk
optical properties of the body tissue. It was possible in this way
to study the excitation and emission, avoiding complications
arising from partial refraction and reflection at the animal
boundary. This is a widely adopted technique even for in vivo
small animal fluorescence molecular imaging and for diffuse
optical tomography.4,21

Although this simulation geometry can be adequately
addressed by diffusion approximation, the scope of these simu-
lation experiments was to validate that the proposed model out-
performs diffusion approximation even in situations where the
later model is expected to provide relatively accurate results.
However, the advantage gained by the application of the radia-
tive transfer equation was demonstrated by replacing the Intra-
lipid-Ink solution with a low scattering index matched interface.
The simulated absorption coefficient of that interface was equal
to μa ¼ 0.02 cm−1 and the reduced scattering coefficient equal
to μ 0

s ¼ 0.05 cm−1 and they were wavelength independent.
The simulation experiments were conducted in a cubic

region of dimension 2 × 2 × 2 cm3, discretized with a step size
of d ¼ 0.05 cm. This produced a three-dimensional grid of
68,921 nodes. The Delaunay triangulation technique was used
to formulate structured tetrahedral elements, defined by

2
664
ζ1
ζ2
ζ3
ζ4

3
775 ¼ 1

6 · V
·

2
664
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

3
775 ·

2
664
1

x
y
z

3
775; (16)

where ζi are the isoparametric or simplex coordinates,
ðx; y; zÞ are the global coordinates of the nodal points, V is
the volume of the element, and the 16 elements of the matrix
½ ai bi ci di � depend only on the vertex locations of
each tetrahedron.43 The number of tetrahedral elements pro-
duced using this spatial discretization was 384,000.

The spatial finite element matrices of both the radiative trans-
fer equation and the diffusion approximation subdomains were
estimated from Eq. (16) by transforming all the spatial integrals
into simplex coordinates. The integrals thus obtained were
solved using43

Z
Vel

ζi1 · ζ
j
2 · ζ

k
3 · ζ

l
4 · dr ¼

i! · j! · k! · l!
ðiþ jþ kþ lþ 3Þ! · 6 · V:

(17)

All the spatial integrals in Eq. (5) were assessed using the same
method as that used for these basic transformations.

Table 1 Optical properties of the MOBY phantom.

Organ

Absorption
coefficient
μa (cm−1)

Scattering
coefficient
μs (cm−1)

Mean
cosine

g

Body (muscle) 0.027 118 0.97

Skeleton 0.08 69 0.80

Heart (tissue) 0.35 167 0.98

Liver 6.50 144 0.95

Lung 8.40 36 0.95

Stomach 1.20 200 0.90

Pancreas 1.20 200 0.90

Kidney 0.01 73 0.85

Spleen 2.80 59 0.78

Small intestine 1.20 200 0.90

Large intestine 1.20 200 0.90

Bladder 1.25 51 0.95

Testicles 0.35 394 0.69

Brain (white
matter)

1.58 51 0.96

Brain (gray
matter)

2.63 60 0.88

Heart (blood) 1.30 1246 0.99
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The azimuthal technique was used for the angular discretiza-
tion of the radiative transfer equation subregion, for an angular
discretization of Nθ × Nφ ¼ 6 × 4 angles, where Nθ is the num-
ber of control angles over the polar angle θ andNφ is the number
of control angles over the azimuthal angle φ. The number of
angular nodes considered for each spatial node was 28, using
this angular discretization process. Moreover, each octant of
the angular space 4π, at any spatial nodal point, was discretized
using constant latitude and longitude into Nθ × Nφ ¼ 24 ele-
mentary solid angles Δsmn as described by Grissa et al.:48

Δŝmn ¼
Z

φþ

φ−

Z
θþ

θ−
sin θ · dθ · dφ: (18)

The basis functions were defined piecewise, element by ele-
ment, and were taken as a bilinear function over every control
angle element. The functions that describe this restriction are
known as “shape functions” and they are49

ψmn
1 ðθ;φÞ ¼ θ − θ−

θþ − θ−
·
φ − φ−

φþ − φ− ; (19a)

ψmn
2 ðθ;φÞ ¼ θ − θþ

θ− − θþ
·
φ − φ−

φþ − φ− ; (19b)

ψmn
3 ðθ;φÞ ¼ θ − θþ

θ− − θþ
·
φ − φþ

φ− − φþ (19c)

ψmn
4 ðθ;φÞ ¼ θ − θ−

θþ − θ−
·
φ − φþ

φ− − φþ : (19d)

These shape functions were used during the solution of the
angular integrals of the linear system of Eq. (5). The solution
of the phase function defined in Eq. (3) was obtained by first
taking the binomial expansion

pðŝ; ŝ 0Þ ¼ K · ½1þ ε · cosðŝ; ŝ 0Þ�np
¼ K · ½1þ ε · sin θ · sin θ 0 · cosðφ − φ 0Þ þ ε · cos θ · cos θ 0�np

¼ K ·
Xnp
m¼0

8<
:

np!
m!·ðnp−mÞ! ·

Pnp−m
j¼0

h ðnp−mÞ!
j!·ðnp−m−jÞ! · ðε · cos θ · cos θ 0Þj

i

· ½ε · sin θ · sin θ 0 · cosðφ − φ 0Þ�m

9=
;: (20)

The solution was subsequently based on the shape func-
tions of Eq. (19). All angular integrals were solved using
the same method as that used to solve the spatial integrals,
while analytical solutions were obtained whenever
required.43,50

2.3 Solution to the Forward Problem

The discretization procedure described above was applied to the
MOBY digital mouse, and the dual-coupled radiative transfer

equation and diffusion approximation model was subsequently
solved. Figure 3 shows the geometry defined for the digital
mouse. The interface between the two subregions of the coupled
model was located 0.3 cm below the top surface of the cubic
region. The interface divided the cubic region into the required
two subdomains. Of these, the radiative transfer equation sub-
domain consisted of 11,767 nodal points (57,600 tetrahedral ele-
ments) and 28 angular nodal points (24 angular elements); while
the diffusion approximation subdomain consisted of 58,835
nodal points (326,400 tetrahedral elements).

The finite element matrices of Eqs. (6) and (15) were
assembled under the premises described above, and the resulting
linear matrix system of Eq. (5) was solved using the stabilized
biconjugate gradient (BiCGStab) method.51 This method pro-
vides smooth and fast convergence of nonsymmetric large-scale
problems, and is admirably suited to solving the system
described by Eq. (5). The method is often used in situations
described by radiative transfer equations, since it does not require
intense computational resources. This allows denser discretization
schemes to be used than those used with other iterative methods.
The method works reasonably well for radiative transfer equation
problems52 and we have therefore not considered it necessary to
test other solvers. The tolerance of the relative residual, which
defines the convergence of the method, was set to 10−10.

Finally, all the results presented in the following sections
were estimated using the equations:

MAðrÞ¼jUðr∶ωÞj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½Uðr∶ωÞ�2þIm½Uðr∶ωÞ�2

q
; (21a)

MθðrÞ ¼ arg½Uðr∶ωÞ�
¼ a tan 2fIm½Uðr∶ωÞ�;Re½Uðr∶ωÞ�g; (21b)

Fig. 3 The geometry of the digital mouse model. The tetrahedral ele-
ment and the angular nodes are shown in the upper right corner,
along with the counter-clockwise labeling of the elementary nodes.
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where MA is the fluence rate modulation magnitude and Mθ is
its phase shift. The exitance from radiative transfer was esti-
mated after using Eq. (1f) to estimate the fluence rate from
the radiance values.

All simulations presented in this manuscript were performed
on a 2.67 GHz Intel Core i7 computational unit with 20 GB
physical memory.

3 Evaluation Process and Simulation Scenarios
The evaluation of the dual-coupled radiative transfer equation
and diffusion approximation model was implemented through
two stages. Initially, this model was compared with an indepen-
dent Monte Carlo forward solver. The diffusion approximation
and the full radiative transfer equation models were also com-
pared with the Monte Carlo forward solver. The MOSE soft-
ware28 was used for that purpose. The simulation geometry was
based on standard building blocks, which approximate the
shapes of biological tissues, and was identical for all four for-
ward solvers.

More specifically, it was a cubic region with bulk tissue opti-
cal properties, inside of which there were five subregions; two
ellipsoids with optical properties corresponding to kidneys, an
ellipsoid with optical properties corresponding to lung, an ellip-
soid with optical properties corresponding to stomach and an
ellipsoid with optical properties corresponding to skeleton. The
optical properties of these regions were assigned according to
Table 1.

A sphere located at depth dz ¼ −0.65 cm from the top sur-
face of this geometry and with radius r ¼ 0.15 cm simulated the
fluorophores inclusion. The optical properties of the simulated
fluorophore matched those of Alexa Fluor 680. Thus, the
absorption coefficient was μfluoa;x ¼ 0.42 cm−1 at the excitation
wavelength, λx ¼ 680 nm, and μfluoa;m ¼ 0.25 cm−1 at the emis-
sion wavelength, λm ¼ 700 nm. Furthermore, the quantum effi-
ciency was set to η ¼ 0.36, while the lifetime of the fluorophore
was set to τðrÞ ¼ 1.2 · 10−9 s. The lifetime of the fluorophore
was independent of its position in the simulation geometry.
Figure 4 presents this simulation geometry.

Next we evaluated the dual-coupled radiative transfer equa-
tion and diffusion approximation model for solving the forward
problem in fluorescence molecular imaging by comparing the
results with those obtained from the widely applied diffusion
approximation. We also compared the results with those from
the radiative transfer equation. More specifically, the forward
problem for the MOBY phantom was solved using the three
models: the diffusion approximation, the radiative transfer equa-
tion, and the dual coupled. The spatial discretization used was
the same for all models, as was also the angular discretization,
where relevant. Table 2 presents the qualitative quantities of the
finite element approximations for the three models.

The dual-coupled radiative transfer equation and diffusion
approximation and the diffusion approximation models were
compared with the radiative transfer equation by calculating

AREA∕θ;DA∕RTE−DA ¼
����MA∕θ;RTE −MA∕θ;DA∕RTE−DA

MA∕θ;RTE

����
× 100%; (22)

where ARE is the absolute values of the relative error between
the magnitude of the fluence rate or the phase shift derived from
the radiative transfer equation solution, MA∕θ;RTE, and the mag-
nitude of the fluence rate or the phase shift obtained from the
diffusion approximation, MA∕θ;DA, or from the dual-coupled
model, MA∕θ;RTE−DA.

Results obtained by considering fluorophore inclusions
within the digital mouse were compared. The optical properties
of the simulated fluorophore matched those of Alexa Fluor 680.
The simulation scenarios used to evaluate the proposed model
considered the fluorophore inclusions to be located at four
positions within the MOBY phantom. More specifically, a
sphere with radius R ¼ 0.15 cm was initially placed at depth
dz ¼ −0.2 cm from the simulation geometry top surface,
Fig. 5(a). The second scenario was that an identical sphere
was located deeper within the simulation geometry, at depth

Fig. 4 The geometry used for the evaluation of the radiative transfer
equation, the diffusion approximation and the hybrid models against
the Monte Carlo forward solver.

Table 2. Spatial and angular discretization schemes for the diffusion approximation (DA) the radiative transfer equation (RTE) and the proposed dual-
coupled model (RTE-DA), and the size of the corresponding assembly matrices.

DA RTE RTE-DA

Tetrahedral elements 384,000 384,000 57,600–RTE 326,400–DA

Nodal points 68,921 68,921 11,767–RTE 58,835–DA

Angular elements — 24 24–RTE

Angular nodes — 28 28 – RTE

Assembly matrix size [68;921 × 68;921] [1;929;788 × 1;929;788] [388;311 × 388;311]
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dz ¼ −0.5 cm, Fig. 5(b). Scenario 3 considered the mouse
kidneys to be labeled with the Alexa Fluor 680 probe,
Fig. 5(c), while Scenario 4 considered the bladder to be labeled,
Fig. 5(d). Finally, the last two scenarios were identical with
Scenarios 1 and 3 correspondingly, with the difference that
the Intralipid solution was replaced with the low scattering
index matched interface. Since diffusion approximation was not
valid for these two last scenarios, only the dual coupled and the
radiative transfer equation models addressed them. Moreover,
the coupling interface of the proposed model, for these two sce-
narios, was translated 1 cm deeper inside the animal model, to
ensure that the diffusion approximation of the hybrid model was
valid at all nodes of the corresponding domain.

All simulation scenarios included an epi-illumination acqui-
sition system, and thus the top surface of the cubic region was
the area inspected. The excitation source was incident on the
same plane of the region, and it was a point source with a Dirac
intensity profile and an angular modulation frequency ω ¼
100 MHz, directed inwards along the z-axis. For the diffusion
approximation model, this source was simulated as an isotropic
point source located one transport length (1∕μ 0

s ≅ 0.05 cm)
below the region top surface.

4 Results and Discussion
We now present and discuss solutions of the forward problem
in fluorescence molecular imaging for the six simulation

scenarios described above, as well as for the comparison with
the independent Monte Carlo forward solver.

4.1 Evaluation Against Monte Carlo

Initially we evaluated the dual-coupled radiative transfer equa-
tion and diffusion approximation model against an independent
Monte Carlo forward solver. The logarithms of the fluence rate
modulation amplitudes (normalized with respect to their max-
imum values) of the exitance at the region top surface for the
diffusion approximation, the dual-coupled model, the radiative
transfer equation model, and the Monte Carlo model are shown
in Fig. 6. In this figure are also shown the corresponding phase
shifts for the excitation and emission fields.

The simulation geometry optical properties, for all four mod-
els, were assigned according to Fig. 4 and Table 1. For the
Monte Carlo-based simulation, the number of the launched
photons was 109, which is considered a sufficient number for
accurate three-dimensional results.13,28,53 Higher photon num-
bers would increase the accuracy of the Monte Carlo method,
especially for the emission field and for the phase shift in par-
ticular. However, we compared Monte Carlo results for 107,
5 · 107, 108, 5 · 108, and 109 photons and the main improvement
was the noise reduction, especially in the emission field. With
109 photons the Monte Carlo results were adequately smooth for
the scope of this work and for that reason no further increase to
the launch photons number was tested.

Fig. 5 The locations of the fluorophores for the simulation scenarios. A single inclusion at depth dz ¼ −0.2 cm (a) or dz ¼ −0.5 cm (b) from the top
surface of the MOBY digital mouse. The third scenario (c) was that the mouse kidneys were labeled, while the fourth (d) was that the bladder was
labeled.
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A strong similarity between the results from all four models
is obvious in Fig. 6. This similarity is also theoretically
expected, as this simulation experiment can be adequately
addressed even from the diffusion approximation model. A
more detailed assessment of the four models is presented in

Fig. 7, where the logarithm of the normalized fluence rate
and the phase shift on the top surface of the region is shown.

The results presented in Fig. 7 show good agreement
between all four models, and especially between the dual-
coupled, radiative transfer equation, and the Monte Carlo mod-
els. Considering the independent Monte Carlo to be the most
accurate model, the relative accuracy of the other three was
quantified by Eq. (22). In Fig. 8 the errors of the three models
versus the Monte Carlo method are presented.

Quantifying the metrics of Fig. 8 concludes that the radiative
transfer equation and the dual-coupled models present more
than 92% relative accuracy when compared with Monte Carlo,
while this quantity is approximately 88% for the diffusion
approximation model. These accuracy levels indicate that the
discretization schemes of the three models that are based on the
finite element method are sufficiently dense for investigating
their applicability as forward solvers in three-dimensional
fluorescence molecular imaging. Figure 9 further verifies this
assumption, where the logarithms of the normalized fluence
rate amplitudes on the plane y ¼ 1 cm are presented for all mod-
els. According to the simulation geometry of Fig. 4, this plane is
just in front of the ellipsoid simulating the liver. The absorption
coefficient of that ellipsoid was responsible for the light extinc-
tion observed in Fig. 9 as the black area close to the center of
the plots.

4.2 Simulation Results from the First Two Scenarios

Figure 10 presents the results from the first scenario, showing
the logarithm of the fluence rate modulation amplitudes for the
diffusion approximation, the dual-coupled radiative transfer
equation and diffusion approximation, and the radiative transfer
equation models, as slices at the y ¼ 0 plane for the excitation
and emission fields. The figure shows also the corresponding
phase shifts given by Eq. (21b).

The fluence rate and phase shift distributions of Fig. 10
can be interpreted by comparing them with the tissue-like
digital phantom. Figure 11 shows the excitation and emission
fluence rates of the dual-coupled radiative transfer equation and

Fig. 6 Results from solving the diffusion approximation (a), the dual-
coupled radiative transfer equation and diffusion approximation (b),
the radiative transfer equation (c), and the Monte Carlo (d) models.
The logarithm of the normalized fluence rate modulation amplitude,
on the simulation geometry top surface, of the excitation source is pre-
sented in the plots indexed (1.1), and for the emission field in those
indexed (2.1), while the corresponding phase shift, in degrees, is pre-
sented in those indexed (1.2) and (2.2).

Fig. 7 Logarithm of the normalized fluence rate modulation amplitude (top row) and the phase shift (bottom row) of the excitation (a and c) and the
emission (b and d) fields, at the region top surface, along the y-axis (a and b) and along the x-axis (c and d).
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diffusion approximation model, along with the optical proper-
ties distribution of the MOBY phantom over the y ¼ 0 plane.
Light extinction deep inside the discretized volume coincides
with the location of the liver.

Similar results were obtained from the second simulation
scenario, in which the virtual fluorophores were located deeper
inside the digital mouse phantom. Figure 12 presents the results
obtained from the three forward solvers. All three forward sol-
vers provide similar photon distributions within the inspected
tissue.

The fluorescence that is emitted deeply inside the inspected
region is almost completely absorbed by the liver, as Fig. 13
shows. The normalized emission fluence rate modulation

amplitude is plotted along the z-axis. The peak of fluorescence
emission is located at the area of the fluorophore inclusion for all
forward solvers, while this signal decreases in the liver region.

Results from the dual-coupled radiative transfer equation and
diffusion approximation model were more similar to those from
the radiative transfer equation for both fluence rate and phase
shift, than to those from the diffusion approximation. This is
very obvious close to the top surface of the inspected area. The
absolute values of the relative errors calculated from Eq. (22)
between the models for the second simulation scenario confirm
this (Fig. 14).

The relative errors of both fluence rate and phase shift for the
diffusion approximation model versus the radiative transfer

Fig. 8 Absolute values of fluence rate modulation amplitude (top row) and phase shift (bottom row) relative errors of the diffusion approximation, the
dual-coupled, and the radiative transfer equation models versus the Monte Carlo forward solver, as a function of the distance from the excitation source
along the x-axis (a and b) and the y-axis (c and d) for the excitation field (a and c) and the emission field (b and d).

Fig. 9 Results from solving the diffusion approximation (a), the dual-coupled radiative transfer equation and diffusion approximation (b), the radiative
transfer equation (c), and the Monte Carlo (d) models. The logarithm of the normalized fluence rate modulation amplitude, on the y ¼ 1 cm surface of
the simulation geometry, of the excitation source is presented in the top row, and for the emission field in bottom row.

Journal of Biomedical Optics 126010-11 December 2012 • Vol. 17(12)

Gorpas and Andersson-Engels: Evaluation of a radiative transfer equation and diffusion . . .



Fig. 10 Results from solving the diffusion approximation (a), the dual-coupled radiative transfer equation and diffusion approximation (b), and the
radiative transfer equation (c) models from the first scenario. The logarithm of the fluence rate modulation amplitude of the excitation source is pre-
sented in the plots indexed (1.1), and for the emission field in those indexed (1.2), while the corresponding phase shift is presented in those indexed
(2.1) and (2.2).

Fig. 11 The logarithm of the fluence rate modulated amplitude for the excitation (a) and the emission (b) fields, calculated from the dual-coupled
radiative transfer equation and diffusion approximation model, and the digital mouse organs (c) in the plane y ¼ 0.

Fig. 12 Results from solving the diffusion approximation (a), the dual-coupled radiative transfer equation and diffusion approximation (b), and the
radiative transfer equation (c) models for the second scenario. The logarithm of the fluence rate modulation amplitude is presented in the plots indexed
(1.1) for the excitation field, and for the emission in those indexed (1.2), while the corresponding phase shifts are presented in those indexed (2.1) and
(2.2).
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equation model were relatively large, especially close to the
top surface of the region. Results from the diffusion approxima-
tion model and the radiative transfer equation model become
more similar deeper inside the region, as expected. In contrast,
results from the dual-coupled radiative transfer equation and
the diffusion approximation model were quite similar to those
from the radiative transfer equation model. More specifically,
the accuracy of the dual-coupled model relative to the radiative
transfer equation was approximately 97%, while the corre-
sponding accuracy of the diffusion approximation was approxi-
mately 90%.

4.3 Simulation Results from the Third and Fourth
Scenarios

The following two simulation scenarios represent two pathologi-
cal conditions, where the animal kidneys and bladder have been

labeled with the fluorophore, Fig. 5(c) and 5(d). The kidneys of
the animal model were labeled in the third scenario. The most
interesting result is the exitance from the top surface of the
model. Figure 15 presents this signal for all three forward solvers.

Figure 15 shows that none of the forward solvers presents
two peaks of emitted fluorescence fluence rate, even though
the fluorophore is present in both kidneys. The reason for
this is that one of the kidneys is located deeper inside the
mouse, close to the pancreas, which absorbs a large fraction
of the excitation light and the emitted fluorescence. This can
be seen in Fig. 16, which presents the dual-coupled radiative
transfer equation and diffusion approximation model fluence
rate on the y ¼ 0 plane, together with the corresponding slice
of the animal model. The fluorescence distribution on the top
surface shows that the labeled inclusion is not a simple
shape. A scanning excitation source is therefore required to
reveal both inclusions, Fig. 17.

Fig. 13 Logarithm of the normalized fluence rate modulation amplitude, and the corresponding phase shift of the emitted fluorescence for the first
[(a) fluence rate, (b) phase shift] and the second [(c) fluence rate, (d) phase shift] simulation scenarios along the z-axis.

Fig. 14 Absolute values of fluence rate modulation amplitude [(a) excitation, (b) emission] and phase shift [(c) excitation, (d) emission] relative errors of
the diffusion approximation and the dual-coupled models versus the radiative transfer equation results, as a function of the distance from the excitation
source along the z-axis, for the second simulation scenario.
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The fourth scenario involved labeling the mouse bladder with
fluorophore. Figure 18 presents results from the three forward
solvers as slices through the three-dimensional coordinate sys-
tem. The geometry presented in Fig. 3 was modified for this
scenario such that the bladder was located within the discretized
region and the z-axis was reversed. Figure 19 shows the loga-
rithm of the fluence rate modulation amplitude for excitation
and emission, and a slice of the animal model on the y ¼ 0
plane, in the modified geometry.

The diffusion approximation and the dual-coupled models
for these two scenarios were compared using a similar method

as that used for the previous two scenarios. More specifically,
the absolute values of the errors relative to the results from
the radiative transfer equation model were estimated using
Eq. (22). These errors, however, were estimated in the third
and fourth scenarios over the entire discretized region and
over the top surface of the region, in order to evaluate the
differences between exitances calculated by the three models.
The mean relative accuracy was approximately 90% for the
entire region, and 98% for the top surface, after applying the
dual-coupled model in both scenarios. The corresponding values
for the diffusion approximation were 89% and 85%.

Fig. 15 Logarithm of the fluence rate modulation amplitude (top row) and phase shift (bottom row) of the diffusion approximation [(a) and (d)], the dual-
coupled [(b) and (e)], and the radiative transfer equation [(c) and (f)] models, as calculated in the third simulation scenario.

Fig. 16 The logarithm of the fluence rate modulated amplitude for the excitation (a) and the emission (b) fields, calculated by the dual-coupled radiative
transfer equation and diffusion approximation model, and to the digital mouse organs (c), on the plane y ¼ 0.
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The relative accuracies of both models were almost equal
when considering the entire region. They were also close to
the relative accuracies of the diffusion approximation in the pre-
vious two scenarios. The discretization procedure adopted for
the dual-coupled model (Fig. 3) resulted in approximately
11,000 spatial nodes for the radiative transfer equation and
almost 59,000 nodes for the diffusion approximation, and

thus we expected that the relative accuracy when considering
the entire region would approach the accuracy obtained from
the diffusion approximation model. The accuracy of the exi-
tance, however, calculated by the dual-coupled model was very
similar to the accuracy obtained by the radiative transfer equa-
tion forward solver, in contrast to the diffusion approximation,
for which the accuracy level was approximately 15% smaller

Fig. 17 Logarithm of the fluence rate modulation amplitude (top row) and phase shift (bottom row) on the top surface of the region, calculated by the
dual-coupled model in the third simulation scenario, with the excitation source located at positions ð−0.6;0;1Þ [(a) and (d)], ð0; 0;1Þ [(b) and (e)], and
ð0.6;0;1Þ [(c) and (f)], directed inwards. The scanning process revealed both inclusions.

Fig. 18 Results obtained by solving the diffusion approximation (a), the dual-coupled radiative transfer equation and diffusion approximation (b), and
the radiative transfer equation (c) models for the fourth scenario. The logarithm of the fluence rate modulation amplitude is presented in the plots
indexed (1.1) for the excitation field, and for the emission in those indexed (1.2), while the corresponding phase shifts are presented in those indexed
(2.1) and (2.2). For each index the coloscale remains the same.
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than those obtained from the dual-coupled and the radiative
transfer equation models.

4.4 Simulation Results from the Fifth and Sixth
Scenarios

Only the dual-coupled radiative transfer equation and diffusion
approximation and the radiative transfer equation models
addressed the last two simulation scenarios. The diffusion
approximation was not used for these two scenarios due to
the low scattering index matched interface. Figure 20
shows the logarithm of the normalized fluence rate modulation
amplitudes resulted from the fifth simulation scenario, as slices
at the y ¼ 0 plane for the excitation and emission fields. In this
figure are also presented the corresponding phase shifts. The
equivalent results from the sixth scenario are presented
in Fig. 21.

The two forward solvers present almost identical results for
both these simulation scenarios. Moreover, as it can be observed
in Figs. 20 and 21, both of them preserved the propagation

direction of the excitation source inside the low scattering inter-
face, while the light became diffused once entered the mouse
tissue at z ¼ 0.8 cm. This is a great advantage of the hybrid
model, since it can be used in situations where the diffusion
approximation is not a valid model and yet present results
very close to the radiative transfer equation and the Monte
Carlo method under a much more computational effi-
cient modus.

Nevertheless, the forward solvers studied in this work were
developed without considering time efficiency, and all of them
are based on similar algorithmic routines. The dual-coupled
model required approximately 2 h to complete a simulation,
which is significantly faster than the radiative transfer equation
model, which required approximately 8 h. The diffusion approx-
imation model gave the solution in the shortest time, approxi-
mately 100 s. However, time comparisons at this stage of the
research are misleading, since most of the time consumed by
the dual-coupled and the radiative transfer equation models is
required to solve the phase function integral and to assemble
the final finite element matrix. The diffusion approximation

Fig. 19 The logarithm of the fluence rate modulated amplitude for the excitation (a) and the emission (b) fields, calculated by the dual-coupled radiative
transfer equation and diffusion approximation model, and the digital mouse organs (c) on the plane y ¼ 0.

Fig. 20 Results from solving the diffusion approximation (a), the dual-coupled radiative transfer equation and diffusion approximation (b), and the
radiative transfer equation (c) models for the fifth scenario. The logarithm of the fluence rate modulation amplitude is presented in the plots indexed (1.1)
for the excitation field, and for the emission in those indexed (1.2), while the corresponding phase shifts are presented in those indexed (2.1) and (2.2).
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model will not become more efficient if more physical memory
or a faster HDD is used, but such measures will significantly
reduce the time required by the other two models. The radiative
transfer equation model, for example, has been additionally
solved on a computational unit with 8 GB RAM, which is
12 GB less than that used for the results presented above.
This 12 GB reduction in physical memory increased nine
times the time required to solve the forward problem, since lar-
ger amounts of data needed to be written to virtual memory. For
these reasons, no time comparisons were also considered
between the three forward solvers and the Monte Carlo method,
which required approximately 14 h to solve the forward problem
for 109 photons.

5 Conclusions
We have applied the coupled radiative transfer equation and
diffusion approximation25,36 model, modified such that it consti-
tutes a dual-coupled fluorescence molecular imaging forward
solver, to a digital mouse for the first time. Furthermore, this
paper is among the very few that present three-dimensional
results from solving the radiative transfer equation.22,27,45 An
independent Monte Carlo method was used to evaluate the pro-
posed model. Our results were in good agreement with those
obtained by the Monte Carlo, indicating accurate modeling of
photon migration through scattering media. The robustness of
our results is further increased by the use of the MOBY phan-
tom.29 Results from the radiative transfer equation were consid-
ered to be the ground truth against which the proposed model
and the diffusion approximation were compared.

We have shown that the synthetic data obtained from the fre-
quency domain of the dual-coupled model are well correlated
with radiative theory, while the diffusion approximation fails
to provide accurate results close to the top boundary of the
region. The excitation source was located at this top boundary
and emission was detected there in the work presented here. The
proposed model gives results that are twice as accurate in photon
propagation modeling. More specifically, the relative accuracy
of the suggested model is greater than 98%, versus the radiative

transfer equation model, close to the top surface of the region.
The corresponding accuracy of the diffusion approximation
model is almost 85%, as resulted from the first four simulation
scenarios presented in this paper. The last two simulation sce-
narios considered situations where the diffusion approximation
fails to accurately simulate light transport. The proposed model,
however, achieved equivalent results to the radiative transfer
equation, but in a much more computational feasible modus.

Future work will investigate the time efficiency of the
proposed model. Thus, one major project will optimize the algo-
rithms with respect to time efficiency and memory management.
The time efficiency of the three models can then be compared.
Moreover, adaptive unstructured discretization schemes, both
spatial and angular, may be used, and the usefulness of the radia-
tive transfer equation model as a forward solver will be inves-
tigated. Other work will investigate the possibility of using
GPU (graphics processing unit) programming for the three-
dimensional solution of the proposed model, and its comparison
with the GPU Monte Carlo simulations.

Finally, this forward solver will be used to solve the inverse
problem in fluorescence molecular imaging, and results
obtained with it will be compared with results obtained using
the diffusion approximation and Monte Carlo forward solvers.
The long-term scope of this research is to develop a forward
solver that combines accuracy and time efficiency, providing an
alternative to the widely adopted diffusion approximation and
Monte Carlo models.
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for the excitation field, and for the emission in those indexed (1.2), while the corresponding phase shifts are presented in those indexed (2.1) and (2.2).
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