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Abstract. High-content cell imaging based on fluorescent protein reporters has recently been used to track the
transcriptional activities of multiple genes under different external stimuli for extended periods. This technology
enhances our ability to discover treatment-induced regulatory mechanisms, temporally order their onsets and
recognize their relationships. To fully realize these possibilities and explore their potential in biological and phar-
maceutical applications, we introduce a new data processing procedure to extract information about the dynamics
of cell processes based on this technology. The proposed procedure contains two parts: (1) image processing, where
the fluorescent images are processed to identify individual cells and allow their transcriptional activity levels to be
quantified; and (2) data representation, where the extracted time course data are summarized and represented in a
way that facilitates efficient evaluation. Experiments show that the proposed procedure achieves fast and robust
image segmentation with sufficient accuracy. The extracted cellular dynamics are highly reproducible and sensitive
enough to detect subtle activity differences and identify mechanisms responding to selected perturbations. This
method should be able to help biologists identify the alterations of cellular mechanisms that allow drug candidates
to change cell behavior and thereby improve the efficiency of drug discovery and treatment design. © 2012 Society of

Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.046008]
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1 Introduction
The genetic regulation mechanisms of cells are composed of
many interacting complex, dynamical networks. The networks
that control cell growth, differentiation, maintenance, repair, and
many other functions of an adult organism, are essentially non-
linear types of process control. The structure of these networks
contains parallel, or intertwining, pathways that have various
inputs, outputs, loops, and cross-talks with each other. These
levels of nonlinearity of the network guarantee that there are
highly consequential, intermittently functioning operations that
are only observable while the system experiences a shift in the
operating regulatory dynamics in response to particular influ-
ences. The traditional reductionist approach that only focuses
on a specific regulatory unit fails to capture the full dynamics
of the system. Some high-throughput techniques like RNA
expression profiling with microarrays can provide a snapshot
of an aspect of the system at one time point, but to follow
cell responses for an extended period by microarrays, one needs
to carefully prepare multiple cell populations under identical
conditions and produce the assays at different time points by
harvesting cells and extracting analyte from a different cell
population at each time point. The whole procedure is techni-
cally cumbersome and error-prone, and the cost can be prohi-
bitive if dense temporal sampling is carried out.

Fluorescent reporters have long been used in molecular
technology to study cells transcriptional activities, the cellular

localization of components, or re-distribution of target proteins,
either in a population of cells or a single cell.1–3 There are two
basic types of fluorescent reporters based on the molecular
structure: (1) Promoter-reporters that indicate the activity of the
promoter for a particular gene. To serve this purpose, a fluorescent
reporter can be constructed by fusing the promoter region of a
gene of interest with the coding sequence of a fluorescent protein,
most commonly a green fluorescent protein (GFP). Then the
abundance of the reporter can be used as an indicator of the activ-
ity of the promoter. (2) Fusion-reporters that indicate the cellular
location of a protein, the stability of a protein, the status of large
architectural elements in the cell, or the positioning of small mole-
cules in a cell. This type of fluorescent reporter is made by an in-
frame fusion of the coding sequence of either a whole protein or a
protein domain to the coding sequence of a fluorescent protein,
and then placing that coding sequence under the control of a pro-
moter that will drive the production of that protein at a rate suffi-
cient to produce constant detectable levels of the fusion protein.

The presence of fluorescent molecules can be detected by
imaging with an epifluorescent microscope. Because this proce-
dure is non-invasive to the cell, it allows tracking of the same
cell population for an extended period of time by imaging the
same site repeatedly. The recent introduction of automated digi-
tal microscopes allows researchers to use multi-well microtiter
plates and sequentially capture the reporter activities in all wells
in a high-content fashion.4–6 To the present day, the majority of
approaches that take advantage of such large-scale fluorescent
imaging assays limit themselves to the fusion reporters, where
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the dynamic spatial distributions of such fusion-proteins serve as
the indicators of phenotypes of interest. These fusion-reporters
can be used in large scale RNAi or small molecules screening, in
time-lapse study and/or case-control study.7–11 However, to
serve as phenotype indicators, only a few key reporters are
needed, often less than three. Hence such approaches provide
little insights on the mechanism of the cellular regulation
network in response to external perturbations.

In this study, we used a batch of promoter reporters to track the
transcriptional activities of particular genes. To serve this purpose,
we built a library of promoter reporters and designed an experi-
mental protocol. In our experimental protocol, a single assay is
carried out by epifluorescent imaging of a site at the bottom of
each well in a 384-well plate, producing an image of the cells in
that region (∼200 to 300 cells) bearing fluorescent reporters. The
imaging speed of automated systems easily accommodates
sampling an entire 384-well plate at hourly intervals. If needed,
the experiment can be extended to multiple sites/plates to cover
more cells with a wider range of cell types and reporters.

Using different wells to test different combinations of cell
type, GFP reporter and experimental conditions allows this inno-
vative approach to provide a truly multi-dimensional examination
of the cell’s responses to a variety of stimuli. Not only can it
follow multiple genes simultaneously, but it can also compare
cellular activities under various conditions. Furthermore, it cap-
tures the dynamics of transcriptional regulation. The capability to
observe a cohort of cell-response behaviors facilitates new pos-
sibilities in biological research, e.g., detection of sub-populations
with different susceptibilities to the external stimuli, determina-
tion of whether the response is continuous or graded, ordering
of critical events, and relating different response patterns. To fully
realize these possibilities and explore the potential of this method
in biological and pharmaceutical applications, we have designed a
customized data processing procedure for this experimental pro-
tocol. The procedure contains two parts: (1) image processing and
transcription quantification, where the fluorescent images are
segmented to identify individual nuclei and cells, and the amount
of fluorescence each cell is producing is quantified, and (2) data
representation, where the extracted time course data are summar-
ized and represented in a way that can facilitate efficient
evaluation.

2 Methods
Since the proposed data processing procedure is designed for a
high-content fluorescent protein reporter-based experimental
protocol, it is necessary to provide some basic information on
how the experiment is carried out and the unique challenges
associated with the protocol.

2.1 Experimental Protocol

The objective of the experimental protocol is to efficiently cap-
ture cell process dynamics in response to certain stimuli in order
to obtain a deeper understanding of the genetic regulatory
mechanisms and constrain the number of possible mechanisms
requiring further research. For example, the stimuli applied
could be chemicals, biological molecules or environmental
alterations. The design and execution of experiments are
aimed at understanding the mechanisms invoked in response
to a stimulus, and is generally carried out in the three stages:
(1) formulate a model of pathways on the processes potentially
affected by the stimulus, pick the desired process reporters and
cell lines based on the model, and prepare and plate sets of cell

line/reporter pairs; (2) perturb the pathways with the stimulus of
interest and other stimuli with known effects on components of
the pathways of interest, and also include an un-stimulated
control; and (3) take fluorescent images periodically for a
consecutive time period for all cell populations in the plate. The
fluorescent images are taken as two-color image pairs with a
blue channel image for the nuclei and a green channel image
for the GFP reporters. The imaging rate should be frequent
enough to capture any change in the transcription activity, yet
not too frequent to induce photobleaching and/or phototoxicity.
The transcription itself is a slow, yet dynamic process. It can
take 4 to 6 h or more from the time transcription rates change
to the time when the new steady-state level of protein product
is achieved. Moreover, the protein product is in continuous
turnover through translation and proteolysis. The microscope
has been fitted with several filters in case that the target cell
line is sensitive to light at certain frequency. One can
switch to other color channels by using filters in combination
with other fluorescent reporters or stains, and avoid or alleviate
potential toxic effects. Finally, the computer-controlled shutters
used by the automatic imager greatly limit the exposure time of
live cells, which further prevents phototoxicity. Thus, we found
an hourly sampling rate is sufficient for successful transition
tracking, yet low enough not to induce any observable photo-
bleaching and phototoxicity.

In a properly designed plate, each condition will be tested in
multiple wells to ensure both adequate coverage and replicates
to assess technical variation. In our experiments, every condition
is duplicated in three or more wells. There will also be media-
only, unperturbed cell population to serve as negative controls
and cell-lines with a highly expressed reporter to serve as posi-
tive controls. These control wells can serve as a final safeguard
to detect any unexpected effects. In the beginning of the experi-
ment, the plate will be imaged for several hours without any
stimulants being added. The images taken during this period
will provide an estimate on the baseline level of transcriptional
activity. Once the stimulants are added, the images will be taken
hourly for considerable time, usually over 40 h, to capture any
induced response by the chosen reporters. The technical details
on how the biological samples were prepared and how the
images were taken are available in the Appendix.

Figure 1 shows two typical fluorescent images sampled for
the same site in a 48-h drug treatment study. The original images
are 16-bit images and are normalized to 8-bit for proper viewing.
The full sequence of images is stacked into a video file. The
colon cancer cell-line HCT116 is under observation here and
the reporter is driven by a 1 kb promoter fragment from
MKI67, a nuclear protein whose abundance is tightly correlated
with proliferation.12 No drug was added for the first 5 h, then
lapatinib, a drug used to treat breast cancer, was added and
imaged for 43 h. In Fig. 1, the left image was taken at the begin-
ning of the experiment when no drug has been added, while the
right image was taken 43 h after the drug lapatinib was added.
There are about 300 cells in the image. The nuclear channel
(blue) images the live cell DNA fluorophore, Vybrant Violet,
and the promoter reporter activity channel (green) images the
GFP reporter protein. For the case shown here, the change in
transcriptional activity is significant. In the beginning, gene
MKI67 is highly transcribed, indicating strong proliferation
activity. At the end of the experiment, most of the GFP fluor-
escence was reduced to almost unobservable, a likely indicator
of reduced transcription followed by apoptotic proteolysis.
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Figure 1 shows that fluorescent reporters can help research-
ers track the cellular activity of the same cohort of cells, in this
case, by direct visual evaluation; however, the volume of data
that can be handled by visual inspection in a timely manner
is very limited, while the volume of data generated by the
current approach is always huge. With a 384-well plate there
will be 384 videos for evaluation and the number can be
much higher if the experiment requires multiple sites being
chosen in each well or multiple plates to cover all experimental
conditions. Furthermore, visual evaluation is unreliable when
one needs to aggregate the results from duplicated wells or
when one needs to quantitatively compare different conditions.
Hence the high-content nature of the GFP reporter approach
calls for a more automatic and quantitative solution to efficiently
extract and summarize the captured transcriptional activity.

2.2 Image Processing

2.2.1 Objectives of image processing

To facilitate automatic processing of the experiment results, the
first step is image processing, where the transcriptional levels of
the fluorescent images will be properly extracted, quantified,
and saved. When designing the image processing method, sev-
eral characteristics of cell imaging specific to the experimental
protocol must be considered.

• Cell-level activity. Light-based assays have long been
used to study cell-level activity. For example, in studies
where cell viability is the primary focus, luciferase is
often used to help detect cellular ATP level through bio-
luminescence intensity.13 However, such a measure does
not separate individual cells but treats the population as a
whole; thus it cannot detect sub-populations. For human
cells, cell heterogeneity is very common, especially for
cancer, where the carcinoma cells can reside in multiple
states in a single tumor, thereby leading to various drug
responses and prognosis perspectives.14 By comparison,
in GFP reporter based imaging, the transcriptional activity
can be extracted at the single cell level. As shown in

Fig. 1(b), although the proliferation activity of most
cells has been turned off, there is still a small portion
of cells whose transcriptional activity remains unchanged,
indicating a possible sub-population of cells that is rela-
tively resistant to the applied drug. Thus, a proper image
processing method must be able to identify individual
cells and extract the transcriptional level of each cell.

• Robustness. The demand for robust performance comes
from both the time and space domains. First, it should
be noted that each site is being imaged for a period of
time and the extracted data will be studied as time-course
data rather than independent data. To further complicate
the issue, a cell-line could have significantly different
responses to different perturbations, so the imaging qual-
ity can also vary from well to well and time point to time
point. For example, since the cells can possess different
morphological shapes in response to the external stimuli,
the optimal focus plane will change with both time and
condition. The auto-focus mechanism of the scanner
will invariably be slightly out of focus from time to
time, sometimes even generating unusable images.
Hence, the image processing method must be robust
enough to produce reliable results for the full time course.
Next, as a high-content approach, different stimuli/condi-
tions will be applied to different wells and all wells will be
imaged simultaneously. Hence one would expect the cells
to experience dramatically different types of perturbation,
which will lead to different responses. Actually a well-
designed experiment should be able to induce a variety
of responses that allows the exploration of certain genetic
regulation mechanisms that are only responding to speci-
fic stimuli. With such varied responses, one would expect
the fluorescent images to experience various changes. For
example, in Fig. 1, the cells show morphological changes
after application of the drug: the cells now start to form
small clusters, and their sizes became smaller. Although,
some nuclei became brighter, some nuclei became
dimmer. When no drug is applied, the change is not so

Fig. 1 Two fluorescent images of the same imaging site for cell-line HCT116 with a promoter reporter for the gene MKI67 taken in the time course of
one experiment: (a) before any drug is applied (beginning of Video 1); (b) 43 h after a drug lapatinib was added (end of Video 1). (Video 1, QuickTime,
MOV, 2.6 MB). [URL: http://dx.doi.org/10.1117/1.JBO.17.4.046008.1].
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significant (results not shown). If the method can handle
most images with excellent performance but can have very
poor results on certain cases, the results will have jarring
outliers, lead to misinterpretation of the outcome, and
significantly affect the analysis. Ideally, if one can con-
sider consecutive images in time and track the activity
of individual cells, the results will be most informative.
However, a considerable number of cells will be moving
in or out of the imaging area during the experiment and
the imaging site itself is not always fixed. These, plus the
situations just described, make cell tracking challenging
and limit its usefulness. Thus, we utilize single image
processing to pursue the activity at a population scale,
while making sure that the method is sufficiently robust
to produce quality results over all conditions for the whole
time course.

• Computation time. The final major issue is the number of
images to be processed in each experiment. If the experi-
ment contains a single 384-well plate and the cell cultures
are followed for 48 h and imaged every hour with one
two-color scan per well, then the outcome will be 18,432
image pairs, which is over 70 GB in storage. The designed
method must be able to handle this amount of images in a
reasonable time frame.

2.2.2 Image processing procedure

Achieving all of these objectives requires a fast image processing
algorithm with good balance between speed and the ability to
pick up almost all objects. The most common segmentation meth-
ods involve an adaptive-threshold-based approach like the one
based on the top-hat transform.15 We have found this approach,
with a properly chosen threshold, to be fast and able to identify
the foreground objects in general for almost all cases. However, it
is difficult to find the optimal threshold for such an approach,
which makes it hard to further identify individual nuclei.
Level-set-based methods are another popular approach that has
been reported to achieve impressive performances, but can be
quite complicated and time-consuming.16–18 For our experiments,
we found that the potential performance gain through this
approach does not compensate for the extra computation time
and complexity. We decided to build our method using morpho-
logical image processing,15 in particular, the watershed transfor-
mation,19 another popular and proven approach in cellular image
processing. The time-course images are processed independently
to maintain process speed and minimize the consequence of
unexpected outliers: only one pair of images will be loaded
and processed each time, and the results of outlier images can
later be discarded without affecting other results.

Figure 2 provides the general flowchart on how a fluorescent
image pair is processed: the nuclear channel is first processed to
identify all nuclei (top part of Fig. 2) and the reporter channel is
then analyzed to extract an individual cell’s expression activity
(bottom part of Fig. 2). As a practical example, the critical steps
in processing the image in Fig. 1(a) are shown in Fig. 3. In order
to show the segmentation details, only a portion of the full image
is shown here.

Nuclear channel processing contains two major steps. First,
the foreground objects are identified, where an object is either an
isolated nucleus or a cluster of nuclei (top left part of Fig. 2).
Before segmentation, the nuclear channel image is first

pre-processed to remove tiny additive and subtractive noise
via a single-stage open-close alternating sequential filter. We
apply watershed-based segmentation on the gradient image. It
is known that the accuracy of flood holes is critical to the success
of the watershed procedure. As is commonly done, we depend
on the top-hat transform for marker selection. The local maxima
inside the top-hat-identified foreground are filtered by the area
open operation20 to form the foreground markers of size no
smaller than a designated value based on common nuclei sizes.
Similarly, the background markers are found by morphologi-
cally thinning the top-hat identified background. Thinning,
rather than erosion, is chosen to avoid small and/or narrow
passage regions between nuclei being lost. An example of the
watershed markers can be viewed in Fig. 3(b).

Overall, the watershed on a gradient image gives a tight
boundary on most nuclei; however, if a dim nucleus is attached
to a bright nucleus or part of a nucleus is much brighter than
other parts, the high gradient of the bright one might oversha-
dow the dim one and the watershed segmentation could miss the
dim region. To address this problem, the difference between
top-hat transform and watershed results is used to identify
and recover large missing objects. To obtain the final identified
foreground objects, the segmentation results are sent for post-
processing to remove tiny objects that can be artifacts or nuclear
debris. An example of the final foreground can be found in
Fig. 3(c).

The next step is to identify individual nuclei by de-clumping
the clustered nuclei (top right part of Fig. 2). In most cases,
nuclei have circular or near-circular shapes, and the tight
segmentation boundaries secured by the previous step make
it a natural choice to use a shape-based de-clumping method,
where we apply watershed segmentation on distance trans-
formed foreground images. The local maxima found through
morphological opening are set as markers for flooding holes.
For the highly clustered regions, where the boundary shape
is not informative enough, shape-based de-clumping might
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Fig. 2 Flowchart of the image processing procedure.
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fail to separate some or all of the nuclei. These missed objects
usually have a much larger area size and irregular shape than can
be detected by the circularity shape factor. Intensity-based
watershed segmentation is applied to further de-clump these
missed objects, where the markers are found through the area
open operator. An example of the watershed markers can be
found in Fig. 3(d). To save space, we put both shape-based
and intensity-based de-clumping markers in one image. Before
passing the identified nuclei to the GFP channel processor, a
final post-processing is done by removing the tiny objects gen-
erated by the de-clumping procedure. An example of the final
segmentation results can be found in Fig. 3(e).

The parameters associated with image processing must be
adjusted for each cell-line and experiment because critical fac-
tors associated with segmentation, like nuclei size, shape, and
intensity range, can vary significantly due to experiment design,
biological diversity, or imaging setting. In some extreme cases,
the whole de-clumping part might be omitted if the nuclei do not
have a round shape. Indeed, for certain cancer cell-lines, it
is common to see large cells with large and/or irregularly shaped
nuclei. For example, the breakage-fusion-bridge cycles can
create very large nuclei or connected nuclei linked through ana-
phase or chromatin bridges.21 These irregular nuclei cannot be
separated by standard criteria like shape or intensity, and can be
ambiguous to determine even by experienced biologists. Hence,
for such cases, to avoid further complication, it is better to skip
the de-clumping step and treat the identified objects as nuclei.

As with the nuclear channel, the processing of the GFP
reporter channel can be viewed as a two-step procedure: first,
identify the objects; second, identify the cells. Here, both
steps are much simpler than their counterparts in nuclear
channel. Since the reporters are not bound to any other mole-
cule, one would expect that the fluorescent reporter protein,
once produced, should be all over the cytoplasm and quite
evenly distributed. Thus, a global threshold can be used to
find the objects that have fluorescent intensity over a designated
value. The threshold is a fixed value offset by the background
intensity, which is largely additive noise that should not be mea-
sured as part of the transcriptional activity. The background
intensity can be retrieved by finding the mode in the lower
part of the intensity histogram. If the cells are at a density
where they essentially cover the entire bottom surface of the
well, then the mode estimate of the background intensity
could be false. In such a case, the imaging site will either be
discarded during the quality check or an alternative approach
will be used. The reference sites, which have the same media
but no cells and are in the same plate, can be used to find
the background intensity.* To de-clump the objects into cells,
intensity-based watershed segmentation was used. Since the

Fig. 3 The segmentation of Fig. 1(a): (a) raw image of nuclear channel; (b) markers for gradient-image-based watershed segmentation, where the white
dots are the foreground markers, while the white lines are the boundary of background markers; (c) identified foreground region; (d) markers for nuclei
de-clumping, the white dots are found by shape information, while the relatively large grey objects are markers found by intensity; the de-clumping is
limited to the foreground region defined by the white boundary lines; (e) final segmentation of the nuclei channel; (f) reporter channel, where the white
lines are the identified cell boundaries while the grey lines identify the nuclei used as markers.

*In such case, before the main part of the image processing starts, the reference
sites are pre-processed to extract the background intensity and saved in a com-
mon file. During the image segmentation, the background will be loaded from the
common file, rather than processing the reference sites.
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nuclei must be contained in the cells, it is natural to use the
identified nuclei as the markers of the presence of a cell for
the watershed segmentation. An example of the final GFP
reporter channel segmentation results can be found in
Fig. 3(f). It should be noted that although we treat the back-
ground noise as additive, there exist some multiplicative noise
types. Such noise is only prominent when the overall intensity
distribution range changes significantly, which can be
detected when one observes a large background intensity
change. In such cases, rather than trying to normalize such
a variance, we discard the site and omit it in the following
analysis.

Once the individual cells are identified, the transcriptional
activity represented by the reporter is extracted for every cell
by summing up the background subtracted pixel intensity of
the whole cell area and taking a log2 transform before being
exported. The log2 transform is taken because the changes of
the chemical reactions prevalent in the cells are multiplicative
rather than additive and the log2-transformed intensity can there-
fore better represent the dynamics of reporter abundance
changes in the cell. The results are exported as a tabular data
file for further processing. It should be noted that in our study,
the transcription activity is collected from the reporter channel,
while the nuclei channel only serves an auxiliary role for better
segmentation. However, since the morphological changes of
the nuclei can also reveal important information on cellular
response, we are working on incorporating such information
into our protocol.

The whole image processing procedure is done with
MATLAB, with most morphological operators done by the
SDC Morphology Toolbox for MATLAB.15 For a standard
image pair of size 1024 × 1024, with about 300 cells, it takes
about five minutes to process a 48-time-point series, which is
about 6 s per image pair for a standard Windows-based desktop
computer (3.3 GHz processor, 4 GB RAM). By splitting
the plate into several blocks and running the program in parallel,
a single plate can be processed overnight by a multi-core desk-
top computer.†

2.3 Data Representation

Once the images are processed, transcriptional activity
extracted, and the results exported, organized data representa-
tion is required to help researchers evaluate the quality of the
experiment, investigate the outcome, and identify the biologi-
cally meaningful relationships.

2.3.1 Quality control

Before any further processing of the results, their qualities must
be thoroughly examined. The experiments require a great deal of
handling, dilutions and delivery of cultured cells, media and
chemical agents to produce the desired matrix of gene/drug
tests. The combination of component complexity per well,
the need to move the plate from incubators to biosafety
hoods and the scanner can lead to a variety of obstacles. We
have observed view-obstructing dust and fiber fragments on
the plate bottom, temperature change induced crystallization

of marginally soluble perturbants, overly high or low numbers
of cells and failure to add DNA binding fluorophore to some
sets of cells among other human errors. While imaging is auto-
mated, it is not perfect, and either plate fabrication or optical
imperfection sometimes leads to images sufficiently out of
focus that they cannot be analyzed. For these reasons, any sys-
tematic data analysis protocol must incorporate quality control
mechanisms to help researchers catch potential errors, exclude
problematic imaging sites from later analysis, and improve
future experimental design.

Since the purpose of quality control is to help identify poten-
tial errors, which in most cases are not independent but clustered
in wells closely related in space and/or time, the data should be
presented in a way that reflects the original experimental layout.
We employ a grey-scale heat map style approach, where each
time point is shown as a heat map in a plate layout and all
time points are concatenated into a video. The intensity mapping
is identical for all time points to facilitate inter-time-point com-
parison. By viewing the heat map sequence, one can quickly
identify most potential errors. Figure 4 shows a typical heat
map sequence. The metric evaluated in the heat map is the num-
ber of cells identified by the image processing procedure in each
well of a 384-well plate. This figure shows the second time point
of a 36-time-point experiment. As can be seen in the image, the
wells in the lower half of column 24 have almost no cells, which
is consistent with the plate layout in which these wells are set as
media-only references. However, there are five isolated wells
that also have close-to-zero cell counts. A further check on
these wells reveals that the DNA fluorophore for the nuclear
channel was not correctly applied during the experiment.
Thus, few cells were identified, and these wells were excluded
from further evaluation. Similarly, other heat map videos can be
constructed to evaluate other informative measurements, such as
background intensity, foreground size, etc. Once the outliers are
identified, the remaining results are analyzed.

2.3.2 Summarize expression profile

As discussed in the Objectives of image processing section, even
under the same condition cells can be at different states with
different expression levels due to various factors, such as cell
cycle status, drug efficiency, heterogeneity of the cell popula-
tion, etc. Hence, rather than obtain an average expression
level, one should aggregate the cell-wise expression levels from
all duplicate wells to obtain the expression profile across the
whole population. If, for a given gene, the expression state of
a cell at a certain time point is viewed as a random distribution,
then the expression profile is a density function depending on
the cell line, gene, external stimulant, and time. Although, his-
tograms are widely used to visualize the density function, it is
cumbersome to put different profiles of different time points and
conditions in one plot for comparison, which is critical to the
time-course case-control study. Thus, we use a one-dimension
kernel density estimation with Gaussian kernel to obtain a den-
sity function, which has the properties of being nonnegative and
having integral one.22,23 The smoothing parameter is selected by
the Sheather-Jones method24 implemented in the Matlab toolbox
as discussed by Marron in Ref. 25. Figure 5(a) shows expression
profiles in the form of density functions obtained for the cell
population imaged in Fig. 1. The profiles of all 48 time points
are shown. The lines are coded by grey-scale to indicate time.
The two time points corresponding to the two images shown in
Fig. 1 are shown in bold lines, with the before-the-drug time

†Imaging a 384-well plate requires approximately 43 min when using two color
channels and taking two images per well, leaving only a small amount of free time
to process images. Like most commercial automated epifluorescence image-
acquisition systems, the authors’ systems do not provide simultaneous image
capture and image-analysis support.
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point in black, and 43-h time point in light-grey. As a compar-
ison, Fig. 5(b) shows the expression profiles of the un-drugged
population of the same reporter and cell line. Note that in this
example, since both plots are based on a single imaging site, the
density curves are actually not as smooth as pooled results. The
x-axis is the transcriptional activity level measured by the total
fluorescent intensity in log2 scale. The figure clearly shows that
the transcription level of target gene MKI67 is relatively high at

the beginning of the experiment, with the peak at around 217

(arbitrary camera intensity units). At the end of the experiment,
the transcription level of MKI67 has been greatly reduced to
around 214, which is a decrease of roughly 8-fold, and is
close to the fluorescence level that a cell without GFP would
exhibit. The transcription profile also shows that there might
be a small portion of cells that remain in a highly proliferative
state as their MKI67 levels show no sign of decrease.

Fig. 4 A typical quality control heat map: the intensity indicates number of cells found in each well at given time point (Video 2, QuickTime, MOV,
4.4 MB). [URL: http://dx.doi.org/10.1117/1.JBO.17.4.046008.2].
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Fig. 5 (a) The evolution of the expression level histogram for the imaging site used in Fig. 1 during the experiment where an MKI67 reporter in cell line
HCT116 is responding to the drug, lapatinib is shown. The intensity of profile indicates time, starting with black at the beginning, and gradually
changing to light grey at the end. The profiles at the beginning and ending time points are shown with bold lines; (b) Expression profile for a
un-drugged population of same reporter and cell line.
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The control population shows that without the influence
of the drug, the transcription activities remain high in most
of cells and only start to decrease in a small portion of cells at
the end of the experiment, probably due to the depletion of growth
factors in the media. This also confirms that there is little photo-
bleaching in unaffected cells. More revealingly, the bi-modal
expression profiles demonstrate beyond any doubt that when
turning off, the state transition of MKI68 transcription activity
is more of a switch-like procedure, rather than a gradual decrease
of transcription level over thewhole cell population. Furthermore,
the switch-off of the transcription activity among responsive cells
is not well synchronized, indicating different latency periods for
cells to responding to the drug or even the existence of resistant
sub-populations in the cell culture. Such a response dynamic
is only observable when individual cell transcription activities,
rather than the overall activity, are identifiable.

Viewing expression profiles as density functions allows
researchers to compare transcription activities under different
conditions in a single plot. In Fig. 5, the transcription activities
at different time points are compared. One can also compare the
transcription activities under multiple conditions, such as differ-
ent drugs or cell-lines. One can also put different plots side-by-
side and make larger-scale comparisons. While providing a
means for direct comparison, a density function does not
quantify observed differences. Thus, while this density-based
approach can provide straightforward comparison for small-
scale studies, where only a few factors are involved and there
are few conditions to track and compare, it is less suitable
for studies of complex diseases like cancer, where one would
like to perturb the cell-line of interest with multiple drugs aiming
at different targets and track multiple transcription signatures
representing several critically related pathways. To represent
the cellular activities at such a large scale in a manageable
manner, one needs to further quantify the expression profile
while keeping the meaningful responses observable.

From the example shown Fig. 5 as well as other observations,
we notice that, for a cell culture at any given time, the distribu-
tion of transcription activity is mostly either uni-modal or bi-
modal, indicating the cells are in either one or two dominating
states most of the time. In the beginning of the experiment,
owing to careful preparation, the transcription activity is highly
homogeneous and the density function is always uni-modal with
a sharp peak. Moreover, when the cell culture reacts to certain
stimuli, the response is mostly uni-directional, which can lead to
bi-modal distribution during state transition. If one could iden-
tify the valid states which the transcription activity can occupy
and the percentage of cells in those states for any give time
point, then the most informative part of the cellular dynamical
system could be captured. However, we have found that such an
absolute measure of cellular response is not practical on account
of the following reasons: (1) It is hard to determine whether the
distribution is uni-modal or bi-modal in many cases, especially
when the estimated density functions is not smooth or during
the transient period when cell response commences but is not
prominent. (2) Assuming the nature of the distribution is
correctly identified, then in a bi-modal case, if the two peaks
are too close or the minor peak is too small, the state position
of the minor peak could be hard to identify. (3) The absolute
values of the transcription activity of the case population are
of little meaning unless they are benchmarked against a control
population. To ensure robustness of the quantified results, rather
than using absolute measures, we adopt a relative measure that

quantifies the transcription activity changes with respect to a
control population.

As a relative measure, our quantification procedure intends
to determine the size of the case population that behaves differ-
ently from the control population and the magnitude of the
difference, which we denoted as pop-shift (PS) and fold-change
(FC), respectively. We denote the distributions of the case and
control populations as F and G, respectively, and their corre-
sponding density functions as f ðxÞ and gðxÞ, respectively. The
control population can represent any condition that makes
the comparison meaningful. The most common choice is the
unperturbed population at the same time point, although it is
also common to choose the same population at the beginning
of the experiment. The intuitive idea for PS and FC is shown
in Fig. 6. Basically PS measures the non-overlapped areas of the
two distributions, as indicated by either grey area in Fig. 6, left
and right representing the difference between f ðxÞ and gðxÞ
where f ðxÞ > gðxÞ and where gðxÞ > f ðxÞ, respectively. Because
f ðxÞ and gðxÞ are density functions, the two grey areas are of
same size, i.e.,

ps ¼
Z

f ðxÞ>gðxÞ

ð f ðxÞ − gðxÞÞdx ¼
Z

f ðxÞ≤gðxÞ

½gðxÞ − f ðxÞ�dx:

Note that PS can be conveniently computed by using the total
variation distance.26

ps ¼ 1

2

Z
jf ðxÞ − gðxÞjdx:

For two identical distributions, ps ¼ 0, while for two totally
disjoint distributions, ps ¼ 1. To evaluate FC, we measure the
distance between the mass centers of the two non-overlapped
areas, which indicate the extent of the population shifts:

f c ¼
Z

f ðxÞ>gðxÞ

x½ f ðxÞ − gðxÞ�dx
. Z

f ðxÞ>gðxÞ

½ f ðxÞ − gðxÞ�dx

−
Z

f ðxÞ≤gðxÞ

x½gðxÞ − f ðxÞ�dx
. Z

f ðxÞ≤gðxÞ

½gðxÞ − f ðxÞ�dx:

Note that the FC can be conveniently computed as,

f c ¼
Z

x½ f ðxÞ − gðxÞ�dx=ps;

which is essentially the distance between the means of the two
distributions, normalized by PS. Fold-change can be either positive

g(x)

f(x)

fold-change 

pop-shift 

Fig. 6 Quantification of the relative transcription level shift and the per-
cent of the population of cells showing altered transcription levels are
carried out as shown to produce pop-shift and fold-change estimates.
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or negative, indicating whether the transcription activity is increas-
ing or decreasing with respect to the reference case.

The product of PS and FC is given by the difference of mean
cell-expression levels,

ps · f c ¼
Z

xf ðxÞdx −
Z

xgðxÞdx:

Although, average expression levels or similar ideas are
commonplace in many high-throughput genomic data collection
techniques, such as microarrays, the term used here is actually
different. The critical difference is that the average here is taken
at the cell level over the log-transformed values, whereas the
microarray expression level is averaged in the assay during sam-
ple preparation and the log transform is taken after the average
expression level is retrieved. Thus, the measure used here can
improve detection sensitivity by mitigating the distorting impact
of over-expressing outliers, which can have concentration levels
hundreds of times higher than most of the other cells.

The PS and FC measures assume case population shift in one
direction with respect to the control population and are most reli-
ablewhen theassumptionholds.Therearecases thisassumption is
violated. Themost common case is when the majority of the cells
are shifting towards one direction but there can be a small number
of cells shifting in the opposite direction. For example, in the
beginning of the experiment, the cell culture is prepared so that
the cells are in a quite homogeneous state. However during the
on-going experiment, the cells begin to show increased variance
in activity even without any external stimulus. The increased var-
iance can be detected as cells shifting to both directions, although
there is no meaningful state change. Such a behavior uncertainty
could be even higher if the cells are under perturbation. In such
cases, PS will report the total cells shifting to both directions
while FC will report only small change. The measures hence
could be misleading when there is only a small population
shift, and affect the detection of the response initiation, which
is critical to identifying the order of events. To alleviate this
problem, we introduced a modified measure pair by computing
both the up-regulation and down-regulation changes.

Letting

μ̂ ¼
Z

f ðxÞ≤gðxÞ

x½gðxÞ − f ðxÞ�dx
. Z

f ðxÞ≤gðxÞ

½gðxÞ − f ðxÞ�dx;

the up- and down-regulated PS and FC can be computed sepa-
rately based on the distribution is to the left or right of μ̂:

psl ¼
Z

f ðxÞ>gðxÞ
x<μ̂

½ f ðxÞ − gðxÞ�dx;

f cl ¼
Z

f ðxÞ>gðxÞ
x<μ̂

x½ f ðxÞ − gðxÞ�dx=psl − μ̂;

psr ¼
Z

f ðxÞ≤gðxÞ
x≥μ̂

½gðxÞ − f ðxÞ�dx;

f cr ¼
Z

f ðxÞ≤gðxÞ
x≥μ̂

x½gðxÞ − f ðxÞ�dx=psr − μ̂:

f cl ≤ 0 indicates that any shift to the left is down-regulation,
whereas f cr ≥ 0 indicates up-regulation. The relationship

between the bi-directional PS and FC to the uni-directional
pair is straightforward:

ps ¼ psl þ psr; f c ¼ ðpsl · f cl þ psr · f crÞ=ps:

Since we assume the state shift is uni-directional, any shift to
the opposite direction is only due to noise or some transient
activity. Hence, it is worthwhile to combine the measures
into one pair according to the following procedure by canceling
out the shifts to both directions. We first determine the dominat-
ing shifting direction based on f c and then compute the modified
values:

f c 0 ¼
(
f cr if f c > 0

f cl otherwise

ps 0 ¼ f c · ps=f c 0:

The modified fold change f c 0 is the FC of the dominating
direction, while the modified pop-shift ps 0 is based on the
mean cell-expression level difference and f c 0. Rather than
cancelling out the PS directly, we choose to use the mean
cell-expression level to cancel out the product of PS and FC.
This is because the noisy PS terms are usually a slight shift
with relatively large PS but small FC. In comparison, a true
shift is normally initiated with a far greater FC level but a
relatively small percentage of cells. Thus, using the mean
cell-expression value can help us identify the initiation of a
true state transition. An alternative choice is to use the PS
and FC of the dominating direction without canceling out
any shift; however, we have noticed that if the PS in the opposite
direction is due to noise, say variance, then it usually affects
both directions, although the one in the dominating direction
is over-shadowed by the true transition and therefore is not
detectable. Once the PS and FC values are calculated for all
time points of a certain condition, the PS and FC time sequences
are separately smoothed with a median filter to remove small
irregularities.

To show the transcription activity changes summarized by
the PS and FC pair, we use a bar-plot pair as shown in
Fig. 7, which refers to the same drugged cell population imaged
and processed in Figs. 1 and 5(a). In Fig. 7(a), the initial state of
the drugged population was chosen as the control, so for each
time point, its current expression profile was compared to its
own expression profile at the beginning of the experiment to
obtain the PS and FC pair. In Fig. 7(b) the un-drugged popula-
tion shown in Fig. 5(b) was chosen as the control, so for each
time point, drugged population’s current expression profile was
compared to the expression profile of the same time point of the
control population. In each plot, two bar-plots are put in parallel
pairs with common x-axis aligned with experiment time points.
The top bar-plot represents PS, while the bottom bar-plot, which
is drawn downwardly, represents FC. In order to make the whole
plot compact for better comparison, the absolute value of the
change is shown and different fillings are used to indicate
up- or down-regulation: white for increased activity and
black for reduced activity. Each tick in the y-axis of the PS
plots corresponds to a 10% shift. The y-axis for FC plots is
shown in log2 scale, i.e., two consecutive ticks indicate a two-
fold difference in concentration. Finally, although the PS and
FC pair can reveal most of the cellular response activities,
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sometimes it’s still helpful to have a measure on the absolute
expression levels. Here we chose the initial state, represented
by the peak positions in the density functions at the beginning
of the experiment, to provide a general idea on the absolute tran-
scriptional level of the target gene. The initial states of both case
and control populations are shown at the left of the plot.

Figure 7 shows that under the influence of the drug lapatinib,
the transcription of gene MKI67 is turned off, starting from
about 10 to 15 h after the drug is added. At the end of the experi-
ment, transcription activities of about 40% of the cells have
decreased to 1=8 to 1=16 of the no-drug control activity level.

3 Results and Discussion
To validate use of the proposed data analysis procedure, we have
conducted comprehensive experiments to evaluate performance.

3.1 Image Processing Performance

The essential performance measure for image processing is
nuclei segmentation accuracy. To evaluate nuclei segmentation
accuracy, we have randomly selected 4 fluorescent images from
4 different imaging sites that cover over 1000 nuclei. Besides the
proposed method, two other methods are used: segmentation by
the software CellProfiler27,28 and manual segmentation. CellPro-
filer is a free open-source cell image analysis software devel-
oped by the Broad Institute. We have used Cell Profiler 2.0
(r10997). The nuclei segmentation is conducted through the
module Identify Primary Objects, which uses a thresholding-
based approach followed by shape-based de-clumping. Since
the size of the foreground region in our cell image can vary sub-
stantially from image to image and from time to time, based on
the suggestions from the software, we choose the two-class Ostu
Adaptive segmentation as the thresholding method. The default
threshold is too lenient for the cell density observed in our
experiment, thus a threshold correction factor of 10 is set to
achieve good segmentation of the selected images. For the pro-
posed method, no specific individual parameters are selected for
the four images; instead, we used a global parameter setting,
which is actually used for all images processed in this paper.

Since there is no ground truth for the segmentation, we use
manual segmentation by M. L. Bittner, one of the co-authors,
who has three decades experience with cell and nuclear mor-
phology, as a benchmark and compare the other approaches
to this manual benchmark for accuracy counts. We also consider
another independent manual setting by another experienced
biologist. The inconsistency between the manual segmentations
provides an idea of how well one could hope to do in compar-
ison to the chosen standard. If two experienced biologists can

only agree on 90% of the segmentation results, then it is likely
that any claim of above 90% for automatic segmentation is just
accidental.

Accuracy counts are divided into three categories: consistent
nuclei, under-/over-segmentation, and missed nuclei. Segmenta-
tion results are shown in Table 1(a). Performance is comparable
for CellProfiler and the proposed method at about 85% accuracy
rate. CellProfiler’s performance decreases slightly when the cell
density is high or the number of cells is large (over 300).
Although the manual segmentation performance is better (rela-
tive to the benchmark manual segmentation), it is still below
90% and only 4% better than automatic segmentation methods,
reflecting the overall difficulty of the problem and indicating
good performance for the automatic methods. It should be
noted that the total number of nuclei identified by each method
are not the same. For computer-based approach, the most com-
mon errors are the over- and under-segmentation, while for
manual segmentation, the discrepancy on whether to identify
a certain object as cell play a much larger role in accuracy rate.

To check the robustness of the image processing, we
examine images of the same sites of the four images evaluated
in Table 1(a) but at different time points of the experiment.
In general, both automatic segmentation methods work pretty
well, except for one site, where the nuclei intensity has dropped
significantly at the later stage of the experiment. To illuminate
the problem, another sample image of that site has been picked

(a) (b)

Fig. 7 The bar-plots show the relative transcription activity of the cell population of Fig. 1 throughout the experiment with the control population set to:
(a) the initial population distribution at the beginning of the experiment; (b) the untreated population at the same time point. The drug was added after
5th hour. The top bar-plots show the pop-shift, while the bottom ones show the fold-change. Each tick upward on the y-axis of the upper, population-
shift plots corresponds to 10% shift in population, while each tick downward on the y-axis of the lower, fold-change, plots indicate a 2-fold difference
in expression level. The white bars indicate up-regulation while the black bars indicate down-regulation. The expression levels of the initial state for
both case and control are shown at the left of each plot as the log2 of the green fluorescent intensity.

Table 1 Accuracy of nuclei segmentation: (a) 4 random selected
images from 4 different sites; (b) an image later in the experiment
from a site used in (a).

Approaches Consistent
Over-/under-
segmentation Missed Accuracy

(a)

CellProfiler 1179 179 37 84.5%

Manual 1263 93 62 89.1%

Proposed 1183 166 39 85.2%

(b)

CellProfiler 139 170 45 39.3%

Manual 258 82 53 65.6%

Proposed 250 85 27 69.1%
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out for accuracy counting and the results are listed in Table 1(b),
where we see that the segmentation performance has decreased
significantly for all methods, with CellProfiler at a paltry 39.3%.
The proposed method’s performance at 69% is even better
than the manual segmentation, reflecting the great uncertainty
even for the experienced biologists. This large discrepancy is
due to the extreme condition experienced by the cells under
great pressure. Although the dye on the nuclei has become
dimmer, the chromosomes have begun to shrink into small
yet bright nodes, making it much harder to tell whether an object
contains single or multiple nuclei. Moreover, some nuclei
have started to break up, a sign of apoptosis, thereby creating
small particles that further confuse the segmentation procedure.
Overall, the proposed image processing protocol can provide
fast and robust image segmentation performance with adequate
accuracy for the purpose of the experiment. We didn’t use
CellProfiler not due to its general performance, but because
of its lack of robustness relative to the kind of image degradation
that can occur with our technology—for normal images, both
CellProfiler and our approach provide segmentation accuracy
close to human performance.

3.2 Reproducibility

To compare gene expression profiles obtained under the same
condition and derive an empirical distribution of profile differ-
ence under the identical condition, we measure the variability of
duplicated cases. If the experiment and data analysis protocol
are highly reproducible, then there should be little difference.
In one experiment, we have collected 56 wells of identical con-
dition: cell-line HCT116, reporter for gene MKI67, with no drug
applied. Each well contains one imaging site. The experiment
lasts 48 h, with images taken at every hour. After image proces-
sing and quality check, three time points were removed due to
low imaging quality in significant number of imaging sites. The
results of the remaining 45 time points are used to compute
the profile difference distribution by emulating the standard
experimental design, where each condition is covered by
three sites. A scheme based on random sampling is used:

1. For a given time point, randomly find three sites to
represent the target condition, and obtain the aggre-
gated expression profile via the kernel-density distri-
bution described in Sec. 2.3.2.

2. Randomly find three different sites at the same time
point to represent a second sample of the same target
condition, and obtain the aggregated expression
profile.

3. Compute the pop-shift value between the two profiles.

4. Repeat step 1 to 3 for 1000 times, save the results for
this time point.

5. Repeat step 1 to 4 for every time point.

Thus by aggregating all PS values, we have an empirical
distribution for profile variation of identical condition based on
PS, which is equivalent to total variation, an important distance
measure for probability distributions.26 Figure 8(a) shows the
distribution of PS values over all time points. For most case
pairs, the reproducibility is very high, with PS values between
0.03 and 0.06, and very few PS values over 0.1. Additionally,
the empirical distribution of Fig. 8(a) can help researchers iden-
tify genuine response differences. Taking identical condition as
null hypothesis, the empirical distribution in Fig. 8(a) indicates
that a PS value over 0.072 will lead to the rejection of the null
hypothesis at significance level 0.05, and a threshold of 0.09
corresponds to the significance level 0.01. Thus if the PS value
between the expression profiles of target case and control case is
larger than 0.1, one can confidently claim there is a significant
difference in the transcriptional response that is worth further
investigation. Figure 8(b) shows the thresholds at significance
level of 0.05 and 0.01 for each time point, based on the empirical
expression distribution of that time point. It can be seen that
there is little change in the thresholds at different time points,
indicating that the reproducibility is not significantly affected by
the time factor for at least 48 h.

Finally, we should point out that the empirical distribution
obtained in Fig 8(a) is based on duplicated sites in one plate.
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Fig. 8 (a) The empirical distribution of PS between cases of identical condition is shown. (b) The thresholds of population shift corresponding to
significance levels at 0.05 and 0.01 are shown for all time points.
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Our experience shows that certain experimental factors, like
how the sample is prepared, can have direct effects on the out-
come, mostly shifts in the expression distribution and/or
response dynamics. Thus to ensure reliable comparison, one
should carefully prepare the assay so all conditions for direct
comparison are in one plate, or in plates that are prepared
and imaged as one batch. The tight confidence interval and
time-invariance between duplicated cases confirm that the
proposed image and data analysis protocol can provide reliable,
robust and consistent performance for properly designed
experiments.

3.3 Sensitivity

To evaluate the proposed protocol’s ability to discriminate slight
differences in a set of responses, we have designed an experi-
ment where different drug doses are applied to incur different
responses. Again, the cell-line HCT116 and the reporter for
gene MKI67 are picked. As seen from Fig. 7, HCT116 is sen-
sitive to the drug lapatinib and the transcription of MKI67 will
be turned off when the drug is properly applied. In our experi-
ment, six different doses of lapatinib, varying from a very light
dose of 1 micromolar (μM) to a higher-than-normal dose of
32 μM are applied to the HCT116 cell-line after the fifth
hour and the experiment lasts a total of 48 h. Six duplicates
are used to cover each condition.

The bar plots in Fig. 9 show the extracted transcription
responses to the drug. To facilitate unbiased evaluation, all cor-
responding axes across the plots are of the same scale. Since all
cases share the same control population, the initial states of all
six controls are of the same value. The initial states of all cases
are very close to the control state, indicating that the samples are
well prepared for the experiment. The effects of different dosing
amounts can be clearly seen through direct comparison of
the bar-plots. The response magnitudes induced by the drug
increase consistently with the dosing amount. The smaller dos-
ing amounts of 1 and 2 μM have observable yet small responses.
The 8 μM dose was used in many experiments and has been

shown to produce 50% growth inhibition in this cell line. In
our experiment, this dose induces a considerable response,
and the shift of cells to the reduced expression population is
still rising at the end of the experiment. The highest dosing
amounts of 16 and 32 μM induce the largest pop-shifts and
show signs of saturation at the end of the experiment. Another
sign of possible saturation is the relatively smaller extent of fold-
change in the highest doses. The difference in the time when
responses are initiated can also be readily observed, with the
highest doses showing clear responses at five to 10 h after
the drug, followed by normal doses at around 15 h, and lowest
doses at even later hours. The dose response experiment clearly
shows that the proposed protocol is sufficiently sensitive to
detect small differences in transcriptional activities.

It is interesting to note that for the response of the lowest
dose, if observed alone, its PS values are never high enough
to register as a significant response; however, if compared
with other cases of related yet non-identical conditions, as the
cases shown in Fig. 9, the similarity between this case and other
responses can hardly be missed and its contribution to infer the
underlying biological mechanism can be rightfully appreciated.
Thus, the power of the proposed protocol to detect mechanisms
responding to certain perturbation can be further boosted
through properly designed experiments.

3.4 Full-Scale Example

In previous experiments, we have focused on evaluating specific
qualities of the proposed protocol. As a high-content analysis
tool, we expect the data analysis should allow researchers to
not only follow the transcriptional activities of multiple genes
simultaneously but also be able to compare these cellular
activities side-by-side for different conditions. In this section,
we discuss a full-scale experiment to demonstrate the ability
of the data analysis protocol to cover cell process dynamics
and reveal hard-to-detect relationships between responses
induced by different conditions.

We have further screened the colon cancer cell line HCT116
against a variety of drugs. A total of 17 reporters have been
selected to cover the genes for proliferation and survival path-
ways, two vital pathways in a cancer cell-line, and some other

Fig. 9 Bar-plots of dose response results produced by different drug
dosages. The bar-plots are ordered by dosing level, as indicated at
the right side of the plots.
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Fig. 10 A simplified wiring diagram shows the key components of pro-
liferation (left) and survival (right) pathways, and other related genes.
The genes whose transcriptional activities can be assessed through a
reporter are marked by shaded boxes. The drugs are labeled in bold text.
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related genes. Figure 10 shows the diagram of two pathways,
proliferation on the left and survival on the right. The wiring
scheme has been greatly simplified to keep only key compo-
nents in the diagram. It should be noted that this diagram is
based on common knowledge of the two pathways and is not
necessarily an accurate description of the cell-line under
study. The genes for which reporters are used to assess their
transcription are marked by shaded boxes. The drugs used in
the experiment are marked in bold text.

Figure 11 shows the bar-plots for the transcriptional
responses of all 4 drugs. Each column corresponds to a drug,
while each row corresponds to a gene reporter, with the gene
name associated with the reporter shown at the right end of
that row. Because the experiment is conducted with multiple

plates in several runs, whose duration time is different from
each other due to various causes, the bar-plots are of different
length. To ensure reliable comparison, all conditions associated
with the same gene reporter, including the control populations,
are contained in the same plate, and thus have been imaged in
the same run. The same scale is set to the corresponding axes in
all plots to facilitate accurate comparison.

From the bar-plots one can see that all four drugs induce
some levels of responses. By showing all reporter responses
in one large plot, the patterns in drug response can be more
easily detected. Lapatinib induces responses of largest scale,
with all but one reporter showing a clear decrease in transcrip-
tion activity. Specifically, reporters of MYC are down-regulated
only in a small portion of cells at the end of the experiment, but

Fig. 11 The bar-plots of relative transcriptional activity in HCT116 for four different drugs are presented.
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in terms of the full transcription profile, it is highly possible that
this small shift is no accident. The behavior is consistent with
the knowledge in the wiring diagram where lapatinib can inhibit
both EGFR in the proliferation pathway and the ERBB2/3 het-
erodimer in the survival pathway. In comparison, U0126 only
induces strong responses in a limited number of reporters, for
instance, EGR1, FOS, and MKI67. For the reporters responding
with down-regulation, the fold-change is relatively small com-
pared to other drugs that induce similar pop-shifts, and most of
these genes are closely related to the proliferation pathway. All
of these observations are consistent with knowledge that U0126
is only targeted to a downstream member of the proliferation
pathway and the observations confirm the limited scope of
U0126’s impact. In comparison, LY 294002 induces a response
pattern similar to lapatinib but of smaller degree in HCT116,
which is consistent with the fact that LY 294002 targets only
the survival pathway.

The most revealing case is Temsirolimus, which exemplifies
how the transcription activity bar-plots can uncover subtle and
hard-to-discover relationships. Under initial examination, the
responses to Temsirolimus are so small that one is likely ignore
them if any single reporter is examined alone; however, since all
17 reporters are shown in one plot and 12 of them end at down-
regulation states, one is led to consider the overall response pat-
tern. A close examination of the response pattern of LY 294002
shows that out of 17 reporters, 15 are at down-regulation states
at the end of the experiment and the two in up-regulation,
CDKN1A and MYC, are also up-regulated for Temsirolimus.
This similarity reveals that Temsirolimus and LY 294002 are
probably targeting the same pathway, but with different drug
efficiency. This hypothesis is confirmed through the wiring dia-
gram in Fig. 10, where Temsirolimus targets mTOR, a gene
downstream of LY 294002’s target gene PI3KCA. These
kinds of observations lead one to reasonably believe that,
with careful design, similar procedures can be used to explore
relationships between other drug pairs, including compounds of
unknown mechanism.

4 Conclusion
High-content fluorescent protein reporter imaging can be used
to track transcriptional activities in parallel. The huge amount of
data collected from such an imaging protocol calls for innova-
tive ways to analyze the data. In this paper, we introduced a data
processing procedure to extract cell processing dynamics in a
reliable and timely manner. The procedure contains two
parts: (1) image processing, where the fluorescent images are
processed and the transcriptional levels are extracted and quan-
tified; and (2) data representation, where the extracted data are
summarized into expression profiles and the transcriptional
responses are transformed into informative bar-plots to facilitate
efficient evaluation. The proposed data processing procedure
provides a systematic solution for examining the experiments
at different abstraction levels. Researchers can have a general
idea of the whole experiment with bar-plots and further examine
the details with expression profiles, or the raw images, if needed.
Our experiments showed that the proposed procedure can
achieve fast and robust image segmentation with adequate accu-
racy. The results are highly reproducible, and sensitive enough
to detect subtle differences and hidden relationships. The
method can help biologists take the advantage of high-content
screening technology, accelerate identification of mechanisms

underlying potential drug candidates, and in general increase
the efficiency of drug discovery and treatment design.

Appendix:

A1 Biological Sample Preparation
If a report of the promoter activity level of a specific gene is
desired, then a DNA segment of that promoter (∼500 to
2000 base pairs) upstream of the start of transcription for the
gene of interest is copied using PCR and cloned into a plasmid
pENTR5′ (Life Technologies, K59120), where it is flanked by
recombination sites. Such a promoter donor plasmid along with
another donor plasmid pENTR11 (A10467) with an eGFP pro-
tein coding sequence flanked by recombination sites are used to
deliver the promoter and coding sequence via recombination
into a recipient lentiviral delivery vector pLenti6.4/R4R2/
V5-DEST (A11145) to create a cassette where the promoter
of interest will drive the production of eGFP mRNA, which
will be translated into fluorescent protein. The lentiviral vector
can be transfected into 293FT cells along with helper plasmids
that allow RNA copies of the cassette to be produced and encap-
sulated into particles that are readily taken up by cells, converted
into a DNA copy, and integrated into the genome of the that cell,
so that the promoter reporter construct resides stably in that cell.

In order to maximize the uniformity of reporter signaling in
the population of cells carrying the reporter construct, it is useful
to introduce the expression cassette in a uniform way. The len-
tiviral delivery system allows delivery of cassettes containing
the promoter/reporter and blasticidin drug resistant portion of
the initial construct in a dose-dependent fashion. These particles
can effectively transduce both dividing and non-dividing mam-
malian cells with the promoter/reporter construct. Cells to
receive the reporter are infected at a multiplicity of infection
of 0.5 to 0.7, which limits the delivery to one construct per
cell to nearly all of the cells that do get infected. The cells
are then cultured for three days in the presence of blasticidin,
which kills those cells that were not infected, at which point,
the cells are ready for use in the assay.

Response dynamics experiments are carried out to determine
whether or not a particular drug perturbs a set of processes
hypothesized to be altered by the drug. To test the hypothesis,
a set of reporters that each evaluates the process activity level at
a particular point in the process is required. To allow testing over
a wide variety of cellular processes, we have built a GFP library
containing over 80 GFP reporters that cover known critical
cellular responses. A set of 17 GFP reporters for analysis of pro-
liferation and survival activities in cell line HCT 116 (ATCC
#CCL-247) are utilized in this study. HCT 116 reporter-bearing
derivative cultures are cultured in DMEM (Life Technologies,
11965118), supplemented with 10% FBS (16000044), 20 mM
Hepes (15630080), 20 mM Glutamax (35050061) and 1%
Penicillin—Streptomycin (15070963) in T25 flasks. For ima-
ging, a media having low levels of autofluorescence, IM, is pre-
pared. IM contains 70% M-199 (11825015), 30% RPMI-1640
(11875085) supplemented with 10% FBS (16000044), 20 mM
Hepes (15630080), 20 mM Glutamax (35050061) and 1% Peni-
cillin—Streptomycin (15070963) and 0.5 μM Vybrant® Dye-
Cycle™ Violet Stain (V35003). The stain is live-cell
permeable and produces blue fluorescence (∼437 nM) when
bound to double-stranded DNA and stimulated with a violet
excitation source (∼369 nM). One day prior to an imaging
experiment, sub-confluent cells are trypsinized to release
them from the flask surface, resuspended in IM and counted
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in an automated cell counter (Life Technologies C10227) to
establish number of cells per milliliter. The concentration of
cells is then adjusted to 1500 cells per 30 μl of IM.

A 30 μl aliquot of cells having a particular promoter/reporter
construct is delivered to a well in a 384-well microtiter plate
(Greiner Bio-One 781 09x) that has black, opaque walls and
a thin, UV-transparent well-bottom. The plate wells were
previously collagen coated by exposing them to 10 μg=ml Rat
Tail Collagen Type I (BD Biosciences 354249) in 0.02 M acetic
acid for 1 to 4 h followed by washing 2 times with 1× PBS
(Gibco 14200). The cells were allowed to attach to the plate
and equilibrate for 14 to 16 h in a tissue culture chamber
prior to beginning imaging. Each condition tested used six
replicate wells in reproducibility and sensitivity experiments,
and three replicate wells in the full-scale example.

A2 Imaging
All images examined in this study were taken by an automated
scanner (IN Cell Analyzer 3000, General Electric) with a 10×
objective.‡ Images were captured using three high-speed cooled
CCD cameras for Blue, Green and Red fluorescent channels.
Excitation was provided by three separate lasers. Throughout
the experiments the focus of the scanner was automatically
adjusted using an infrared laser to determine the liquid/well bot-
tom interface and then applying a defined offset per channel.
Flat-field correction was determined by imaging wells with
slightly fluorescent media prior to the start of the experiment.
While imaging, the humidity in the imaging chamber holding
the plate is controlled at 70%. The CO2 level is controlled at
5% by mixing CO2 with ambient air at the proper ratio. The
gas mixture is then pumped through a heating and moisturizing
chamber to bring it to 37°C. Then the experiment plate was
imaged continuously once per hour for 5 h to obtain baseline
data. Another 30 μl aliquot of IM was then added which
contained perturbants at twice the concentration desired or no
additives for control wells and again imaged once per hour
for the duration of the whole experiment, which usually lasted
up to about 48 h under our experimental settings. After the
imaging, the flat-field-corrected images were exported in
uncompressed tiff format for image analysis.
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