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Abstract. We present a Monte Carlo lookup table (MCLUT)-based inverse model for extracting optical properties
from tissue-simulating phantoms. This model is valid for close source-detector separation and highly absorbing
tissues. TheMCLUT is based entirely onMonte Carlo simulation, which was implemented using a graphics process-
ing unit. We used tissue-simulating phantoms to determine the accuracy of the MCLUT inverse model. Our results
show strong agreement between extracted and expected optical properties, with errors rate of 1.74% for extracted
reduced scattering values, 0.74% for extracted absorption values, and 2.42% for extracted hemoglobin concen-
tration values. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work
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1 Introduction
Diffuse reflectance spectroscopy (DRS) has been widely used to
characterize tissue optical properties for disease diagnosis.1–4

Typically, DRS uses a fiber to deliver light to tissue. The deliv-
ered light is both scattered and absorbed by the tissue and is then
recollected by another fiber a short distance from the source
fiber. The collected light, or diffuse reflectance, contains quan-
titative information about tissue structure and composition.
While the instrumentation for a DRS system is very simple,
the accurate extraction of optical properties from the collected
signal is a significant challenge. An accurate tissue model is
needed to relate the collected signal to tissue optical properties.
One method for analyzing diffuse reflectance spectra relies on
the solution to the diffuse approximation of the radiative trans-
port equation. However, the diffusion approximation is not valid
for short source-detector separations or in highly absorbing
tissues.5

Because most cancers originate in the epithelial layer, it is
necessary to use probes with a short source-detector distance
in order to sample photons that travel through the epithelial
layer.6 In addition, angiogenesis, an indicator of early cancer,
can cause a significant increase in absorption due to blood.
Unfortunately, the diffuse approximation is not valid in these
regimes. Recently, reflectance lookup tables have been used
to analyze diffuse reflectance spectra.7,8 These lookup tables
are created in two different ways: experimental measurements
of phantoms with known optical properties7 or Monte Carlo
simulations.9 Creating a lookup table (LUT) with experimental
measurements has the advantage of incorporating unknown sys-
tem responses into the LUT. However, the creation of an exper-
imental LUT is time-consuming, and the accuracy is dependent

on the skill and experience of the investigator. The Monte Carlo
method is especially useful for creating an LUT, because it pro-
vides the ability to model complex probe geometries and tissue
structures. However, intensive computation is required to
achieve results with desirable variance, which can make it
extremely time-consuming to populate an LUT containing thou-
sands of values.

Much prior work has been undertaken to improve the speed
and efficiency of the Monte Carlo method for modeling light
transport in turbid media. These methods can be separated
into three groups:

1. methods that use the information from a small set of
Monte Carlo simulations and scale the results to cal-
culate a wide range of optical properties10

2. methods that use geometry splitting techniques to
increase the fraction of useful photons11

3. methods that parallelize theMonte Carlo simulations.12

The first set of methods has the advantage of not requiring a
large number of simulations to create an LUT. However, errors
arise because the photon trajectory information necessary to per-
form the scaling operation can be recorded only in several depth
intervals with finite widths.13 Geometry splitting techniques
decrease the number of photons needed for a simulation to con-
verge, but their implementation is very difficult for complex
probe geometries. The third set of methods uses classical
Monte Carlo simulations and therefore does not make any sac-
rifices in accuracy, flexibility, or implementation difficulty.
Speedup is achieved by simulating multiple photons simultane-
ously on different processors. Because each photon is indepen-
dent of every other photon, this problem is considered
“embarrassingly parallel.” Alerstam et al. have shown that gen-
eral-purpose graphic processing units (GPGPUs) can increase
the speed of Monte Carlo simulations of photon transport by
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three orders of magnitude on a relatively inexpensive GPU when
compared to the sequential implementation.12 We present, for
the first time, a Monte Carlo LUT-based model where all values
in the LUT were created by independent Monte Carlo simula-
tions by using a parallel implementation on a GPGPU.

2 Creation of the Lookup Table
A two-dimensional Monte Carlo code written in ANSI C imple-
mented on an NVIDIA GTX 560 Ti GPU with NVIDIA’s
Compute Unified Device Architecture (CUDA) was used to
simulate photon reflectance in a single-layer tissue model on
386 parallel threads.12 The multiply with carry random number
generator was used. The refractive index above the tissue was set
to 1.452 to match the refractive index of the fiber, and the refrac-
tive index of the tissue was set to 1.33 to match the refractive
index of the phantoms. To test the effect of errors in the refrac-
tive index, we created LUTs with different refractive indices and
repeated the extraction of optical properties with the different
LUTs. We found a 5% error rate in the refractive index corre-
sponds to error increases of 1.3% for extracted μ 0

s values and
0.8% for extracted μa values. To prevent photons from exiting
the tissue volume, the radius and width of the tissue volume
were set to 3 cm. A total of 1 × 106 photons were launched
to obtain the impulse response. To ensure stochastic noise
would be sufficiently low in LUT locations with high albedo,
100 separate MC simulations were performed with the optical
properties in the LUT that would give the lowest value of reflec-
tance. We found that using 1 × 106 photons reduced the standard
deviation of the 100 different reflectance values to less than

0.5% of the mean. The diffuse reflectance for our specific
probe geometry was then calculated by convolving the impulse
response with the beam profile.14 Our probe was modeled using
a Gaussian shaped beam profile of collimated light with a diam-
eter of 200 μm, a detector diameter of 200 μm, and a source-
detector separation of 250 μm. The diffuse reflectance values
for all physiological realistic combinations of scattering and
absorption were calculated using the GPGPU Monte Carlo
implementation with the tissue and probe geometry described
above. Twenty increments (N) were used for both scattering
(0 to 50 cm−1) and absorption (1 to 50 cm−1), meaning a
total of 400 separate Monte Carlo simulations were needed
to create the LUT. The Henyey-Greenstein phase function
was used for sampling scattering angles. The scattering
anisotropy (g) was set to 0.85 for all simulations. For the
range of g values present in human tissue (g > 0.8), it has
been shown10 that the diffuse reflectance will be the same for
any values of μsand g that generate the same μ 0

s. The resulting
MCLUT is shown in Fig. 1. It took 2 min to run the 400 separate
Monte Carlo simulations.

3 Forward and Inverse Models
For the forward model used to generate diffuse reflectance spec-
tra, the reduced scattering coefficient was constrained to the
form

μ 0
sðλÞ ¼ μ 0

sðλ0Þ · ðλ∕λ0Þ−B; (1)

where λ0 ¼ 630 nm. The absorption coefficient was calculated
using

μaðλÞ ¼
XN
i¼1

lnð10ÞεiðλÞCi; (2)

where εiðλÞ is the wavelength-dependent extinction coefficient
of a chromophore, Ci is the concentration of that chromophore,
and N is the number of chromophores. Depending on the type of
tissue sampled and the wavelength range of interest, any number
of chromophores can be used to calculate μaðλÞ. Once μ 0

sðλÞ and
μaðλÞ are calculated, the MCLUT can be used to generate a
modeled reflectance spectrum. Cubic splines were used to inter-
polate between values in the LUT. Figure 2(a) shows the forward
model of diffuse reflectance.

Fig. 1 The resulting lookup table [Rðμ 0
s ; μaÞ] created using 400 separate

Monte Carlo simulations. Each Monte Carlo simulation was used to cal-
culate a reflectance value for a given scattering coefficient and absorp-
tion coefficient combination.

Fig. 2 Flowcharts for the forward (a) and inverse (b) models of diffuse reflectance used to create the modeled spectrum and to fit the MCLUT model to
the reflectance data.
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Figure 2(b) shows the inverse model used to fit our diffuse
reflectance spectra. First, we made an initial guess for the optical
properties, and then the forward model was used to generate a
spectrum. Next, the sum of squares error between the predicted
reflectance and the measured reflectance was calculated using

δ ¼
XK
i¼1

�
Rmðλ1Þ − ReðλiÞ

�
2

; (3)

where δ is the sum of squares error, K is the number of wave-
length points, Rm is the measured spectrum, Re is the modeled
spectrum, and λi is the wavelength. The parameters are then
iteratively updated until the sum of squares error is minimized.
An interior-point nonlinear optimization routine provided in
the MATLAB optimization toolbox (Mathworks, Nattick,
Massachusetts) was used as the optimization algorithm. The
average fit time was 1.3 s, with the number of iterations limited
to 5000 and the termination tolerance on the error function set to
1 × 10−3. Because the modeled spectra are in absolute units
(photons counted) and the measured spectra are in units relative
to a baseline calibration measurement, it is necessary to perform
a calibration so that the modeled and measured spectra can be
compared. Additionally, the calibration corrects for wavelength-
dependent responses in the experiment that are not accounted for
in our forward model. We performed the calibration by taking
the ratio of a modeled spectrum and a measured spectrum with
the same optical properties. Then, to make the measured spectra
equivalent to the modeled spectra, all measured spectra were
multiplied by this ratio. To ensure that the choice of optical
properties used in the calibration step did not bias the results,
the mean of the ratios for all spectra used in the validation

set was used for calibration. The mean calibration ratio is
shown in Fig. 3(a).

4 Validation and Results
To test the performance of our MCLUT-based inverse model,
we created 21 tissue phantoms with hemoglobin (Hb)
(Sigma-Aldrich) as the absorber and polystyrene beads
(diameter ¼ 1 μm) as the scatterer. Hb concentration [(Hb)]
ranged from 0 to 3 mg∕ml, and the reduced scattering coeffi-
cient [μ 0

sðλ0 ¼ 630 nmÞ] ranged from 6.4 to 27.5 cm−1. We
used Mie theory to calculate the μ

0
s of the tissue phantoms.

For our inverse model, we assumed the absorption in the visible
range was due to oxy-hemoglobin. We measured the optical
density for the HbO2 solution using a spectrophotometer and
calculated the absorption spectrum using Beer’s law. Because
the addition of HbO2 dilutes the solution, a small change in
μ 0
s was accounted for when calculating the known values for

μ 0
s. The DRS system consisted of a xenon flash lamp

(Model: E6611, Hamamatsu) as the light source, a spectrograph
(Model SP2150i, Princeton Intruments) and camera (Cool-
SNAP, Photometrics) as the spectrometer; and a fiber optic
probe with the geometry described above (FiberTechOptica,
Ontario, Canada). The diffuse reflectance spectrum and its asso-
ciated fit can be seen in Fig. 3(b) and shows that the inverse
model can accurately fit the experimental data. Figure 4(a)
and 4(b) shows scatter plots of the extracted versus expected
for μ 0

sðλ0Þ and [Hb], respectively. The solid line in each
graph is the line of perfect agreement. The results indicate
there is excellent agreement between the extracted and expected
optical properties. The MCLUT inverse model estimated the
optical properties over a wide range with average root-mean-
square percent errors of 1.74% for μ 0

s, 0.74% for μa, and
2.42% for [Hb]. We compared the performance of our
MCLUT-based model to an experimental LUT-based model.
The MCLUT model was able to estimate μ 0

s and μa with
decreases in percent error of 3.16% and 10.86%, respectively,
when compared to the experimental LUT model.7

Our inverse model was then tested on previously collected
data from a clinical feasibility study15 to illustrate the applica-
tion of the model for noninvasive detection of skin cancer.
Figure 4(c) shows representative spectra from two groups: clin-
ically normal and basal cell carcinoma (BCC). The plot shows
good agreement between the MCLUT fit and the measured in
vivo spectra. For this analysis, the absorption coefficients calcu-
lated in the forward model were determined by melanin, deoxy-
hemoglobin, and oxy-hemoglobin.
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Fig. 3 (a) A diffuse reflectance spectrum (dashed) [μ 0
sðλ0Þ ¼ 25.4 cm−1

and ½Hb� ¼ 1.5 mg∕ml] and the associated MCLUT-fit (solid). (b) Mean
of all ratios of measured and modeled diffuse reflectance spectra with
the same optical properties. This ratio was used for calibration.

Fig. 4 (a) Hemoglobin concentration extracted from the MCLUT inverse model versus known hemoglobin concentration. The solid line indicates
perfect agreement. (b) μ 0

sðλ0Þ extracted from the MCLUT inverse model versus known μ 0
sðλ0Þ. The solid line indicates perfect agreement. (c) In

vivo reflectance spectra from two representative groups: clinically normal and BCC. The thin sold line is the fit.
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5 Conclusions
Although other inverse models have recently been developed for
extracting optical properties from diffuse reflectance spectra,
this work represents the first Monte Carlo lookup table-based
inverse model where the LUT was generated entirely by
Monte Carlo simulation. Previously, the amount of time
required to generate a LUT entirely by Monte Carlo simulation
made this technique infeasible. However, recent advances in
GPGPU computing have allowed parallel Monte Carlo imple-
mentations capable of running three orders of magnitude faster
than traditional, serial implementations of Monte Carlo simula-
tions. By creating an LUT entirely by Monte Carlo simulation,
our method is not subject to the errors that arise from using
either the diffusion approximation or the Monte Carlo scaling
method. When compared to an experimental LUT, our method
was more accurate, but, more importantly, it has the advantages
of being easier to implement and repeatable. This model can also
be adapted to more complex probe and tissue geometries.
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