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Abstract. Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory
technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the
effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using
functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was
applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area.
fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC)
between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less
response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC
between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results
showed no significant level difference, but the FCmeasured byMVDR-MSC significantly decreased during tDCS
compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not
significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating
the effects of anodal tDCS and optimizing parameters for tDCS application. © 2015 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.20.4.046007]
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1 Introduction
Noninvasive brain stimulation has become one of the major tools
for facilitating neuroplasticity in humans, especially in patients
with brain disorders.1 These techniques, including transcranial
magnetic stimulation (TMS), transcranial direct current stimula-
tion (tDCS), and epidural cortical stimulation, can modulate neu-
ral activities, and thus induce beneficial neuroplastic effects.
Previous studies have shown that applying noninvasive brain
stimulation can improve patients’ ratings or performance in pain,2

speech,3 and motor control.4,5 As one of these promising noninva-
sive brain stimulation techniques, tDCS can modulate cerebral
excitability by applying a weak direct current.6 Due to advantages
including relatively low cost, ease of application and no reported
risk of inducing seizures,7 tDCS has been used as a clinical tool
for the treatment of some brain disorders. Clinical studies have
proved its usefulness in improving performance in poststroke
motor rehabilitation and depression.1,3,8

A common approach for the assessment of tDCS effects is to
analyze the behavioral data of subjects. However, the behavioral
data are often influenced by many factors and cannot objec-
tively reveal the underlying cortical neuronal activity. Another

important tDCS evaluation approach is to measure changes in
cortical excitability. One common way to detect the cortical
changes caused by tDCS is to measure the blood oxygenation
level-dependent signals using functional magnetic resonance
imaging (fMRI). Many studies have shown that fMRI can detect
the neuroplastic resting-state functional connectivity changes in
motor cortex caused by tDCS.9–12 Although fMRI has a high
spatial resolution (in millimeters), its expense is relatively high.
This limits the application of fMRI to the assessment of tDCS.

Recently, functional near-infrared spectroscopy (fNIRS) has
been used in measuring brain activation. It measures the inten-
sity changes in reflected infrared light caused by changes in
the concentration of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (Hb).13 These changes reflect the
hemodynamic response to neural activities and neurovascular
coupling. FNIRS is cheap, noninvasive, and portable. More
importantly, fNIRS is optical, so there is no interference with
the electrical currents of tDCS. FNIRS has been applied in vari-
ous research studies, including those of cortical plasticity and
resting-state functional connectivity.14,15 Therefore, fNIRS could
be a useful tool for investigating the effects of tDCS.

There have been a few studies using fNIRS to detect the
effects of tDCS. For example, Merzagora et al. measured the
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HbO changes in resting state in the prefrontal cortex before and
after tDCS;16 in two other studies, researchers measured
the sensorimotor cortex before, during, and after tDCS.14,17

Although intuitive and effective, their methods are not appropri-
ate for estimating the network properties of the cortex from
fNIRS data. In this study, we investigated a functional brain con-
nectivity measure, the coherence between fNIRS signals from
two brain locations, to describe the underlying brain changes
from fNIRS data.

Coherence is a well-known tool for measuring functional
brain connectivity. It has been widely used to identify transient
changes in the functional coupling of distributed neuronal
assemblies via electroencephalography and magnetoencephalo-
graphic recordings.18–24 However, its application to fNIRS has
been rare. Homae et al. used fNIRS to investigate the develop-
ment of global cortical networks in early infancy.25 Inspired by
this, in this study, we sought to investigate whether the coher-
ence analysis of fNIRS data is able to measure the effects of
tDCS on brain connectivity. We use the minimum variance dis-
tortionless response magnitude squared coherence (MVDR-MSC)
method to calculate the coherence between fNIRS signals. The
MVDR is a high resolution spectrum estimation method based
on minimum variance and is effective at measuring coherence.26,27

To evaluate the effect of tDCS on fNIRS activities, anodal
tDCS was applied to the left motor-related area of five healthy
adults at rest. The fNIRS signals during two sessions were
recorded and analyzed. The coherence of fNIRS signals was
calculated and compared between the pre-tDCS, tDCS, and
post-tDCS time segments to find out whether the cortical net-
works are influenced by tDCS.

The paper is organized as follows. First, we present the
details of the subjects, fNIRS-tDCS setup, experiment protocol,
and methods for evaluating the effects of tDCS. Second, we give
the main results for the different stimulation phases. Finally, we
discuss the potential explanations for our findings, as well as the
advantages and disadvantages of the fNIRS-based coherence
method.

2 Materials and Methods

2.1 Subject Data

In this study, we recruited five healthy university volunteers (2
females and 3 males, aged 19–25 years, mean� SD 21.6� 2.4)
to investigate the effects of anodal tDCS using fNIRS. All sub-
jects were right handed as assessed by the Edinburgh Handed-
ness Inventory scale.28 Potential participants were excluded if
they had a history of seizure, paroxysm, or hormonal, metabolic,
circulatory, psychiatric or neurological illness, or were currently
pregnant. Subjects were medication-free at the time of study. All
subjects voluntarily provided informed consent at the beginning
of the experiment. This study was approved by the ethics com-
mittee of the State Key Laboratory of Cognitive Neuroscience
and Learning at Beijing Normal University. Information of all
participants is summarized in Table 1.

2.2 Functional Near-Infrared Spectroscopy-
Transcranial Direct Current Stimulation Setup

The fNIRS-tDCS setup is shown in Fig. 1. A continuous wave
optical topography system (ETG-4000, Hitachi Medical Com-
pany, Japan) was used to measure relative changes of oxy-hemo-
globin (HbO) and deoxy-hemoglobin (Hb) signals induced by

motor-related cortex activity before, during and after bi-hemi-
spheric tDCS. tDCS was applied to the scalp using a battery-
driven electrical stimulator (Neuro Conn DC-Stimulator,
Germany) through a pair of sponge-covered rubber electrodes
(7 cm × 5 cm in size, 35 cm2) soaked in saline solution. The
anodal electrode was centered over the left motor-related cortex
and the cathode was positioned on the right dorsolateral supra-
orbital area. For fNIRS recording, we used one set of 3 × 2
measurement patches, one placed over the right parietal cortex.
Note that the fNIRS recordings were made from contralateral
cortex. Findings from previous studies, as noted in the discus-
sion, give justification for this setup. A swimming cap was used
to hold the probes against the scalp. Probes were plugged into
the red or blue holes on the patches.

The absorption of near-infrared light at wavelengths 695 and
830 nm was measured with a sampling rate of 10 Hz. The fNIRS
source detectors were positioned on the right motor-related area.
Three detectors were distributed as in Fig. 1(b). Since fNIRS
measures the HbO changes between emitters and detectors,

Table 1 Information of the subjects.

Subject No. Sex Age Education

1 Male 25 Graduate

2 Female 19 Undergraduate

3 Male 20 Undergraduate

4 Female 21 Undergraduate

5 Male 23 Undergraduate

Total: 2F/3M 21.6� 2.4
ðmean� stdÞ

Fig. 1 The functional near-infrared spectroscopy (fNIRS) and trans-
cranial direct current stimulation (tDCS) setup. (a) Photo of a subject
wearing fNIRS and tDCS electrodes. The small plot at bottom right
shows the tDCS electrodes mapped on the cortex. (b) Distribution
of seven fNIRS channels, mapped on the cortex.
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the actual number of fNIRS channels was 7, and the channels
were distributed as in Fig. 1(b), mapped on a standard brain
model.

2.3 Experimental Protocol

Each subject was instructed to be comfortably seated at a dis-
tance of 80 cm from a 19-inch monitor in a quiet room and to
avoid movements. They were also asked to fix gaze on a white
cross on the black screen without falling asleep during the entire
session. The anodal tDCS was delivered with a current of
1.5 mA (equivalent current density: 0.043 mA∕cm2) for 5 min.
The single-mode stimulation was applied with 8 s of fade in and
fade out, with a total stimulation time of 316 s. The cortical
activity in the regions of interest was measured by fNIRS before,
during, and after applying anodal tDCS. We first collected base-
line fNIRS signals for 5 min during the rest state before tDCS.
Then, fNIRS signals were recorded continuously for 5 min dur-
ing tDCS and for 5 min after stimulation terminated. The whole
protocol can be found in Fig. 2.

3 Methods
The MVDR-MSC method was used to calculate the coherence
between fNIRS signals and to obtain the correlation matrix.
Then the global synchronization index of the correlation matrix
was calculated using the S-estimator method.

3.1 Minimum Variance Distortion-Less Response
Magnitude Squared Coherence Algorithm

The MVDR spectrum estimation method29 models spectra by
using linear prediction.30 MVDR-MSC is better than Welch-
MSC in frequency sensitivity and precision.29 An m’th order
MVDR spectrum is computed by

SðfÞ ¼ 1

jPm
k¼−m μðkÞe−j2πfkj2 ;

where f is the frequency, m is the MVDR filter order, k is an
iterator whose values determine the frequency resolution, and
the parameters μðkÞ are computed by a simple noniterative
method from the linear prediction coefficients.29

We define the magnitude squared coherence (MSC) function
between two fNIRS signals x1ðnÞ and x2ðnÞ as

γ2x1x2ðfÞ ¼
jEðSx1ðfÞS�x2ðfÞÞj2
EjSx1ðfÞj2EjSx2ðfÞj2

; (2)

where * denotes the conjugate of a complex number and EðXÞ is
the expectation of the windowed X.

For fNIRS data with L channels, we obtain the correlation
matrix using the output of the MVDR-MSC algorithm. We
denote the matrix as C, and its element at the i’th row, j’th
column is γxixj . The correlation matrix is symmetric, and when
i ¼ j, γxixj ¼ 1. Since MVDR-MSC calculates the phase corre-
lation, the correlation matrix C describes the phase relationship
between channels.

3.2 Global Synchronization Index

In this study, we use the global synchronization index (GSI) to
assess synchronization in multivariate neural data signals by
examining the distributions of the eigenvalues of the correlation
matrix C.31 The eigenvalue decomposition of C is

Cvi ¼ λivi; (3)

where eigenvalues λ1 ≤ : : : ≤ λl ≤ : : : ≤ λL are in increasing
order, and vi, i ¼ 1; : : : ; L are the corresponding eigenvectors.
As C is a real symmetric matrix, all eigenvalues are real num-
bers, and the trace of C is equal to the number of channels L.
When all the channels perfectly correlate, the entries of matrix C
are all equal to 1, the maximum eigenvalue is L and the others
are zeroes.

The normalized eigenvalues λ̄l of the fNIRS correlation
matrix are as follows:

λ̄l ¼
λlP
L
i¼1 λi

; l ¼ 1;2; · · · ; L: (4)

The GSI is defined as follows:

GSI ¼ 1þ
P

L
i¼1 λ̄l logðλ̄lÞ
logðLÞ : (5)

The GSI is a measure of the total amount of synchroniza-
tion.31 After calculating the GSI, we used the t test to test for
statistically significant differences between the pre-tDCS, tDCS,
and post-tDCS time stages.

4 Results
The effect of tDCS on the HbO was first investigated. We
analyzed the HbO changes pre, during, and post-tDCS. The ana-
lyzed frequencies ranged from 0.04 to 0.15 Hz, similar to pre-
vious low-frequency fluctuation studies of fNIRS signals.32–34

For each stage, the absolute energy changes were averaged

Fig. 2 The experimental protocol.
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Fig. 3 The statistics of HbO changes in pre-tDCS, tDCS, and post-tDCS stages for each channel.

Fig. 4 The mean coherence matrices of fNIRS signals for five subjects during the three experiment
stages and their visualization as network connectivity strengths: (a–c) coherence matrix for pre-
tDCS, tDCS, and post-tDCS, respectively. The color of tiles (see color bar) indicates the strength of
coherence between two channels. Corresponding global synchronization index (GSI) values are marked
above the plots. (d–f) The binarized functional networks for (a–c), respectively. The color of each edge
represents the coherence strength between two nodes. The binarization used the median of coherence
values as the threshold.
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for every channel across all subjects. The difference in energy
change between stages for each channel was tested using a two-
sample t test. As shown in Fig. 3, we can see that the HbO
change level increased for some channels, and decreased for
others, but all differences between the three stages were not
statistically significant.

The effect of tDCS on the phase relationship between the
HbO series was then investigated. We measured the phase rela-
tionship between fNIRS signals by calculating the coherence
using MVDR between each pair of channels of the HbO data.
The all-subject-mean coherence matrices of the seven fNIRS
signals for each time stage are shown in Figs. 4(a)–4(c). The
tiles along the diagonal line of each matrix indicate self-coher-
ence, which is equal to 1. As can be seen from Figs. 4(a)–4(c),
there was a significant difference in coherence between fNIRS
signals at the pre- and post-tDCS.

To provide an intuitive summary of the differences in coher-
ence between time stages, we computed the GSI from each of
the coherence matrices. The GSIs for the coherence matrices of
pre-tDCS, tDCS, and post-tDCS for all subjects are plotted at
the top of Figs. 4(a)–4(c). We found statistically significant
differences in GSIs between pre-tDCS and tDCS time stages
(p < 0.05, N ¼ 5, t test) and between tDCS and post-tDCS
time stages (p < 0.05, N ¼ 5, t test). However, the difference
in GSI between pre-tDCS and post-tDCS time stages was not
statistically significant (p > 0.05, N ¼ 5, t test). These findings
indicate a decrease in intraregional synchronization induced by
tDCS.

To better reveal the changes in functional connectivity, we
converted the coherence matrices into a binary network using a
threshold, which is determined by the median of coherence val-
ues. The resulting networks are shown in Figs. 4(d)–4(f). During
tDCS, the functional connection between fNIRS signals
decreased. After stimulation, the connection strength increased.
This suggests that tDCS has a strong impact on brain functional
connectivity, as measured by hemodynamic changes, and that
the coherence matrix is capable of evaluating the effects of
tDCS.

5 Discussion and Conclusion
In this study, we investigated the online effect of 1.5 mA tDCS
applied to the left motor-related cortex to fNIRS signals
obtained from the contralateral right motor-related cortex at the
pre-tDCS, tDCS, and post-tDCS time stages. We found that
(1) the level of HbO change at the right motor-related cortex
area showed no significant difference during tDCS; (2) the
coherence between certain channels at the right motor-related
cortex area decreased during tDCS; and (3) the contralateral
functional brain connectivity (GSI) calculated by MVDR-MSC
decreased significantly during tDCS. These results suggest an
interesting relationship between the effects of tDCS and meta-
bolic signals of contralateral motor-related cortex.

In a previous study,35 researchers have demonstrated that the
tDCS over the left motor area can influence contralateral and
ipsilateral finger sequence movements. Another study also dem-
onstrated that rTMS over the left motor hand area can decrease
interhemispherical inhibition from the left-to-right hemisphere
and increase the amplitude of motor evoked potentials evoked
from the right hemisphere.36 Our findings are congruent with
previous studies and support the hypothesis that tDCS can in-
fluence the contralateral brain area.

In this study, we explored the responses in hemodynamics to
tDCS in healthy individuals by estimating the functional connec-
tivity within the contralateral motor-related cortex and determined
that the tDCS can result in a decrease in functional connectivity
within the contralateral motor-related cortex. In a similar study,12

researchers have demonstrated, by fMRI, that unilateral anode
tDCS over the right motor-related cortex (cathode over the con-
tralateral supraorbital region) caused a decrease in intracortical
functional connectivity within the right motor-related area dur-
ing stimulation. This is consistent with our findings as well.

Despite efforts made in recent decades to characterize and
better understand the effects induced by tDCS,37 the underlying
neurophysiological mechanisms have not yet been clearly
revealed. Previous pharmacological studies suggest that the
cortical excitability changes produced by anodal tDCS are
GABAA and NMDA receptor-dependent.38–40 We propose that
a possible explanation of the observed decrease of coherence
during tDCS is that unilateral tDCS can increase excitability
in the left motor-related area, and this excitability can be trans-
ferred to the right motor-related area via cross-hemispheric
connections, which in turn influences the hemodynamics. A pre-
vious study has also found a bilateral increase in cerebral excita-
bility during and after tDCS.41 The decrease in functional
connectivity was presumably caused by a decrease in synchrony
of low frequency fluctuations which in turn resulted in a func-
tional decoupling between motor cortex areas. 12 However, the
exact neurophysiological mechanism underlying the phenome-
non remains an open question.

FNIRS, particularly when combined with functional connec-
tivity analysis, may be a useful tool for describing the effects of
tDCS. First and foremost, fNIRS, an optical technology, is not
susceptible to interference from tDCS. FNIRS provides infor-
mation about the spatial-temporal trends in tDCS effects.
Coherence-based analysis may reveal the effects of tDCS on
resting-state functional connectivity, which may be indicative
of neuroplasticity.

Based on these advantages, we suggest that fNIRS can be
used for describing the online and after-effects of tDCS, design-
ing appropriate stimulation protocols, and finding optimal
stimulation parameters (such as current duration and strength)
for clinical rehabilitation. The current study is limited in sample
size and measurement duration; future studies should use fNIRS
to investigate the long-term effects of tDCS on a larger number
of subjects, as well as whether the induced changes in functional
connectivity correlate with performance on various tasks.

However, fNIRS-based connectivity analysis has limitations.
One limitation is its low temporal resolution, as fNIRS observes
the relatively slow metabolic correlations of brain activity. This
makes fNIRS-based analysis unsuitable for paradigms requiring
fast responses. Also, the information flow between different
brain areas is difficult to obtain because the information’s fre-
quency content is typically far higher than fNIRS’s temporal
resolution. Limitations also include its restricted spatial cover-
age (shallow cortical areas only) and modest number of record-
ing channels.

In conclusion, we combined fNIRS recordings with coher-
ence-based functional connectivity analysis to investigate the
changes in brain activity induced by tDCS during a rest state.
The results showed a possible relationship between electrical
stimulation and brain activity change in terms of hemodynamic
changes. The fNIRS-based multichannel analysis used here is
a promising tool for future studies on tDCS.
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