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Abstract. Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between
cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques
have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluores-
cence excitation spectrum represents new technology that may be well suited for endoscopic implementation.
However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence
excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate
the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes
in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sam-
ple size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa.
Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections.
Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope
system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the
fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of
colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for dis-
criminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to
evaluate the accuracy of this approach using a larger patient cohort. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.21.10.104003]
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1 Introduction
Colorectal cancer is the second leading cause of cancer death in
the United States.1 Early detection may play a key role in reduc-
ing cancer mortality2—the end goal of most colorectal screening
exams is to identify lesions prior to malignancy or tissue
invasion.3,4 Endoscopic procedures are the standard method
for colorectal screening. There are currently several complemen-
tary endoscopic technologies for colorectal exams: white light
endoscopy (WLE), narrow-band imaging, autofluorescence
imaging, and chromoendoscopy.5–7 Interestingly, although the
specificity and sensitivity of these endoscopic technologies
have been estimated in a range of studies,3,5,6,8–11 no single tech-
nology has emerged as clearly superior. As such, WLE remains
the gold standard and is often the “de facto” imaging modality
for colorectal screening. However, recent studies have identified
a need for improved screening effectiveness, showing that cur-
rent methods are limited in their ability to detect flat6 or small
(<5 mm diameter) lesions.3,12,13 Two studies suggest that flat
adenomas may account for 22% and 36% of adenomas.14,15

Hence, there is a need for colorectal screening approaches that

offer improved sensitivity and specificity, especially for detec-
tion of flat and/or small lesions.

WLE is the current standard for colorectal cancer screening
and one of the most commonly performed medical procedures in
the United States.16 WLE has been shown to reduce mortality
rates by as much as 50% in symptomatic patients.16 Although
WLE can provide visualization of large-scale architectural
and morphological features, it does not provide information
coincident with early cancer development, such as changes in
molecular composition or metabolic activity.17 In addition,
the sensitivity and specificity of WLE is debated. Studies have
estimated that the miss rates for large adenomas (≥10 mm)
can range anywhere from 0% to 20%.18,19 A multicenter
retrospective review estimated that the overall miss rate for
colonic adenomas was 24% and for adenomas ≤5 mm, 27%.12

However, there is also evidence for variance in sensitivity
between endoscopists. A comprehensive review, performed
by Rex, estimated that less-sensitive endoscopists may be miss-
ing the vast majority of colonic adenomas (miss rates as high
as 90%).3 In addition to detection sensitivity, WLE has shown
limited specificity in differentiating lesion histology. In a meta-
analysis review, Ignjatovic et al.5 estimated that the accuracy

*Address all correspondence to: Silas J. Leavesley, E-mail: leavesley@
southalabama.eduf 1083-3668/2016/$25.00 © 2016 SPIE

Journal of Biomedical Optics 104003-1 October 2016 • Vol. 21(10)

Journal of Biomedical Optics 21(10), 104003 (October 2016)

http://dx.doi.org/10.1117/1.JBO.21.10.104003
http://dx.doi.org/10.1117/1.JBO.21.10.104003
http://dx.doi.org/10.1117/1.JBO.21.10.104003
http://dx.doi.org/10.1117/1.JBO.21.10.104003
http://dx.doi.org/10.1117/1.JBO.21.10.104003
http://dx.doi.org/10.1117/1.JBO.21.10.104003
mailto:leavesley@southalabama.eduf
mailto:leavesley@southalabama.eduf
mailto:leavesley@southalabama.eduf


for differentiating hyperplastic polyps and adenomas could
range from 59% to 84% (Ref. 5 and references found therein:
Refs. 7, 9, 20–23). Taken together, these data indicate a need for
endoscopic technologies with improved sensitivity and specific-
ity, as well as technologies or approaches that lead to reduced
interoperator variation.

Several alternative endoscopic imaging modalities have been
developed in an effort to increase detection sensitivity and speci-
ficity. Narrow-band imaging (NBI) utilizes optical filters with a
narrow wavelength band to increase the contrast between an epi-
thelial surface and the vascular pattern. This allows analysis of the
surface epithelium and the underlying vascular network.20,24,25

Autofluorescence imaging (AFI) is an alternative approach
for creating increased contrast in endoscopic images.26–31 AFI
uses short-wavelength light or laser illumination to excite
endogenous fluorophores within a tissue.32–36 In general, the
autofluorescence intensity of cancerous and precancerous
lesions is lower, due to mucosal thickening and reduced colla-
gen fluorescence.29 However, tissue autofluorescence has been
attributed to many sources,37 including metabolic molecules
(NADH, FAD),38–40 proteins, and other molecules (flavins, col-
lagen, elastin, hemoglobin),41 breakdown of certain biomole-
cules (hematoporphyrin, flavins),42 and induced molecular
changes concurrent with inflammation.43–45 Hence, the molecu-
lar and histologic basis for AFI is still uncertain.

Several comparative studies have shown that NBI may pro-
vide increased sensitivity and specificity over conventional
WLE5,6,8,11 and that AFI may provide increased sensitivity.11,46

Ignjatovic et al.5 compared the sensitivity, specificity, and accu-
racy of WLE to AFI, NBI, and NBI with magnification
(NBImag) by using sequentially captured image sets of lesions
and postprocedure scoring by expert and novice evaluators.
Results revealed that both NBI and NBImag provided improved
sensitivity, but reduced specificity, when compared to conven-
tional WLE. Interestingly, AFI provided both reduced sensitiv-
ity and specificity.

Chromoendoscopy (CE) is a third alternative endoscopic im-
aging modality, which creates contrast by introducing topical
labels (targeted dyes) into the visualized area through a working
channel or injection port on the endoscope. Dyes or dye conju-
gates are selected to preferentially bind one or more types of
tumor. Su et al.7 demonstrated a very high sensitivity of
95.7% using CE, with a specificity of 87.5%, and a diagnostic
accuracy of 92.7%. Combining CE with pit pattern assessment
may further raise diagnostic accuracy (85% to 96%).5,9,10,22,23,47

The drawbacks of CE—the additional labor and procedural
times involved, requirement for specialized training, use of addi-
tional topical reagents (dyes), and the specificity of dyes across
a wide range of tumor subtypes—have hindered wide-spread
adoption of the technique.5,11,48–50

Arguably, early and/or flat adenomas pose the most difficult
detection challenge.17,37 None of the techniques discussed
(WLE, NBI, AFI, and CE) provides a single fail-safe screening
technology. Hence, there is a significant need for technologies
that offer improved sensitivity and specificity, while maintaining
normal procedure times and nominal procedure costs. One alter-
native detection approach may be through analysis of reflec-
tance or fluorescence spectroscopic data. Both reflectance51

and fluorescence37,52 spectroscopy have been evaluated for
their ability to detect colon cancers. In principle, the additional
information provided by spectroscopic measurements should
allow estimation of molecular composition as well as more

accurate detection sensitivity and specificity. For example,
using a fluorescence spectroscopic approach, Cothren et al.53

reported an incredibly high sensitivity of 100% and specificity
of 97% for differentiating adenoma from normal mucosa and
hyperplasia. A limitation of spectroscopic approaches is that
only a single point-measurement is made, usually by inserting
a fiber-optic probe through the working channel of the endo-
scope. Hence, this technique can be very tedious and time con-
suming, requiring the probe to be contacted with many locations
of the mucosa to effectively locate the lesional border.

The goal of this preliminary study was to assess the potential
feasibility of an alternative imaging technology54,55—hyper-
spectral imaging with reflectance and fluorescence excitation
scanning—for detecting differences between adenocarcinoma
and surrounding normal tissue in resected colorectal cancer
specimens. We have previously shown that hyperspectral imaging
using fluorescence emission scanning can be used to accurately
detect discrete molecular signals in cells and tissues.41,56–60

However, we have found that fluorescence excitation scanning
provides 10- to 30-fold higher signal sensitivity than traditional
(emission-based) spectral imaging approaches.55 This technol-
ogy allows fluorescence and absorbance image data to be
acquired across a range of narrow-wavelength illumination
bands, spanning the ultraviolet (UV) through visible spectrum
and can easily be adapted for endoscopic use. We present initial
data from four patients comparing fluorescence excitation spec-
tral properties of cancerous to normal colon tissues, as well as a
preliminary comparison of different structures within healthy
colon and a brief discussion of effects of specimen preparation
on measured excitation spectra. Initial results indicate that exci-
tation-scanning hyperspectral imaging may be a viable technol-
ogy for detecting spectral differences between normal and
cancerous colon tissues.

2 Methods

2.1 Tissue Specimens

All studies were performed in conjunction with University of
South Alabama Institutional Review Board protocol: IRB #
445452-3. Colorectal tissue samples were obtained by the
University of South Alabama Departments of Surgery and
Pathology from colorectal surgical resection specimens. The
samples were collected as pairs of adenocarcinoma and normal
mucosa and were ∼0.5 to 1.0 mm in thickness. The tissues were
flash frozen in liquid nitrogen. Confirmation of adenocarcinoma
was determined by histologic evaluation of hematoxylin and
eosin (H&E) permanent sections. Samples were maintained at
−80°C until prior to hyperspectral imaging, typically within
1 to 2 days. For imaging, tissues were reconstituted in cold
phosphate-buffered saline (PBS) and placed onto a 25-mm
round coverslip.

A total of eight patients have been enrolled thus far in the
study. However, data from the first three patients are not
presented here, due to variations in specimen processing and
imaging protocol. In addition, one patient was not considered,
as surgical exam revealed extreme fibrosis, possibly due to
perforation of the bowel, but no evidence of adenocarcinoma.

Fresh rat tissues were obtained postmortem from an ongoing,
unrelated animal study. All procedures in the unrelated animal
study were conducted in accordance with approved University
of South Alabmama Institional Animal Care and Use
Committee (IACUC) protocol #623125.
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2.2 Hyperspectral Microscope

An inverted fluorescence microscope (TE2000-U, Nikon
Instruments) with a 10× objective (10 × ∕:25 Ph1 ADL
∞∕1.2 WD 6.2, Nikon Instruments) was used as the imaging
platform. Illumination light was provided by a 300-W Xe arc
lamp (TITAN 300ST-K, Sunoptics Technologies). An evaluation
prototype thin-film tunable excitation filter system (Semrock,
Inc.) containing six separate tunable filters (Versachrome,
Semrock, Inc.) was used to filter the excitation light illuminating
the sample. Our group has previously described this tunable
filter system in detail.55,61,62 Output from the tunable filter

was coupled to the microscope through liquid light guide and
supplied in either an epifluorescence configuration or a transmit-
ted light configuration. An electron-multiplied charge-coupled
device camera (Rolera-em-c2, Q-Imaging) was used to acquire
images of the illuminated tissues. For hyperspectral imaging,
fluorescence excitation was scanned using four different wave-
length ranges with corresponding long-pass dichroic beamsplit-
ters at 458, 495, 555, and 594 nm cut-off wavelengths (Table 1).
The optical path for the microscope in both fluorescence and
reflectance configurations is shown in Fig. 1.

2.3 Image Acquisition

Fields of view within tissue specimens were identified for im-
aging using fluorescence with 480-nm excitation and 495-nm
long-pass emission and transmission at 515 nm. Multiple fields
of view were acquired to sample the range of structures in each
specimen. An additional field of view was acquired that
included the tissue edge and surrounding background region
(with no tissue). The background spectrum was used during
spectral correction (described below). All fluorescence hyper-
spectral images were acquired with the following detector set-
tings: electron multiplying (EM) gain of 3800, 14-bit dynamic
range, and binning of 2 × 2. Transmission images were acquired
using an EM gain of 1. Image acquisition for each type of fluo-
rescence and transmission spectral image stack was performed
sequentially.

2.4 Image Processing and Analysis

Spectral images were postprocessed using MATLAB software
(MathWorks). Absorbance data were calculated from transmis-
sion values, using the transmission spectrum from a background
region as reference. ENVI software (Exelis Visual Information
Solutions, Boulder, Colorado) was used to identify regions of
interest (ROIs) and extract spectral data. Fluorescence images
were corrected to flat spectral response using background
subtraction and multiplication by a correction factor. Correc-
tion coefficients were determined using a NIST-traceable
lamp (LS-1-CAL-INT, Ocean Optics, Inc.) and fiber-coupled
spectrometer (QE65000, Ocean Optics, Inc.), as described
previously.41,55,61

Multiple ROIs were identified according to the structural
features of each specimen. In addition, a region encompassing
the entire field of view was selected. The average spectrum from
each region was extracted. Extracted spectra were plotted using
Excel (Office 2010, Microsoft Corporation).

2.5 Results and Discussion

Colonic adenocarcinoma and surrounding normal tissue were
imaged using a hyperspectral imaging fluorescence excitation
(HIFEX)-scanning microscope configuration. An example
image of normal mucosa is shown in Fig. 2. For each pixel
in the image, fluorescence excitation, transmission, and absorb-
ance spectra were acquired [Figs. 2(a)–2(c)]. These images can
be visualized as three-dimensional spectral image stacks, in
which the first two dimensions represent spatial data and the
third dimension represents spectral data. ROIs were selected
based on structural/anatomical features in the image. For each
ROI, the pixel-averaged spectrum was calculated for each
hyperspectral imaging mode [Figs. 2(d)–2(h)]. In cases in
which a desired structure of the specimen (e.g., mucosa)

Table 1 Equipment settings for each type of hyperspectral imaging
scan performed. Different dichroic beamsplitters were used to allow
a range of fluorescence excitation scanning, with cut-off wavelengths
at 458, 495, 555, and 594 nm cut-off wavelengths (part numbers:
BLP01-458R-25, FF01-495/LP-25, BLP02-561R-25, and BLP01-
594R-25, respectively, Semrock, Inc.). For transmission and absorb-
ance scanning, no dichroic beamsplitter was used.

Type of scan

Dichroic
beamsplitter

cut-off
wavelength

(nm)

Starting
wavelength

(nm)

Ending
wavelength

(nm)

Step size
wavelength

(nm)

Fluorescence
excitation

458 390 450 5

Fluorescence
excitation

495 390 480 5

Fluorescence
excitation

555 390 550 5

Fluorescence
excitation

594 390 580 5

Transmission/
absorbance

None 390 700 5

Tunable
Filter

Xe
Arclamp

CCD
Camera

Dichroic Beamsplitter

Objective

Sample

Long Pass Em. Filter

Mirror

(a)

Tunable
Filter

Xe
Arclamp

CCD
Camera

Objective

Sample

Mirror

(b)

Condenser

Fig. 1 Lightpaths for optical microscope setup: (a) fluorescence exci-
tation-scanning mode and (b) transmission scanning mode. Note that
when operating in fluorescence excitation-scanning mode, all fluores-
cence emission was detected using a long-pass emission filter, for
each fluorescence excitation band used.
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spanned several fields of view, the spectra from multiple ROIs
were averaged to obtain a representative spectral signature for
the structure.

To assess tissue heterogeneity, vascular, adipose, and
mucosal structures of noncancerous colon were imaged (Fig. 3).
Different tissue structures had similar fluorescence spectral
shapes with large differences in magnitude [Figs. 3(d)–3(e)],
suggesting that the bulk fluorescence excitation spectrum of a
healthy colon is homogeneous. However, normalizing fluores-
cence data to a peak value of unity [Figs. 3(g)–3(h)] revealed
subtle differences, likely indicating that many autofluorescent
molecules contribute to the overall spectrum. A possible explan-
ation is that less stable autofluorescent molecules—such as
NADH or FAD, whose fluorescence properties depend on the
oxidative state of the molecule—may have been degraded or
compromised during the flash freezing and sample preparation
process.

Unfortunately, there are relatively few spectroscopic studies
of tissue autofluorescence that report fluorescence excitation
spectral data. Richards-Kortum and Sevick-Muraca35 have
reported flavomononucleotides, with a peak fluorescence
excitation wavelength of 436 nm. However, Wagnieres et al.37

(in a comprehensive review) have also reported that flavins

have a peak excitation wavelength of 455 nm and that porphyr-
ins have a peak excitation wavelength of 400 nm. A definitive
answer as to which molecules contribute to colon autofluores-
cence is not possible until a more detailed study of the compo-
nents of fluorescence excitation spectra is performed. Further
work is also warranted to develop specialized spectral analysis
approaches that can identify weak signatures in the presence of
much stronger signatures, such as matched filtering and energy
minimization algorithms.63–65

Interestingly, the absorbance data of colonic mucosa were
much smaller, and of a different spectral shape, than that of vas-
cular and adipose tissues [Figs. 3(f) and 3(i)]. This indicates that
the composition of absorbing (but not fluorescing) molecules in
the mucosa is different from that of vascular and adipose tissues.
In addition, mucosa may be more transparent than either of the
other tissue types and may allow a higher optical penetration
depth, as indicated by the lower magnitude of absorbance. This
observation indicates that absorbance or reflectance spectral
image data may provide complimentary information to fluores-
cence spectral image data in differentiating among tissue types.

In this pilot study, four pairs of adenocarcinoma and sur-
rounding normal mucosa were analyzed. While this is not a
large enough sample size to calculate sensitivity and specificity
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Fig. 2 Example image of normal colonic mucosa. For each pixel in the image, fluorescence excitation,
transmission, and absorbance spectra were acquired. These images can be visualized as three-dimen-
sional spectral image stacks, in which the first two dimensions represent spatial data and the third dimen-
sion represents spectral data. (a) HIFEX scan acquired from 390 to 480 nm. Three wavelength bands are
shown for visualization (red ¼ 465 nm, green ¼ 430 nm, and blue ¼ 390 nm). Spectral data are shown in
the z-axis (going into the page). Arrows point to colonic crypts. (b) Transmission scan and (c) absorbance
scan from 390 to 700 nm (red ¼ 650 nm, green ¼ 525 nm, and blue ¼ 410 nm). (d–h) Pixel-averaged
spectral data for a representative ROI: (d) fluorescence excitation scan from 390 to 450 nm, (e) fluores-
cence excitation scan from 390 to 480 nm (corresponding to the image in panel a), (f) fluorescence exci-
tation scan from 390 to 550 nm, (g) transmission scan from 390 to 700 nm (corresponding to the image in
panel b), and (h) absorbance scan from 390 to 700 nm (corresponding to the image in panel c).
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metrics, it does provide a proof-of-principle or early feasibility
demonstration for visualizing differences in spectral signatures
of cancerous and normal tissues. At short excitation wave-
lengths, the fluorescence total intensity of adenocarcinomas
was lower than normal tissue [Fig. 4(a), data shown for two
specimen pairs]. This is consistent with prior literature,
which indicates that fluorescence emission decreases in colonic
adenoma and carcinoma,29,53 as well as cancer progression in
bronchial and oral mucosa.27,30 However, fluorescence resulting
from excitation at higher wavelengths was increased, and in the
S4 sample was higher than normal tissue [Figs. 4(b) and 4(c)].
Transmission and absorbance spectral data indicate that adeno-
carcinoma displays increased optical absorbance, as compared
to surrounding normal tissue [Figs. 4(d) and 4(e)], with addi-
tional spectral differences that could be exploited to increase
sensitivity and specificity for tumor detection. These prelimi-
nary data demonstrate that there may be differences in spectral
signature (also called spectral fingerprint) between cancerous
and normal tissue and indicate that the excitation-scanning
approach could provide high specificity (and likely high
sensitivity) for detecting adenocarcinomas. It is likely that
hyperspectral imaging can detect subtle changes in spectral sig-
natures coincident with cancer stage that may not be detectable

with NBI or AFI. In addition, due to the high sensitivity of fluo-
rescence excitation-scanning hyperspectral imaging,55 this tech-
nology could likely be translated to an endoscope or similar
clinical imaging platform, enabling real-time hyperspectral im-
aging for endoscopy procedures. Finally, these data indicate
that lesions are molecularly complex, likely heterogeneous, and
should be investigated further to understand the relationship
between cancer progression and spectral signature.

The wavelength range of 390 to 450 nm was selected to visu-
alize key spectral differences for all specimen pairs (Fig. 5). For
all tissue pairs, the fluorescence intensity of normal tissues was
higher than cancerous tissues. This is consistent with prior lit-
erature that indicates that fluorescence emission decreases with
adenocarcinoma,29,53 as well as bronchial and oral cancer.27,30 In
addition, cancerous tissues presented several common spectral
features, including a local peak excitation wavelength of 400 nm
and a local minimum at 430 nm [Figs. 5(e) and 5(h)]. This indi-
cates that adenocarcinomas have common aspects of molecular
composition.

It is currently not clear which molecules contributed to
changes in the fluorescence excitation spectrum of adenocarci-
nomas. Zângaro et al.66 reported a similar peak excitation wave-
length of 440 to 450 nm but did not attribute this to a specific
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molecule. Wagnieres et al.37 summarized fluorescence excitation
data, indicating that flavins have peak excitation wavelengths at
380 and 460 nm. In addition, lipopigments were reported to
have a secondary excitation peak at 440 nm. By contrast,
NADH was reported to have lower peak excitation wavelengths,
at 260 and 350 nm. However, the fluorescence excitation spec-
trum of tissues has been reported only in a small number of
studies, and even fewer studies have measured the fluorescence
excitation spectrum from the UV through the visible range.
Hence, future work is needed to study autofluorescence
molecules under a broad range of fluorescence excitation
wavelengths.

In the long term, a spectral library of fluorescence excita-
tion spectra could be used to assist physicians in the diagnostic
process in several ways: (1) by providing an estimate of tissue
composition for specified areas of interest, (2) by providing
molecular maps of a tissue using linear unmixing67,68 or
other spectral analysis technique,69–71 (3) by allowing calcula-
tion of derived maps (such as redox ratio72,73 or blood oxygen
saturation74–76), which may correlate with cancer development.
If unmixing or spectral analysis is performed, it may be
advantageous to employ more sophisticated nonlinear un-
mixing approaches, especially if reflectance and fluorescence
image data can be combined to better estimate tissue param-
eters, such as scatter.77 Regardless of the algorithm employed,
the ability to visualize spectrally analyzed “molecular
maps” during endoscopic navigation could improve the ability
to detect small lesions and delineate the margins of larger
lesions.

An advantage of fluorescence excitation scanning is that
it can offer a large increase in signal strength.55 As shown
in Fig. 1(a), there is no need to spectrally resolve the fluores-
cence emission, as long as there is clean separation of the
emission from excitation light using an appropriate long-pass

fluorescence emission filter. In this configuration, all of the fluo-
rescence emission is detected in a single long-pass emission
channel for each excitation wavelength band, greatly increasing
the signal strength. The increased signal strength can, in turn,
allow proportional increases in imaging speed. In addition,
the microscope configuration used for this study lends itself
to an endoscope design in which fluorescence and reflectance
may be measured simultaneously (Fig. 6). A future endoscope
system using this design would provide identical fluorescence
information as the microscope lightpath used in this study,
but would be limited to measuring spectral reflectance instead
of transmission. However, due to the increased signal strength
provided by the fluorescence excitation-scanning approach
and due to the ability to simultaneously measure fluorescence
and reflectance, it is likely that this technology could be
implemented in real time for screening during an endoscopy
procedure.

It should be noted that images of transmission or reflectance
represent combined characteristics of the tissue, at the point
of measurement. Even in current endoscopes, reflected light
images are likely affected by several terms, including wave-
length-dependent variations in refractive index of the tissue.
Hence, for the case of transmission- or reflectance-based spec-
tral imaging, the measured spectrum represents the composite
effects of absorption, scatter, anisotropy, and wavelength-
dependent refractive index changes. Many of these parameters
have previously been shown to be heterogeneous across
tissue types.77 Hence, the basis for detecting colorectal lesions
using reflectance-based spectral imaging would incorporate
these variations, even if only from a lumped-parameter
perspective.

Tissue preparation and/or fixation may affect the spectral
properties and hence, the perceived feasibility of excitation-
scanning hyperspectral imaging for colorectal screening. As
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an example, we compared spectra from the tissue specimens
used in this study to similar colon tissues isolated from rats,
which were discarded upon completion of an unrelated study.
The tissue specimens used in this study were resected during
surgical procedure, screened by pathology, flash-frozen in liquid
nitrogen for transport, and then thawed in cold PBS prior to im-
aging. By contrast, the fresh rat colon tissues were obtained
immediately after euthanizing the animal and stored in cold
PBS for no more than 3 h prior to imaging. While the tissues
were obtained from different sources, results indicate that there
may be additional spectral components present in nonfrozen tis-
sues that are lost during the tissue freezing and thawing process
(Fig. 7). Further studies are warranted to quantify the effects of

tissue freezing, as well as tissue fixation, on autofluorescence
spectra.

3 Conclusion
In this pilot study, we present data indicating that fluorescence
excitation-scanning hyperspectral imaging offers an alternative
approach that may be feasible for identifying adenocarcinoma of
the colon. From the initial cohort of four patients, adenocarci-
nomas presented consistency among spectral features within
the wavelength range of 390 to 450 nm. Unfortunately, few
spectroscopic studies of tissue autofluorescence report fluores-
cence excitation spectral data,35,37 and the exact molecular
composition of each tissue type is yet to be determined. These
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preliminary data indicate that the excitation-scanning approach
could be effective for detecting differences in spectral signature
concurrent with cancer development (Fig. 5). However, further
studies are needed to verify these results using a larger patient
base, to estimate the sensitivity and specificity of this approach,
and to determine the molecular contributors to mucosal
autofluorescence.
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