Open Access
21 December 2016 Special Section Guest Editorial:Translational biophotonics
Author Affiliations +

The SPIE BiOS Translational Research Symposium at Photonics West was launched in 2014 ( http://spie.org/conferences-and-exhibitions/photonics-west/translational-research) to feature innovative biophotonics and biomedical optics technologies and emphasize the unique challenges associated with moving research findings along the translation pipeline from fundamental science, to proof of concept, to development, and finally transfer to market and patient care.

This collection of papers in the Journal of Biomedical Optics is the first of a series that is intended to complement the Translational Research Symposium by providing archival peer-reviewed manuscripts that illustrate clinically relevant technologies and best practices that will accelerate the pace of translation to industry and clinical use, with the ultimate goal of providing better and affordable patient care.

This collection of papers comprises 12 original articles and 1 special commentary, which were published in the Journal of Biomedical Optics Volume 21, Issues 6–12:

These original manuscripts highlight diverse, ongoing, and promising research efforts and applications with a special focus on novel methods and devices that are aimed to prevent, diagnose, or treat a wide range of cancers (brain, breast, esophagus, pancreas, colon, skin) with minimal or no associated morbidity. They report exciting results in areas such as detecting invasive brain cancer cells by coupling artificial neural networks with Raman spectroscopy (Jermyn et al.), distinguishing between malignant and benign lesions in breast cancer by using diffuse optical spectroscopic imaging (Leproux et al.), screening for Barrett’s esophagus by using optical coherence tomography in primary care practice (Gora et al.), or performing laser speckle–based point-of-care measurements of blood flow (Farraro et al.). The authors address key aspects involved in navigating the translational pipeline, such as identifying clinical problems and unmet clinical needs, describing barriers to clinical translation, disseminating and adopting new technologies, and developing sound measures to assess efficacy.

The commentary paper (Tromberg et al.) identifies common essential features for successful translation by examining the origins and critical paths of three major international academic affiliated centers, founded mid-late 1970s.

The objective of both the symposium and this series is to enable a new generation of biomedical scientists to pursue translational research careers, to encourage the emergence and growth of successful translation-oriented initiatives that will not only sustain, but also further increase the impact of biophotonics and biomedical optics on human health.

The guest editors would like to thank all authors for their excellent contributions as well as the reviewers from all over the world for their high-quality work and commitment to making this special series a success. The guest editors would also like to express their gratitude to Lihong Wang, editor-in-chief of JBO, for giving our community this unique opportunity; Gwen Weerts, managing editor for SPIE journals for her continuous support and attention; and the JBO staff who helped complete this series every step of the way.

Biography

Gabriela Apiou-Sbirlea, PhD, is an assistant professor at Harvard Medical School, director of Translational Research Core at Wellman Center for Photomedicine and of Translation Research Training and Development at Mass General Research Institute. She received her PhD degree in biomedical engineering and Habilitation a Diriger des Recherches (HDR) in France. She has over 20 years experience in performing and directing biomedical research in both industry and academia internationally.

Conor L. Evans, PhD, is an assistant professor at Harvard Medical School and runs a research laboratory at the Wellman Center for Photomedicine dedicated to the development and translation of optical technologies for disease diagnostics and therapeutics. His research interests include the development of advanced microscopy technologies to investigate and follow treatment response, oxygen-sensing “smart” bandage technologies, and ultrasensitive detection methods for cancer diagnostics and immunoncology.

Kristen M. Kelly, MD, is a professor of dermatology and surgery at the University of California, Irvine, and vice-chair of the UC Irvine Department of Dermatology. She has more than 20 years of experience in basic science and clinical translational research focusing on development and use of light-based technologies for diagnosis and treatment of disease, especially cutaneous vascular lesions and skin cancer.

Bruce J. Tromberg, PhD, is a professor of biomedical engineering and surgery at the University of California, Irvine (UCI), and director of UCI’s Beckman Laser Institute and Medical Clinic. He has more than 25 years of experience in the development of optics and photonics technologies and their application to biology and medicine. His research interests are in the development of quantitative broadband biophotonics technologies for characterizing and imaging tissue structure, function, and composition across spatial scales.

© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
Gabriela Apiou-Sbirlea, Conor L. Evans, Kristen M. Kelly, and Bruce J. Tromberg "Special Section Guest Editorial:Translational biophotonics," Journal of Biomedical Optics 21(12), 124002 (21 December 2016). https://doi.org/10.1117/1.JBO.21.12.124002
Published: 21 December 2016
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Biomedical optics

Medical research

Translational research

Cancer

Dermatology

Luminescence

Optical imaging

Back to Top