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Abstract. Optical microscopy is the staple technique in the examination of microscale material structure in basic
science and applied research. Of particular importance to biology and medical research is the visualization and
analysis of the weakly scattering biological cells and tissues. However, the resolution of optical microscopy is
limited to ≥200 nm due to the fundamental diffraction limit of light. We review one distinct form of the spectro-
scopic microscopy (SM) method, which is founded in the analysis of the second-order spectral statistic of a
wavelength-dependent bright-field far-zone reflected-light microscope image. This technique offers clear advan-
tages for biomedical research by alleviating two notorious challenges of the optical evaluation of biomaterials:
the diffraction limit of light and the lack of sensitivity to biological, optically transparent structures. Addressing
the first issue, it has been shown that the spectroscopic content of a bright-field microscope image quantifies
structural composition of samples at arbitrarily small length scales, limited by the signal-to-noise ratio of the
detector, without necessarily resolving them. Addressing the second issue, SM utilizes a reference arm, sample
arm interference scheme, which allows us to elevate the weak scattering signal from biomaterials above the
instrument noise floor. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-

duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.22.3.030901]
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1 Introduction
Structure quantification and imaging at submicrometer scales is
paramount in research fields from materials science to biology
and medical diagnostics. At the molecular level, ultrasmall
angle X-ray scattering, often in combination with neutron scat-
tering and nuclear magnetic resonance and computation-heavy
molecular modeling, has been very successful in characterizing
isolated single molecule structures in solutions. Electron micros-
copy can provide information about much more complex struc-
tural organization such as that of biological cells or tissues with
nanometer-resolution imaging. However, it is extremely time,
labor, and resource intensive, most often requiring contrast
agents, and the extensive sample processing alters the native
structure of biomaterials. Optical microscopy techniques are
key for imaging materials at the microscale due to their ease
of real-time operation and the nondestructive nature of the
visible light. The difficulties associated with light microscopy
investigation of biological materials are the diffraction limit of
resolution (≥200 nm) and the optically transparent nature of the
biological samples. To characterize structural properties that are
indiscernible in microscope images, various techniques have
coupled microscopic imaging with spectroscopic quantification.

In particular, spectral or angular properties of light scattering
are utilized in techniques such as confocal light absorption and
scattering spectroscopic1 microscopy or spectral encoding of
spatial frequency,2–4 for quantifying sizes of structures within

the samples. In addition, a multitude of quantitative phase
imaging techniques utilizes the spectral interference profiles
of wavelength-dependent bright-field microscope images for
accurately extracting phase information in a spatially resolved
manner.5–8 Conventionally, the light scattering-based techniques
quantify the inhomogeneities within the studied samples, and
the phase-quantification techniques focus on more cumulative
characteristics such as mass and thickness. At the same time,
some studies use the spatial distribution or slight changes in
a sample’s optical path length to quantify its internal organiza-
tion at unresolvable scales.8–10 While some of the above
techniques can sense changes occurring at the nanoscale, the
rigorous analytical link between exact sample structure and
the measured quantity is either unclear or involves strong
assumptions about sample structure.

Here, we review one distinct form of spectroscopic micros-
copy (SM) founded on the interferometric spectroscopy of scat-
tered light, which utilizes the second-order spectral statistic Σ̃2

of wavelength-resolved bright-field far-zone microscope images
to characterize complex, weakly scattering, label-free media at
subdiffraction scales. We also review the three-dimensional
(3-D) light transport theory behind the technology with the
explicit expression relating Σ̃ to the statistics of refractive
index (RI) fluctuations inside the weakly scattering label-free
sample with an arbitrary form of RI distribution. SM’s sensitiv-
ity to subtle structural changes is widely applicable in fields
from semiconductors and material science to biology and
medical diagnostics. In particular, SM-based partial-wave
spectroscopic (PWS) microscopy has facilitated the develop-
ment of screening techniques for multiple early stage human
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cancers11–17 as well as label-free imaging of the native, living
cellular nanoarchitecture.18

Here, we review and emphasize the most important theoreti-
cal aspects behind this form of SM. Section 2 provides a basic
introduction to SM theory, establishing the physics phenomenon
behind its nanoscale sensitivity. Section 3 discusses the length
scale (LS) sensitivity of SM in detail from various physically
meaningful perspectives. Section 4 presents the main
approaches to extracting the internal-only structural information
of biological cell structure. Specifically, we will discuss how to
design an SM instrument that is perfectly suited to the type of
samples studied by the user, methods for measuring structure
inside rough media, and comparisons between samples with
different thicknesses. Section 5 presents alternative approaches
to structural quantification using the SM signal including real-
time, whole-slide imaging, temporally resolved quantification,
explicit measures of sample structure, etc. Finally, Sec. 6 sum-
marizes and discusses future directions in SM.

2 Theoretical Principles of Spectroscopic
Microscopy

One of the approaches to subdiffraction-scale analysis of
material structure is based on the notion of statistical nanosens-
ing, which postulates that structural properties at LSs below a
certain limit of resolution can be extracted from the sample
organization statistics at larger LSs. In short, when true structure
cannot be resolved with absolute precision due to fundamental
resolution limits, an optical instrument effectively senses
an RI distribution that is blurred or smeared in space.
Notwithstanding, when the spatial correlation function (SCF)
of this locally averaged RI distribution is quantified by scanning
the sample in lateral (as in Ref. 19) or axial directions (as in
Ref. 20), the SCF of the original perfect resolution RI can be
reconstructed, yielding structural information about LSs far
below the resolution limit.21,22 Inverse spectroscopic optical
coherence tomography is one example technique founded on
statistical nanosensing, and it focuses on evaluating the decay
rate of the locally averaged RI SCF.20 The herein reviewed
SM technique, in turn, focuses on measuring the area under
the effective SCF,19 as discussed in greater detail in Sec. 2.3.

The SM instrument is a white-light epi-illumination, bright-
field far-zone microscope with spectrally resolved image
acquisition, small numerical aperture (NAi) of illumination
(NAi < 0.3), moderate-to-large NA of collection (NA > 0.3),
and with a pixel size of microscope image corresponding to
an area in sample space that is smaller than the diffraction
limit of light. In turn, the requirements to sample geometry
include: (i) a weakly scattering sample of interest, (ii) sample
thickness not greater than the microscope’s depth of field (for
most setups, 5 to 15 μm), (iii) in the axial dimension, the sample
should be RI-matched on one side (substrate in Fig. 1) and has

a strong RI mismatch on the other (air in Fig. 1). Below, we
thoroughly review the theoretical principles of the method,
explaining the physical basis behind the above requirements.

2.1 Sample Structure

The sample geometry utilized by the SM technique is as follows:
a spatially inhomogeneous sample with RI distribution n1½1þ
nΔðrÞ� as a function of location r is placed on a microscopy slide
and exposed to air. Thus, the SM requirements are satisfied as
the sample is sandwiched between two semi-infinite homo-
geneous media (Fig. 1), one of which has a strong RI mismatch
with the sample (air n0 ¼ 1), and the other is RI-matched (sub-
strate RI denoted as n2). We assume n1 ¼ n2 ¼ 1.53, mimicking
the case of fixed biological samples on a glass slide, where n1
was evaluated using the Gladstone–Dale relation n ¼ nw þ αρ,
where nw is the refractive index of water, α is the specific refrac-
tive increment (0.18 ml∕g), and ρ is the cell dry density which
was approximated as that of stratum mucosum (1.15 g∕ml).24–26

To describe light propagation through SM sample, an accu-
rate model of the sample’s internal organization is required.
Electron microscopy-based observations of nanoscale material
distribution indicate that mass-density distribution inside bio-
logical media is best described as continuous random media
rather than a multitude of discrete particles. A versatile math-
ematical approach for modeling light propagation through
such media is based on the Whittle–Matern (WM) family of
SCF BnΔðrÞ.27,28 The flexible WM correlation family BnΔðrÞ
is expressed as

EQ-TARGET;temp:intralink-;e001;326;438BnΔðrÞ ¼ An ·

�
r
Ln

�D−3
2

· KD−3
2

�
r
Ln

�
; (1)

where r is the separation distance, Kνð·Þ is the modified Bessel
function of the second kind with order ν, An is the fluctuation
strength of RI, Ln is the characteristic length of heterogeneity
(also representing a transition point beyond which the function
decays exponentially), and D determines the functional form of
the distribution at r < Ln. This three-parameter model covers a
wide range of RI correlation functional forms, including those
commonly used to describe the structure and light scattering
from biological cells and tissues: power-law at D < 3,29–32

stretch-exponential at D ∈ ð3;4Þ,32,33 Heyney–Greenstein at
D ¼ 3,34 exponential at D ¼ 4,21 and Gaussian at D → ∞.

In terms of scaling the SCF along the vertical axis, several
approaches for the normalization coefficient An have been dis-
cussed,27 with the major issue lying in the fact that, mathemati-
cally, a power-law SCF is infinite at separation distances r → 0.
At the same time, physically, SCF must equal the variance of
RI σ2nΔ at r ¼ 0. Thus, we follow a normalization approach,
in which a smallest structural LS rmin is introduced, and An
is defined so that BnΔðrminÞ ¼ σ2nΔ is satisfied27,35

EQ-TARGET;temp:intralink-;e002;326;184An ¼ σ2nΔ

�
rmin

Ln

�3−D
2

∕KD−3
2

�
rmin

Ln

�
; (2)

where rmin is the minimum structural LS of the sample’s internal
structure. Specifically for the study of structural composition of
biomaterials, we define rmin ¼ 2 nm, approximating the size of
such biological monomers as amino acids, monosaccharides,
B-form DNA, etc.35 The value of rmin being equal to the size
of biological monomers ensures that the macroscopic view of
matter applies to all the length scales r > rmin considered.

Fig. 1 Sample: RI of the middle layer is random, RIs of the top and
bottom layers are constant; RI as a function of depth is shown in gray.
Coherent sum of Uðr Þ and UðsÞ is detected. Reflection from the sub-
strate (glass slide) is negligible as its thickness (1 mm) is much larger
than the microscope’s depth of field. Reproduced with permission
from Ref. 23, courtesy of J. Biomed. Opt.
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In terms of scaling the SCF along the horizontal axis, the
width of SCF is regulated by parameters D and Ln, with D
changing the functional form of SCF (in turn affecting its
decay rate) and Ln denoting the LS after which RI correlation
decays exponentially. Hence, the “width” of SCF is determined
by an interplay of Ln andD, rather than either of them independ-
ently. Therefore, we introduce a more intuitive and universal
measure of the SCF width, the effective correlation length leffc ,
which is the LS at which RI correlation decreases by a factor of
e from its value at rmin (Fig. 2).

Finally, we note that in a biologically relevant range of sam-
ple properties, the physical size of the sample is comparable in
magnitude to the characteristic LS of its internal structure (e.g.,
size of the nucleus as well as chromatin aggregates is compa-
rable to the size of a cell). Therefore, the true SCF of nΔðrÞ is an
anisotropic function which depends on both the internal organi-
zation and the sample thickness L. Hence, we define Ln and D
as the statistical properties of an unbounded medium n∞Δ ðrÞ, and
the sample as a horizontal slice of n∞Δ ðrÞ with thickness L

EQ-TARGET;temp:intralink-;e003;63;350nΔðrÞ ¼ TLn∞Δ ðrÞ; (3)

where TL is a windowing function along the vertical axis with
width L.

2.2 Light Propagation

Importantly, despite the sample being weakly scattering, the
Born approximation in its traditional form does not apply due
to the required strong RI mismatch at sample–air interface.36,37

As has been validated by numerical full-vector solutions of
Maxwell’s equations,19 the Born approximation can still be
utilized for calculation of the scattered field inside the weakly
scattering object, and ray optics can be used to describe propa-
gation of the incident and the scattered fields across high
RI-mismatch interfaces.

Thus, as a unit-amplitude plane wave with a wave vector ki
is normally incident onto the sample, its reflection from and
transmission into the sample is described by ray optics.
Then, the transmitted field with amplitude t01 ¼ 2n0∕ðn0 þ n1Þ
is scattered from RI fluctuations inside the sample as described
by the Born approximation: the far-zone scattering amplitude
of the scattered field UðsÞ with wave vector ko is fsðksÞ ¼
t01∫ k2

2π nΔðr 0Þe−iks ·r
0
d3r 0, where ks¼ ko − ki is the scattering

wave vector (inside the sample).36 When the scattered field

leaves the sample, its transmission amplitude through the
top interface is described again by ray optics t10 ¼ 2n1∕
ðn0 þ n1Þ. Finally, the field that reaches the image plane of
an epi-illumination bright-field microscope is a result of optical
interference between (i) the field reflected from the sample’s top
surface [referred to as reference arm UðrÞ, amplitude r01 ¼
ðn0 − n1Þ∕ðn0 þ n1Þ] and (ii) the field scattered from its internal
fluctuations [sample arm UðsÞ, Fig. 1], with only the waves
propagating at solid angles within the NA of the objective
being collected. Thus, for a microscope with magnification M,
moderate NA (kz ≈ k), UðsÞ focused at a point (x 0; y 0) in the
image plane is38

EQ-TARGET;temp:intralink-;e004;326;617UðsÞ
im ðx 0; y 0; kÞ ¼ kt10

i2πjMj
ZZ

TkNAfse−iðkxx
0þkyy 0Þd

kx
k
d
ky
k
;

(4)

where TkNA is the microscope’s pupil function—a cone in the
spatial-frequency space with a radius kNA [Fig. 3(a)]. As seen in
Eq. (4), the objective performs low-pass transverse-plane spatial
frequency filtering, with the cutoff corresponding to the spatial
coherence length.

Substituting fs into Eq. (4) and introducing a windowing
function Tks that equals one at k ¼ ks and zero at k ≠ ks
[Fig. 3(a)], UðsÞ

im is

EQ-TARGET;temp:intralink-;e005;326;471UðsÞ
im ðx 0; y 0; kÞ ¼ T10T01

ijMj
Z

∞

−∞
kn1DðrÞe−i2kzdz; (5)

where r is the location ðx 0
M ; y

0
M ; zÞ inside the sample, and n1D is

the nΔðrÞ convolved (⊗) with the unitary Fourier transform (F )
of TkNATks in the transverse plane (xy, ⊥), n1DðrÞ ¼
F⊥fTkNATksg ⊗⊥ nΔðrÞ.

Finally, the wavelength-resolved reflectance intensity
recorded in the microscope image, normalized by the image of
the light source, is an interferogram

EQ-TARGET;temp:intralink-;e006;326;346Iðx 0; y 0; kÞ ¼ R01 − 2
ffiffiffiffi
R

p
I
�Z þ∞

−∞
kn1DðrÞe−i2kzdz

�
; (6)

where I denotes the imaginary part of a complex number, R01 ¼
r201 is the intensity reflectance coefficient, and R ¼ R01t201t

2
10.

Since the sample is weakly scattering, Oðn2ΔÞ terms are
neglected here.

102
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Fig. 2 BnΔ
∕σ2nΔ

versus D for Ln ¼ 0.5 μm (dashed lines) and
Ln ¼ 1.5 μm (solid lines). Horizontal black line indicates the level at
which correlation decays by a factor of e.

Fig. 3 Spatial-frequency space with kz -axis antiparallel to ki .
(a) Cross section of TΔks , TkNA, and their interception, T 3-D;
(b) PSD of the RI fluctuation (blue) and T 3-D (gray) when the sample
can be considered infinite (i.e., the LSs of internal organization are
much smaller than sample thickness L); and (c) when the sample
is finite. Reproduced with permission from Ref. 19, courtesy of
Phys. Rev. Lett.
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Equation (6) describes the explicit relation between the SM
signal and the sample RI distribution. From the optics perspec-
tive, Eq. (6) has extended the traditional Born approximation to
include high RI mismatch at sample boundaries as well as far-
field microscope imaging. From the mathematics perspective,
Eq. (6) has established that to describe a one-dimensional (1-D)
SM signal, the 3-D problem of light propagation can be reduced
to a 1-D problem where the RI is convolved with the Airy disk in
the transverse plane.

One important observation to make from Eq. (6) is that due to
the RI mismatch at sample interface, the amplitudes of weakly
scattered waves are multiplied by the strong reference wave, as a
result of which the measured scattering signal increases from
Oðn2ΔÞ to OðnΔÞ. Thus, the experimental noise generated by
background photon flux, shot noise, and dark current noise
become negligible, and the remaining noise from temporal
lamp intensity fluctuations, on- and off-chip camera noise
(i) is much lower in magnitude and (ii) can be reduced even fur-
ther by frame averaging and frequency-based signal processing.
As a result, the signal-to-noise ratio (SNR) is significantly
enhanced. A second advantage, as compared to traditional inter-
ferometric techniques, such as optical coherence tomography or
microscopy, is the simplicity of instrumentation, wherein the
reference arm originates at the sample plane, eliminating the
need for building a separate optical path for the reference arm.

2.3 Quantification of Subdiffraction Length Scales
Using Spectroscopic Microscopy

There can be a range of approaches for the quantification of
nΔðrÞ from the SM signal. One notable optical measure of nano-
scale sample structure is Σ2: the spectral variance of the image
intensity within the detector bandwidth Δk.19,21 Since the
expectation of the spectrally averaged image intensity equals
R2
01, Σ2ðx; yÞ is defined as

EQ-TARGET;temp:intralink-;e007;63;369Σ2ðx 0; y 0Þ ¼
Z
Δk

½Iðx 0; y 0; kÞ − R2
01�2dk∕Δk: (7)

For convenience, we introduce a windowing function TΔks that
is a unity at k ¼ ks for all ki with magnitudes within the Δk of
the system and is zero elsewhere [jkij between k1 and k2 in
Fig. 3(a)]. Denoting kc as the value of the central wavenumber
of illumination bandwidth inside the sample, Σ2ðx 0; y 0Þ equals19

EQ-TARGET;temp:intralink-;e008;63;263Σ2ðx 0; y 0Þ ¼ R2k2c
Δk

Z
∞

−∞
jFfTΔksTkNAg ⊗ nΔðrÞj2dz: (8)

Physically, TΔks accounts for the limited bandwidth of illumi-
nation and serves as a band-pass longitudinal spatial-frequency
filter of RI distribution with its width related to the temporal
coherence length lτ ¼ 2π∕Δk. The interception of the two
frequency filters associated with the spatial and temporal coher-
ence TkNA and TΔks signifies the frequency-space coherence
volume centered at kz ¼ 2kc: T3D ¼ TΔksTkNA [Fig. 3(a)].

Given an infinite bandwidth, one could reconstruct the full
3-D RI from Iðx 0; y 0; kÞ. However, since Δk and kc are finite,
Σ detects the variance of an “effective RI distribution,” i.e., of
the refractive index that has been smeared in space according
to the degree of spatiotemporal coherence, nΔðrÞ ⊗ FfT3Dg
[Eq. (8)]. The SCF Bneff of this locally averaged RI, in turn,

is a convolution of the SCF of the true RI distribution with
the autocorrelation of the underlying resolution-limiting spatial
filter of RI:

EQ-TARGET;temp:intralink-;e009;326;719Bneff ¼ BnΔ ⊗ BFfT3Dg: (9)

As shown below, the height of this effective SCF or the vari-
ance of the spatially filtered RI distribution presents a measure
of sample organization that is sensitive to arbitrarily small struc-
tural LSs.

The statistical nanosensing, or the quantification of subdif-
fractional structural composition of the sample, is achieved by
calculating the expected value of Σ2 (denoted as Σ̃2), which is
related to the RI distribution within the sample as Ref. 19

EQ-TARGET;temp:intralink-;e010;326;598Σ̃2 ¼ Rk2cL
Δk

Z
T3D

ΦnΔðkÞd3k; (10)

where ΦnΔ ¼ jFfnΔðrÞgj2 is the power spectral density (PSD)
of the sample RI nΔ. PSD is a crucial parameter of sample
organization: it fully quantifies the amplitude, size, and orien-
tation of all RI fluctuations present within complex inhomo-
geneous samples, which cannot be otherwise measured by
a single parameter of size or RI.

The general quadrature-form expression relating Σ̃2 to PSD
[Eq. (10)] is valid for an arbitrary weakly scattering sample,
which is RI matched on one side and RI-mismatched on the
other side (in the special case of n1 ≠ n2, the expression for
Σ̃2 has deterministic change in the prefactor and an additional
offset value, both of which are defined by the sample geometry

EQ-TARGET;temp:intralink-;e011;326;417Σ̃2 ¼ R

�
2R12 þ

ð1þ R12∕R01Þk2cL
Δk

Z
T3D

ΦnΔdk
�
; (11)

as derived in Ref. 19).
As follows from Eq. (10) in most general terms, Σ̃2 measures

the integral of the tail of the PSD within T3-D. Several properties
of Σ̃ are direct consequences of this relation:

• Σ̃ is a linear function of the standard deviation of RI
fluctuations σnΔ (which is ∝

ffiffiffiffiffiffiffiffiffi
ΦnΔ

p
).

• As described in more detail below, Σ̃ can be a monotonic
function of the width of RI PSD.

• Σ̃ scales linearly with the deterministic sample-geometry
parameter

ffiffiffiffi
R

p
.

Importantly, while T3D does not include spatial frequencies
above 2k, the subdiffraction-scale structural alterations change
the width of PSD and, therefore, the value of Σ̃. This phenome-
non embodies the concept of statistical nanosensing.

Using Eq. (10), closed-form solutions for Σ̃2 for specific
cases with any particular functional forms of RI SCF can be
obtained. The general nature of Eq. (10) also allows numerical
evaluation of Σ̃2 for a given experimentally obtained SCF that
may not have an explicit, analytically defined functional form.

We here present an analytical solution for Σ̃2 for the general
case when RI SCF is described by the versatile WM family
widely applicable in the field of light scattering.27 The PSD
of such sample with an infinite size is

Journal of Biomedical Optics 030901-4 March 2017 • Vol. 22(3)

Cherkezyan et al.: Review of interferometric spectroscopy of scattered light for the quantification of subdiffractional. . .



EQ-TARGET;temp:intralink-;e012;63;752Φn∞Δ
ðksÞ ¼

AnL3
nΓ

�
D
2

�
π3∕22ð5−DÞ∕2 · ð1þ k2sL2

nÞ−D∕2: (12)

For a finite sample, as defined in Eq. (3) and illustrated
in Figs. 3(b) and 3(c), the PSD is an anisotropic function of
L along the kz axis:

EQ-TARGET;temp:intralink-;e013;63;678ΦnΔðkÞ ¼ jFfTLg ⊗ Ffn∞Δ gj2: (13)

While the substitution of Eqs. (12) and (13) into Eq. (10) has no
closed-form solution, it has been shown that Σ̃2 can also be cal-
culated by independent computation of contributions from the
light scattered from random RI variations within the sample
(Σ̃2

R), and the light reflection at the sample-substrate interface
(Σ̃2

L):
19

EQ-TARGET;temp:intralink-;e014;63;576Σ̃2 ¼ Σ̃2
R þ Σ̃2

L: (14)

Here, Σ̃L is fully described by the RI contrast at the bottom sur-
face, and Σ̃R is defined by the PSD Φn∞Δ

which does not depend

on sample thickness. Essentially, Σ̃L and Σ̃R perform two differ-
ent measurements of sample internal structure as the former
probes its statistics in two-dimensional (2-D) (along horizontal
plane of z ¼ −L) and latter probes its statistics in 3-D (scattering
from 3-D structures inside the sample).

Σ̃L is calculated using the fact that at z ¼ −L the RI contrast
causing reflection of light is measured by the variance of n1D in
the transverse plane

EQ-TARGET;temp:intralink-;e015;63;429σ2⊥ðn1DÞ ¼
Z

∞

0

BnΔðρÞkNAJ1ðρkNAÞdρ; (15)

where ρ is the radial distance in polar coordinates.19 Substituting
the expression for BnΔðrÞ from Eq. (1) and introducing a unitless
parameter of size with respect to wavelength x ¼ kcLn, σ2⊥ðn1DÞ
is found:

EQ-TARGET;temp:intralink-;e016;63;340σ2⊥ðn1DÞ ¼ An2
D−5
2 Γ

�
D − 3

2

�
f1 − ½1þ ðxNAÞ2�3−D2 g: (16)

Therefore, the corresponding contribution to spectral vari-
ance Σ̃2

L ¼ Rσ2⊥ðn1DÞ∕4 becomes

EQ-TARGET;temp:intralink-;e017;63;272Σ̃2
L ¼ RAn2

D−9
2 Γ

�
D − 3

2

�
f1 − ½1þ ðxNAÞ2�3−D2 g; (17)

Σ̃R, in turn, is obtained by substituting the expression for the
PSD of n∞Δ ðrÞ from Eq. (12) into Eq. (10):

EQ-TARGET;temp:intralink-;e018;63;204

Σ̃2
R ¼ An

2RkcLffiffiffi
π

p Γ
	
D
2



x

2
3−D
2 ðD − 2Þ ;

fð1þ 4x2Þ1−D∕2 − ½1þ x2ð4þ NA2Þ�1−D∕2g: (18)

Finally, combining the above expressions for Σ̃2
R and Σ̃2

L as per
Eq. (14), Σ̃2 is obtained:

EQ-TARGET;temp:intralink-;e019;326;752

Σ̃2 ¼ RAn2
D−9
2 Γ

�
D − 3

2

�
f1 − ½1þ ðxNAÞ2�3−D2 g

þ An
2RkcLffiffiffi

π
p ·

Γ
	
D
2



x

2
3-D
2 ðD − 2Þ

× fð1þ 4x2Þ1−D∕2 − ½1þ x2ð4þ NA2Þ�1−D∕2g: (19)

Equation (19) is the closed-form analytical solution relating Σ̃2

measured from a wavelength-resolved microscope image to
sample structure and accommodates a wide range of internal
organization properties described by the general family of
WM SCFs.

In practice, it is often advantageous to approximate the RI
SCF within the sample as exponential, reducing the three-
parameter model to two: the LS and the amplitude of RI fluc-
tuations. The exponential approximation of SCF may not be as
robust in terms of describing the nature of RI organization as the
WMmodel does viaD, but it can be useful from the experimen-
tal perspective. Furthermore, calculations based on electron
microscopy images of biological cell nuclei have shown that
the Σ̃2 predicted based on the actual, experimentally measured
RI distribution is in good agreement with that predicted based on
a correlation length lc value that assumes an exponential RI
correlation.21 In this special case of exponential functional
form of SCF with RI variance σ2nΔ ¼ Bnð0Þ (no rmin is necessary
in this case) and exponential correlation length lc, Σ̃2 is found
from Eqs. (10) and (14) as
EQ-TARGET;temp:intralink-;e020;326;443

Σ̃2 ¼ 2Rσ2nΔ
π

kcLx3NA2

½1þ x2ð4þ NA2Þ�ð1þ 4x2Þ

þ Rσ2nΔ
4

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxNAÞ2

p �
: (20)

The analytical relations relating Σ̃2 to the sample’s internal
organization have been validated by numerical full-vector
solutions of Maxwell’s equations. 19

3 Length Scale Sensitivity
After establishing that Σ̃2 quantifies the statistics of RI distribu-
tion inside weakly scattering media by analyzing the spectro-
scopic content of their microscope image [Eq. (10)], a question
arises: what are the structural LSs sensed by Σ̃2? At first, the
answer seems quite simple: Σ̃ senses sample structure with spa-
tial frequencies contained within T3D. However, identification
of a more comprehensive LS sensitivity range for Σ̃, as well
as other light scattering means of structure quantification, is
remarkably nontrivial.

The difficulty in quantification of LS sensitivity is underlined
by the fundamental difference between “resolution” and “sensi-
tivity”: whereas resolution applies to imaging techniques and
has a hard, purely instrument-dependent limit (e.g., diffraction
limit), the ability to sense scattering events from certain struc-
tural sizes largely depends on the sample itself. First, it is simply
a matter of which LSs and in what proportion is present inside
the sample. The most illustrative example is the blue sky: even
the human eye can sense light scattering by molecules smaller
than 1 nm when larger ones are absent. Second, as seen in
Eqs. (12) and (13), the shape of a sample’s PSD and, therefore,
the sensitivity of Σ̃ depend on L. Finally, due to the nonlinear
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relation between nΔðrÞ and ΦnΔ , scattering contributions from
different internal structures are not independent or linearly
additive.

Thus, a universal LS sensitivity interval of Σ̃ cannot exist, as
it always depends on the sample structure. Below, we summa-
rize approaches to assess various aspects of the LS sensitivity of
Σ̃, including (i) the functional dependence of Σ̃ on the shape of
RI SCF; (ii) fundamental limits to sizes of detectable structures;
(iii) ranges of sizes predominantly detected by Σ̃within complex
samples with various properties of internal organization, includ-
ing those with analytically defined and experimentally obtained
forms of RI SCF.

3.1 Functional Dependence on the Shape of
Spatial Correlation Function

As a light scattering-based parameter for structure quantifica-
tion, Σ̃ is defined by the statistics of RI distribution inside
the sample rather than the exact 3-D profile of RI. Therefore,
we follow the common (in the field of light scattering37)
approach of characterizing structural sensitivities through the
functional dependence of the measured marker on the width
parameters of RI SCF (Fig. 4).

For the general case of WM family of SCFs, Eq. (19) postu-
lates that Σ̃ increases monotonically with the shape parameter D
within the physiologically relevant range D ∈ ð2;4Þ and is
weakly dependent on the outer LS Ln [Figs. 4(a) and 4(b)].
Furthermore, for materials with fractal organization (D between
2 and 3), Σ̃ is an approximately linear function of fractal dimen-
sionD. Note that here Ln > 0.5 μm to ensure that the functional
form of SCF at separation distances below the diffraction limit
of light is indeed determined by D (SCF decays exponentially
at r > Ln).

An alternative way to describe the dependence of Σ̃ on the
width of SCF is through a single parameter leffc , defined as the
separation distance at which SCF decays by a factor of e, and
referred to as “effective correlation length.” As illustrated in
Figs. 4(c) and 4(d), Σ̃ senses arbitrarily small, deeply subdiffrac-
tional RI correlation lengths.19 Σ̃ðleffc Þ is a monotonically
increasing function of the width of SCF, and its functional
form at leffc < 200 is well approximated to be ∝

ffiffiffiffiffiffi
leffc

p
. At the

same time, Σ̃ is independent of leffc for leffc ≫ 1∕kc, and there-
fore, the sensitivity of Σ̃ to changes at smaller correlation lengths
is not obscured by changes at larger scales.

We note that in the above two approaches to SCF param-
eterization, leffc and D measure the width of SCF in an

interdependent manner [as seen in Figs. 4(c) and 4(d), D is
bound to increase with leffc ], the use of leffc can be advantageous
in cases when the functional form of SCF is unknown, or is not
well-represented by an analytical expression (e.g., when the
SCF is measured directly from an experiment21,32). At the same
time, D has a well-defined physical meaning and its use is
preferred in cases when the SCF can be well described by D.

To summarize, the combination of spectroscopy and micros-
copy achieves “quantification” of subdiffractional structure
using spectroscopy and “visualization” of larger-scale structures
using microscopy.

3.2 Fundamental Limits to Sizes of Detectable
Structures

Next, we note that the width of SCF is a cumulative statistic of
all LS present within a sample, and therefore, Σ̃ðleffc Þ is a mea-
sure of light scattering from all LSs within the sample, including
those larger than the diffraction limit of light. Thus, when quan-
tifying the LS sensitivity of Σ̃ through a statistic of RI distribu-
tion, it remains ambiguous precisely that structural LSs within
the sample are detected. One way to isolate the sensitivity to a
given size, or spatial frequency of RI fluctuations, is to evaluate
Σ̃ measured from a sample composed of structures with only
that spatial frequency.21

Mathematically, unbounded media n∞Δ ðrÞ composed of a sin-
gle spatial frequency kLS (evaluated in vacuum) are character-
ized by expectation of PSDΦn∞Δ

in the spatial-frequency domain
which is an infinitely thin spherical shell with a radius n1kLS
centered at the origin, Φn∞Δ

¼ σ2nΔδðk − n1kLSÞ [illustrations in
Figs. 5(a)–5(d)]. The finite sample, following the definitions of
the Eq. (3), is defined as a section of n∞Δ ðrÞ with thickness L.
It is important to note that the PSD of nΔðrÞ, due to its finite
thickness, is no longer a spherical shell and is expressed as
ΦnΔ ¼ jσnΔδðk − n1kLSÞ ⊗ FfTLgj2, as shown in Figs. 5(c)
and 5(d).

Using Eq. (10), Σ̃2ðkLSÞ is readily evaluated for single-LS
samples with 1∕kLS ranging from 10 to 500 nm by computing
the integral of ΦnΔ within T3D (Fig. 6).

The results of single-LS analysis shown in Fig. 6 established
that in principle, Σ̃ can sense RI fluctuations at any spatial fre-
quency whatsoever. Practically, the sensitivity to small LSs is
limited only by the noise level of the system, and the largest
detectable LS remains the sample thickness L. This is in contrast
to the fundamental diffraction limit of microscopic resolution
that is founded in a physics phenomenon rather than an
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Fig. 4 Σ̃ for D ∈ ð2;4Þ for samples with (a) L ¼ 0.5 μm and (b) L ¼ 2 μm shows a monotonic increase
with D and a negligible dependence on the correlation outer scale Ln . The dependence on D for
Ln ∈ ð0.5;1.5Þ μm explained in terms of the effective correlation length leffc in case of (c) L ¼ 0.5 μm
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instrument imperfection. Due to the finite L, weakly scattering
structures of any size and shape, including RI fluctuations with
subdiffractional frequencies above 2k2, can still be detected.
This is explained by the fact that the Fourier transform of finite
structures, due to the convolution withFfTLg, is nonzero inside
T3D. Accordingly, lower values of L correspond to wider
FfTLg, resulting in a higher sensitivity of Σ̃ to spatial frequen-
cies outside T3D. For comparison, analogous analysis results
corresponding to bulk media with L ¼ ∞ are shown (Fig. 6).
In addition, this single-LS analysis has also expectedly demon-
strated that Σ̃ has an enhanced sensitivity to frequencies with
1∕kLS between 1∕2k2 and 1∕2k1, which corresponded to struc-
tures with physical sizes 1∕kLS between 20 and 40 nm.

The single-LS analysis presented above does not only estab-
lish whether Σ̃ can sense the presence of a particular LS, but also
whether it can sense a change in its value. That is, conceptually,
the Σ̃-response as a function of spatial frequency profile shown
in Fig. 6 can be thought of as a modulation transfer function,
representing the magnitude contribution to Σ̃ from RI fluctua-
tions of same amplitude but different spatial frequencies.
Thus, the flat kLS sensitivity profile at 1∕kLS > 100 nm signifies
that whereas the presence of these larger structures contributes
to Σ̃, their actual size has little to no effect on the value of Σ̃. At
the same time, Σ̃ is sensitive to the value of kLS for small 1∕kLS
(with an example illustrated in Fig. 5). This twofold nature of

LS sensitivity can be thought of both as a disadvantage (ambi-
guity due to the fact that different large spatial frequencies
contribute equally), as well as an advantage (Σ̃ predominantly
senses changes only at small LSs) of the technique, depending
on user’s preferences.

From the experimental perspective, it is often relevant to con-
sider media with two LSs, only one of which changes as a result
of a particular process. For example, DNA transcription can be
represented as a process, in which structural organization at the
nucleosome level changes to expose DNA binding sites while
the nuclear structure at the level of chromatin aggregates
remains unchanged. Inversely, in processes such as macromo-
lecular decondensation, the overall size of the polymer is
affected while the monomer structure remains intact.

To model the above-described processes, we consider a
sample with two spatial frequencies, 1∕kLS1 ¼ 20 nm and
1∕kLS2 ¼ 200 nm. Then, the larger LSs are retained, whereas
the smaller LSs are increased to 1∕kLS1 ¼ 40 nm (no changes
in amplitudes of RI fluctuations are applied, illustrations in
Fig. 7). This change in small-LS structural organization is
reflected in a significant increase in the observed Σ̃, as calculated
using Eq. (10) [Fig. 7(d)]. Then, the 1∕kLS1 ¼ 40 nm is kept
unchanged while the larger structures are increased further to
1∕kLS2 ¼ 400 nm. Unlike the first case, this was not reflected
in the value of Σ̃, which is consistent with estimates made
based on the LS-sensitivity profile in Fig. 6.

3.3 Length Scales Inside Complex Media with
the Greatest Contribution to Signal

In actual experimental conditions, samples contain not one or
two, but an infinite number of LSs, and a universal interval
of LSs having the largest contribution to the measured Σ̃ cannot
be determined as it would change with sample structure. First, it
is simply a matter of which LSs and in what proportion is
present. Second, as shown above, the sensitivity of Σ̃ depends
on L. Most importantly, as also emphasized above, contributions
from different internal structures are not additive due to the non-
linear relation between nΔðrÞ and ΦnΔ . Therefore, the range of
LSs predominantly detected by Σ̃ can be found only for a given
sample structure.
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Fig. 5 Cross section of single spatial-frequency mediumwith 1∕kLS of
(a) 15 and (b) 20 nm (kLS evaluated in vacuum). Cross section of PSD
of an infinite (red) and thin (L ¼ 0.5 μm)media with 1∕kLS of (c) 15 and
(d) 20 nm. The sensitivity of Σ̃ to periodic structures with subdiffrac-
tional frequencies illustrated in the clear difference in the value of
Σðx; yÞ corresponding to the media with 1∕kLS of (e) 15 and
(f) 20 nm. Note that the subdiffractional structures are not resolved
in the diffraction-limited Σðx; yÞ image.

Fig. 6 Σ̃∕σnΔ
R2

01 as a function of the spatial frequency of RI fluctua-
tions for samples with different thicknesses (all wavenumbers evalu-
ated in vacuum). Reproduced with permission from Ref. 21, courtesy
of Opt. Lett.
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One method to identify whether a particular LS has a signifi-
cant contribution to a measured parameter, originally developed
in Ref. 39, is to ask a practical question: “Given the SNR of the
instrument, can the measured parameter (Σ̃) detect the presence
of certain LSs?” The way to answer this question is to simulate
“removal” of that LS from the sample and calculate the conse-
quent change in signal. Thus, for lower-LS analysis, the sam-
ple’s original nðrÞ is convolved with a 3-D Gaussian filter
GðrÞ with full-width half-maximum W to result in a “blurred”
medium nlΔðrÞ ¼ ½n∞Δ ðrÞ ⊗ GðrÞ�TL that retains all structures
from the original medium that are larger than W, but is lacking
those smaller thanW. Similarly, nhΔðrÞ represents nðrÞ with LSs
larger than W removed from the sample: nhΔðrÞ ¼ nΔðrÞ −
nlΔðrÞ. Then, the spectral variance of a microscope image that
would be measured from a sample without LSs lower (Σ̃l2) or
higher (Σ̃h2) than W was evaluated numerically:
EQ-TARGET;temp:intralink-;e021;63;357

Σ̃l2 ¼ Γ2k2cL
Δk

Z
T3D

jFfn∞Δ gFfGg ⊗ FfTLgj2d3k;

Σ̃h2 ¼ Γ2k2cL
Δk

Z
T3D

jFfn∞Δ g½1 − FfGg� ⊗ FfTLgj2d3k:

(21)

Whereas in theory Σ̃ can sense all LSs, in experiment its sensi-
tivity is limited by the SNR, which varies largely depending on
instrumentation and the scattering power of the sample. Thus,
the range of LSs, the presence of which is sensed by Σ̃, was
defined as the range of Weff for which “removing” the corre-
sponding higher or lower LSs within the sample causes at
least a 5% change in Σ̃ [where Weff is the “effective size” of the
Gaussian particle FWHM W, with the consideration of the fact
that only a fraction of it can be contained inside the limited-
thickness medium n∞Δ ðrÞTL].

21 That is, the lower (rmin) and
upper (rmax) limits of LS sensitivity are the values of Weff

such that Σ̃lðWeff ¼ rminÞ ¼ :95Σ̃ and Σ̃hðWeff ¼ rmaxÞ ¼ :95Σ̃.
The results of this analysis, summarized in Fig. 8, have estab-

lished the lower (rmin) and upper (rmax) limits of LS sensitivity
for a wide range of sample parameters. Naturally, since the range
of LSs detected by Σ̃ depends on the LS composition of the sam-
ple, rmin and rmax change as a function of RI correlation length lc
(Fig. 8). While there is no analytical relationship describing rmin

and rmax in terms of lc and L, their qualitative behavior is the
following. As lc increases, the amount of large LSs increases,
and hence the range of detected LSs shifts upward, increasing
both rmin and rmax (note that rmax cannot reach L and therefore
saturates below it at L∕lc ≤ 3). Expectedly, the effect of a finite
L on rmax is much greater in magnitude than that on rmin.
In contrast, at small lc, the sensitivity of Σ̃ to shorter LSs is
emphasized, which is quantified by values of rmin lower than
that for L ¼ ∞ and rmax approaching its value corresponding
to L ¼ ∞ when L∕lc ≫ 3. For samples with nanoscale RI cor-
relation length lc < 100 nm and noise floor of 5%, the range of
LSs detected by Σ̃ can be summarized as 22–240 nm for all L.

The described LS perturbation analysis has been also simi-
larly applied to SCFs that have been measured experimentally.
Thus, to identify the size range of structures inside biological
cells is quantified by SM, we estimate the RI distribution typical
to biological cell nuclei using mass-density SCF measured from
transmission electron microscopy (TEM).21,32 Following stan-
dard TEM protocol, human colonic cell nuclei were stained
with osmium tetroxide (specific to DNA), sectioned, and imaged
[Fig. 9(a)]. The gray-scale image intensity, assumed to be pro-
portional to the local density of chromatin, was used to compute
the mass-density SCFs of 36 micrographs, after which an aver-
age SCF of nuclear material was obtained [Fig. 9(b)]. Since the
RI of biological media is a linear function of mass density,26 the
SCF of RI distribution equals that of mass-density distribution
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with a constant prefactor. Since the prefactors of mass-density
SCF were unknown (due to the variability in the depth of stain-
ing), the RI SCF was normalized to 1 at the origin (r ¼ 0).

The information contained in the experimental SCF was
used following two approaches. First, an exponential SCF
was fitted to the experimental [coefficient of determination for
the fit between 39 and 1000 nm was r2 ¼ 0.99, Fig. 9(b)] and
the effective exponential correlation length lc was found as
156 nm. Then, the previously described analysis was carried
out for two values of L, 1.5 and 6.0 μm (mimicking the thick-
ness of squamous and columnar epithelial cell nuclei). Second,
to evaluate how well the model of an exponentially correlated
medium applies to biological cells, the EM-measured SCF was
used by itself. However, since the experimental SCF was only
defined at r ≥ 39 nm (resolution of TEM micrographs), some
analytical extrapolation was necessary to extend it to r ¼ 0,
which was performed using the fitted exponential SCF at
r < 39 nm [Fig. 9(b)]. Continuous random media with SCF
equivalent to the experimental were then generated and the
LS perturbation procedure was performed.

An excellent match between Σ̃l∕Σ̃ and Σ̃h∕Σ̃ calculated based
on analytical and experimental SCFs was observed for all values

ofWeff (Fig. 10). Applying the 5% SNR threshold, the following
ranges of Σ̃ to intranuclear structures were derived: predominant
LS sensitivity was observed from 25 to 427 nm based on the
analytical SCF, and from 25 to 441 nm based on the experimen-
tal for nuclei with L ¼ 1.5 μm, and from 23 to 324 nm for
analytical SCF, and from 23 to 334 nm for experimental for
nuclei with L ¼ 6 μm. Additionally, from the Weff interval cor-
responding to the steepest decline in Σ̃l and Σ̃h calculated for
both thicknesses and SCFs, it has been observed that the greatest
contribution to Σ̃measured from biological cell nuclei originates
from structures smaller than 200 nm in size (Fig. 10).

4 Quantification of Sample’s Internal
Organization: Practical Considerations

4.1 Instrument Design: Numerical Apertures,
Light Bandwidth, and Central Wavenumber

Generally, the design specifics of an SM instrument are very
simple with example schematic shown in Fig. 11: a bright-
field reflected light microscope with broadband incoherent illu-
mination (Koehler illumination scheme is recommended for spa-
tial uniformity of light intensity), low NA of light incidence
(NAi) and moderate-to-large NA of the light collection (simply
NA throughout this review). Below, we review the main design
principles to guide the user choices for any particular technique
application.

4.1.1 Magnification

In order to the underlying relation in Eq. (5) to hold, one needs
to ensure that RI effective averaging in the lateral plane occurs
only due to the diffraction limit of the light. Therefore, the pixel
size of the detector CCD camera needs to be small enough to
oversample the diffraction limited area M 1.22λ

NAiþNA
, where M is

the microscope’s total magnification and 1.22λ∕ðNAi þ NAÞ
is the size of a diffraction-limited spot in the sample plane.
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Fig. 10 Relative change in Σ̃ when (a) lower (Σ̃l∕Σ̃) and (b) higher
(Σ̃h∕Σ̃) LSs are perturbed. Calculation performed for samples with
SCF that is experimentally measured from TEM images (blue markers
for samples with thickness 1.5 μm and green for 6.0 μm), and analyti-
cally defined as exponential (blue solid line for L ¼ 1.5 and green
dashed for L ¼ 6.0 μm). Reproduced with permission from Ref. 21,
courtesy of Opt. Lett.

Fig. 11 Schematic of an example SM instrument. White light is inci-
dent from a lamp using Kohler illumination microscope light path
(KI Optics) through the objective (OBJ) onto the sample. Spectrally
resolved microscope image is registered on a charge coupled device
camera using a spectral filter (SF, either a slit spectrometer or a liquid-
crystal tunable filter). TL denotes a tube lens, and BS denotes a beam
splitter. Spectrally resolved image acquisition can be obtained by
placing a tunable SF (a) either in front of the light source and scanning
the wavelength of the illumination light or (b) in front of the camera and
scanning the wavelength of the microscope image. For option (b), one
also uses a slit spectrometer and scan the sample plane to form
a wavelength-resolved image.
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4.1.2 Illumination Numerical Aperture

Our derivations in Eq. (4) assume plane-wave illumination
normal to the sample, i.e., an NAi of zero. Using FDTD-
synthesized SM images of 800 samples with two different thick-
nesses (L ¼ 0.5 μm and L ¼ 2.0 μm), and 20 subdiffractional
lc < 250 nm, it was established that the value of Σ̃ðlcÞ is inde-
pendent of NAi (<10% change compared to NAi ¼ 0) for any
finite NAi < 0.4 (Fig. 12). Note that reducing the NAi also
reduces the light output and, subsequently, the speed of data
acquisition. At higher NAi above 0.4, an overall decrease in
the absolute value of Σ̃ is observed at all lc with an insignificant
reduction in the slope of its correlation-length dependence
[dΣ̃ðlcÞ∕dlc]. Thus, Σ̃ is independent of NAi when NAi < 0.4,
and begins to decrease in magnitude at NAi > 0.4, leading to
a lower SNR and a gradual decrease in Σ̃ dependency on lc.
Based on this analysis, we suggest selecting NAi < 0.4. Finally,
we note that these FDTD simulation results also confirm the
accuracy of the plane-wave illumination approximation that
has been used in the original derivation in Sec. 2.2.

4.1.3 Collection numerical aperture

The collection NA is a crucial setting of the SM instrument as it
not only affects the SNR of the collected signal, but also has the
ability to qualitatively alter the functional dependence of Σ̃ on
the LSs within the sample (Fig. 13). The dependence of Σ̃ on NA
is best explained through the two constituents of Σ̃: Σ̃R and Σ̃L

[Eq. (14)]. As easily seen in the simplified Eq. (20), Σ̃RðlcÞ is
nonmonotonic and increases rapidly with NA, whereas Σ̃LðlcÞ is
monotonic and less dependent on NA [Figs. 13(a) and 13(b)].

Thus, as NA rises, the relative contribution from the nonmono-
tonic component Σ̃RðlcÞ increases, as a result of which the total
Σ̃ðlcÞ becomes less monotonic [Fig. 13(c)]. This transition is
best noticed when the magnitudes of Σ̃R and Σ̃L are comparable
[L ∈ ð1;3Þ μm]. For this regime, we suggest a moderate NA of
0.3 to 0.6. For thinner samples, Σ̃ðlcÞ is monotonic even at large
NA, hence NA ≥ 0.6 should be chosen as it maximizes the
SNR. For thicker samples, a monotonic functional dependence
of Σ̃ðlcÞ can be always achieved by reduction of NA.

4.1.4 Wavenumber range Δk

In order to accurately measure the spectral variance Σ̃2, the spec-
tra should contain at least one full oscillation. Since a wider
bandwidth allows observing lower spectral frequencies, the
spectral bandwidth should be chosen to satisfy Δk > π∕ðn1LÞ,
with n1 denoting the average RI of the sample.

4.1.5 Central wavenumber kc

The central wavenumber kc affects Σ̃ðlcÞ along both the vertical
(magnitude of Σ̃) and horizontal (lc) axes. Along the vertical
axis, the impact of kc is similar to that of NA: while overall
a higher kc leads to a higher SNR, Σ̃R increases more rapidly
than Σ̃L hence kc can affect the monotonicity of Σ̃ðlcÞ.
Along the horizontal axis, the LSs of the material are always
measured with respect to the wavelength of light, and from
the physics perspective Σ̃ is truly a function of kclc rather
than lc alone. Thus, by varying kc, one can stretch or shrink
Σ̃ðlcÞ along the horizontal axis. From the experimental perspec-
tive, unlike the NAs of the system, kc is not an easily adjustable
parameter. Thus, it is most often impractical to significantly
change kc in order to affect the system’s SNR or the shape
of Σ̃ðlcÞ dependence. Nevertheless, understanding of the effect
of kc on Σ̃ can guide light source choices and other instrument
design adjustments. For example, if kc is low, one might con-
sider increasing the objective NA to compensate for the loss in
SNR without sacrificing the monotonicity of Σ̃ðlcÞ or vice versa.
Note that the design recommendations and Σ̃ðlcÞ curves pro-
vided in this review were based on 500 to 700 nm bandwidth
of light.

In conclusion, the instrument design parameters can be
selected as the following: (1) choose microscope magnification
and camera pixel size to ensure that the sample area imaged by
one camera pixel is smaller than the diffraction limit of light,
(2) set NAi ≥ 0.4 to keep NAi-dependent SNR loss ≤10%,
(3) set a moderate NA between 0.3 and 0.6, with exact value
optimized depending on sample thickness and the observed
SNR, and (4) choose a light source with bandwidth satisfying

102
10-2

10-1

l
c
(nm)

Σ~

NAi = 0.0

NAi = 0.4
NAi = 0.6

NAi = 0.2

Fig. 12 Σ̃ðl cÞ for various values of NAi between 0 and 0.6 for SM
images synthesized by FDTD from samples with L ¼ 500 nm. No sig-
nificant dependence on NAi of Σ̃ðl cÞ is observed for NAi < 0.4.

Fig. 13 (a) Σ̃Rðl cÞ, (b) Σ̃Lðl cÞ, and (c) Σ̃ðl cÞ as a function of the NA of light collection for a sample with
L ¼ 2 μm.
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Δk > π∕n1L in order to capture at least one full oscillation in
the spectra (Table 1).

4.2 Measurements from Rough Samples

As seen in Eq. (6), the light reflection occurring at the air–sam-
ple interface serves as a reference arm performing a crucial role
in the formation of the SM signal. For samples with smooth top
surfaces and the magnitude of reference arm reflection, R01 is
a zero-frequency deterministic offset determined solely by the
contrast between RI of air and the average RI of sample.
When the dispersion of sample RI is weak (as it is in biological
media), R01 is wavelength-independent and simply scales the
value of Σ̃.

In cases when the sample top interface is not a horizontal
plane, a careful consideration of sample surface features is
needed. Thus, if the variation in sample height within a diffrac-
tion-limited area is negligible (standard deviation of height
σh < 15 nm40), then for every pixel of SM image the sample
can be considered flat. The between-pixel differences in sample
height are accounted for when Σðx 0; y 0Þ is subsequently normal-
ized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðx; yÞp

, as discussed later in this review.
However, when the top surface of the sample has significant

height variations within a diffraction-limited area (i.e.,
σh > 15 nm), the reference-arm reflectance becomes dependent
on wavenumber k (Fig. 14). Therefore, as seen in Eq. (6), the
consequent effect of nanoscale roughness on the SM spectra is
twofold: (1) the baseline, reference-arm reflectance ceases to be
a zero-frequency offset and thus contributes to the measured

spectral variance Σ and (2) the interferogram of reference-
arm reflection RðkÞ and the light scattered from internal RI
fluctuations spectral oscillations is multiplied by a wavelength-
dependent reflectance

ffiffiffiffiffiffiffiffiffiffi
RðkÞp

. As a result, a low-frequency
component is added to the detected interference oscillations
[blue spectrum in Fig. 15(j)].

In order to quantify the RI fluctuations within the rough
sample, the detected reflectance spectrum undergoes simple
postprocessing to remove the effect of nanoscale roughness:
(i) Rðx 0; y 0; kÞ is computed as a second-order polynomial fit
to the detected spectrum Iðx 0; y 0; kÞ, (ii) the fluctuating part
of the reflectance intensity is obtained as δIðx 0; y 0; kÞ ¼
½Iðx 0; y 0; kÞ − Rðx 0; y 0; kÞ�∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðx 0; y 0; kÞp
(transmission coeffi-

cients t01 and t10 are neglected here as they ≊1), and
(iii) Σ 0ðx 0; y 0Þ that is independent of sample surface properties
is calculated as the standard deviation of δIðx 0; y 0; kÞ.
Physically, the newly introduced parameter Σ 0 is a measure
of nanoscale organization within the sample equivalent to the
previously described Σ̃. However, unlike Σ̃, Σ 0 is calculated
not simply as standard deviation of detected spectra, but rather
the standard deviation of the surface-independent fluctuating
part ½Iðx 0; y 0; kÞ − Rðx 0; y 0; kÞ�∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðx 0; y 0; kÞp
which is here

necessitated due to surface roughness.
Figure 15 shows illustration to the established ability of the

SM technique to quantify structural differences at deeply sub-
diffractional scales within samples with smooth as well as rough
surfaces. Thus, while structural composition within the inhomo-
geneous samples is impossible to assess from their bright-field
microscope images [Figs. 15(a)–15(c)], panels (d) and (e) illus-
trate that Σ can quantify subdiffractional differences inside
smooth samples, and panels (e) and (f) show that Σðx; yÞ is
affected by surface roughness. Meanwhile, figures in panels
(g)–(i) confirm the ability of Σ 0ðx; yÞ to measure changes in
internal-only sample structure, independent of their surface fea-
tures. The influence of lc (amplitude of spectral oscillations) and
surface roughness (additional low-frequency component creat-
ing an overall “tilt” to the spectrum) on SM spectra are shown in
panel (j).

4.3 Comparing Samples with Different L

As seen in Eq. (10), Σ̃ depends on sample thickness L, and when
an SM signal is acquired from samples with different values of
L, Σ̃ may not accurately quantify the differences in the internal-
only organization within those samples [Fig. 17(a)]. Thus, in
order to quantify the internal structure of a sample, Σ̃ must
be normalized by

ffiffiffiffiffiffiffiffi
kcL

p
. Note that the expected value of spectral

variance normalized by the unitless parameter kcL is the integral
of the PSD tail of sample’s internal organization with known
prefactors determined by the instrument setup (NA, kc, Δk)
and sample geometry (R):

EQ-TARGET;temp:intralink-;e022;326;185Σ̃2∕kcL ¼ Rkc
Δk

Z
T3D

ΦnΔðkÞd3k: (22)

Importantly, when lc is on the order of or below 1∕kc, Σ̃ can be
approximated to be proportional to

ffiffiffiffi
lc

p
[coefficient of determi-

nation of linear regressions for Σ̃ð ffiffiffiffi
lc

p Þ for L between 0.5 and
4 μm range from 0.95 to 0.98], hence it allows to quantify the
structure of the sample in terms of a physical rather than spectral
measure. We here quantify the degree of inhomogeneity inside
the sample in terms of the “disorder strength” Ld of the RI

Table 1 Choice of instrument parameters to achieve optimal
performance.

Setting Value

M Camera pixel size below M × 1.22λ∕ðNAi þ NAÞ

NAi NAi < 0.4

NA NA ∈ ð0.3;0.6Þa

Δk Δk > π∕n1L

aOptimal NA values depend on L, range given for isolated fixed bio-
logical cells, L < 3 μm.
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Fig. 14 Reference-arm reflectance, calculated as the average spec-
trum across image pixels ðx; yÞ for various standard deviations of
height within a diffraction-limited area σh between 10 and 50 nm.
Reproduced with permission from Ref. 40, courtesy of Opt. Lett.
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fluctuations inside the sample, defined as the LS of RI variations
scaled by the variance of those variations Ld ¼ σ2nΔ lc. While
the explicit relation between Σ̃ and σ2nΔ lc is complex [Eq. (20)],
Ld can be approximated as

EQ-TARGET;temp:intralink-;e023;63;224Ld ¼ σ2nΔ lc ≈ A
Σ̃2

k0NA2kcLR
; (23)

where A ¼ 20.7 is a dimensionless proportionality constant, k0
is the central wavenumber evaluated in vacuum k0 ¼ kc∕n1, and
Δk0 is the bandwidth of light evaluated in vacuum (hence
sample-independent). Comparison between true Ld and that
predicted from an SM measurement Σ̃ according to Eq. (23) is
shown in Fig. 16(a). Transition from Σ̃ to Ld for samples with
very different thicknesses and nanoscale correlation lengths is
illustrated in Fig. 17.

An alternative way to define the disorder strength is
σnΔ lc, which can be predicted from Σ̃ as σnΔ lc ≈
A1Σ̃∕ðk0NA

ffiffiffiffiffiffiffiffi
kcL

p ffiffiffiffi
R

p Þ with A1 ¼ 1.8. While this relation is
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Fig. 15 Bright-field epi-illumination microscope images of inhomogeneous samples with L ¼ 2 μm
(a) l c ¼ 20 nm and a smooth surface, (b) l c ¼ 100 nm and a smooth surface, (c) l c ¼ 100 nm and a
rough surface with standard deviation of height variations σh ¼ 36 nm. Corresponding Σðx 0; y 0Þ images,
(d) l c ¼ 20 nm and a smooth surface, (e) l c ¼ 100 nm and a smooth surface, (f) l c ¼ 100 nm and a rough
top surface. Σ 0ðx 0; y 0Þ images, obtained after a second-order polynomial subtraction from detected spec-
tra, are shown in panels (g)–(i) correspondingly. (j) Example spectra for l c ¼ 20 nm smooth (black),
l c ¼ 100 nm smooth (red), and l c ¼ 100 nm rough (blue). (k) Average Σ̃ and for the above samples,
10 samples per statistical condition. (l) Average Σ̃ 0 and for the above samples, 10 samples per statistical
condition eighth error bars corresponding to standard deviations. Scale bar 300 nm on all panels.
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SMmeasurement Σ̃ for samples with various thickness values ranging
from 0.5 to 4 μm. (b) Comparison between true D and that predicted
from an SM measurement Σ̃ for samples with L from 0.5 to 4 μm,
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more accurate than that in Eq. (23) (R2 ≥ 0.99, L between 0.5
and 4 μm as above) and has been utilized in previous works,41–43

it is only valid for a smaller range of structural LSs x < 0.5.
Finally, for fractal media Σ̃ can also be used to measure the

fractal dimension D of sample organization. While the explicit
analytical relation between Σ̃ and D given in Eq. (19) is quite
complex, for fractal media Σ̃ is linearly proportional to both D
[D ∈ ð2;3Þ, Figs. 4(a) and 4(b)] and σnΔ , therefore, a simplified
empirical expression can be obtained. For samples with
L > 2 μm, the fractal dimension in combination with the stan-
dard deviation of RI can be predicted from Σ̃measured by SM as

EQ-TARGET;temp:intralink-;e024;63;508σnΔðD −D0Þ ¼ B
Σ̃

NA
ffiffiffiffiffiffiffiffiffiffiffi
kcLR

p ; (24)

where B is a unitless proportionality constant B ¼ 13.2, and D0

is a fractal dimension offset D0 ¼ 1.33, which, incidentally,
equals the fractal dimension of a 2-D polymer. Figure 16(b)
shows the predictions of σnΔðD −D0Þ from Σ̃ for samples
with different thicknesses, also confirming the lack of their
dependence on Ln. Based on Eq. (19), Σ̃∕

ffiffiffiffiffiffiffiffi
kcL

p
becomes

independent of L when thickness is large, as a result of which
σnΔðD −D0Þ predictions converge to their true theoretical
values. For L < 2 μm, in turn, the predicted σnΔðD −D0Þ is
still a monotonic function of the theoretical, but overestimates
its true value.

Importantly, while the above relations are shown on
examples of exponential or fractal RI SCFs, an arbitrary corre-
lation function can always be described through the effective
correlation length leffc , defined as separation distance at which
correlation decays by a factor of e. In this case, the relation

Σ̃ ∝ σnΔ
ffiffiffiffiffiffi
leffc

p
still holds (as illustrated in Fig. 4), and the

spatial distribution of material can still be described through

Ld ¼ σ2nΔ l
eff
c . The monotonic relation between the fractal

dimension D and the effective correlation length leffc is shown
in Fig. 18.

In summary, to measure the structural characteristic Ld of
purely internal nanoscale organization of complex, weakly scat-
tering samples, one needs to measure Σ̃ as well as the sample’s
optical thickness with respect to central wavenumber kcL. To
measure a sample’s optical thickness, a range of techniques
can be employed. Methodologies for measuring a sample’s
physical thickness (which necessitates an assumption of sam-
ple’s RI) include atomic force microscopy and optical interfer-
ence-based optical profilometry.44 At the same time, a sample’s
optical thickness can be measured via a range of quantitative
phase microscopy (QPM) techniques as reviewed in Refs. 45
and 46. Regarding the QPM techniques, we note that the
QPM feature could not be combined with our instrument
since an altered incident light path would be required along
with transmission-mode light collection scheme. Below, we
review two methods for obtaining a sample’s optical thickness
from SM-registered signal itself, with no need for additional
instrumentation or data acquisition steps.

As follows from Eq. (6), the classical SM spectrum consists
of a deterministic zero-frequency offset and a fluctuating com-
ponent δIðkÞ. The highest spectral frequency in the fluctuating
component δIðkÞ corresponds to the interference between the
waves reflected at z ¼ 0 and z ¼ −L, with the corresponding
optical path difference (OPD) between the two waves equal
to OPD ¼ 2n1L. Thus, the optical thickness n1L of the sample
can be measured by taking the Fourier transform of the fluctu-
ating component of registered SM spectrum FfδIðkÞg ¼ ~IðzÞ
evaluating the highest spectral frequency of the measured signal.

Note that the accurate measurement of sample optical thick-
ness given the sample geometry required by the SM technique
(RI match at one interface) is complicated by the fact that sam-
ple–substrate interface does not always reflect light due to the
low RI contrast at the bottom interface typical to fixed bioma-
terials on glass slides. Specifically, this is the case when lc is
smaller than the diffraction-limited spot and the frequency-
space spectrum Ĩ2ðzÞ does not necessarily contain an evident
peak at z ¼ −L. Nevertheless, the spectral-frequency composi-
tion of the SM signal can be analyzed to extract thickness with-
out the need for additional instrumentation or data acquisition
steps. Below, we review two methods for sample thickness
evaluation from an SM signal (a) based on the decay rate of
the autocorrelation of the fluctuating component δIðkÞ,41,43 and
(b) based on the shape of the frequency-space spectrum ~IðzÞ.23

4.3.1 Spectral correlation decay rate

One way to measure L is through the autocorrelation of the reg-
istered SM spectrum. Let the autocorrelation function of δIðkÞ
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Fig. 18 Increase in the effective correlation length leffc with the fractal
dimension D. Here, Ln ¼ 1 μm.
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be defined as BδIðδkÞ. Then by definition, the correlation decay
rate (CDR) is

EQ-TARGET;temp:intralink-;e025;63;730CDR ¼ − lim
δk→0

ln½BδIðδkÞ�
δk2

; (25)

where ln denotes a natural logarithm. Since δk is small, this
calculation of CDR is equivalent to performing Taylor series
expansion of BδIðδkÞ around δk ≈ 0, and extracting the coeffi-
cient of the quadratic term. The Taylor expansion of BδIðδkÞ
around δk ≈ 0 can be conveniently evaluated through ~IðzÞ
using the definitions of the Fourier transform and an autocorre-
lation function:

EQ-TARGET;temp:intralink-;e026;63;609BδIðδkÞ ¼
δk→0

R jĨðzÞj2 1
2
δk2z2dzR jĨðzÞj2dz : (26)

Thus, substituting Eq. (26) into the definition of CDR in
Eq. (25), we find

EQ-TARGET;temp:intralink-;e027;63;540CDR ¼
R jĨðzÞj2z2dz
2
R jĨðzÞj2dz : (27)

In other words, CDR is the second moment of the Fourier trans-
form of reflectance intensity spectrum δIðx; y; kÞ. Note that this
means CDR is most affected by the highest spectral frequencies
of the spectrum, which explain its further described high sensi-
tivity to noise.

Equation (27) simplifies the understanding of how CDR
depends on n1L. Depending on the shape of ĨðzÞ, CDR in a
noiseless system can be anywhere from ðn1LÞ2∕6 [scattering
probability is same for all z and ĨðzÞ can be approximated as
a top hat function] to 2ðn1LÞ2 [simple thin-film interference,
with ~IðzÞ being a delta-function δðz − 2n1LÞ].

In realistic systems where detector noise is present, ~IðzÞ has
noise contributions at all depths z, and CDR becomes a complex
function of L, SNR, the type and cutoff of low-pass filter used to
eliminate spectral noise, as well as the spectral resolution band-
width of the detector. In simple terms, this dependence can be
explained as follows: after low-pass filtration of the detected

spectrum, noise contributions to ~IðzÞ at z > Lf are eliminated,
and CDR is expressed as

EQ-TARGET;temp:intralink-;e028;326;730CDR ¼ 2AΣ̃2ðn1LÞ2 þ 1
3
N2L2

f

2ðΣ̃2 þ N2Þ ; (28)

whereN2 is the total power of noise oscillations, and Lf is found
as λ2c∕δλnoise with λ2c denoting the central wavelength of spectral
bandwidth, δλnoise denoting the width of the wavelength interval
at which noise oscillations can occur. In general, δλnoise is a com-
bination of the width of the low-pass filter cutoff in the wave-
length space δλfilt and the spectral resolution of the detector
δλdet, δλnoise ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδλ2det þ δλ2filtÞ∕2

p
.

Defining SNR as SNR ¼ Σ̃∕N, we obtain

EQ-TARGET;temp:intralink-;e029;326;588CDR ¼ Aðn1LÞ2 þ 1
6SNR2 L2

f

1þ 1∕SNR2
: (29)

For a case with δλdet ¼ 1 nm, δλfilt ¼ 12.5 nm, λc ¼ 600 nm,
based on rigorous FDTD simulations of a physical experiment,
for samples with a wide range of internal RI distribution proper-
ties (i.e., lc between 20 and 250 nm), thickness can be found
from CDR simply as

EQ-TARGET;temp:intralink-;e030;326;487L ¼
ffiffiffiffiffiffiffiffiffiffi
CDR

p
∕ð0.7n1Þ − 0.6 μm: (30)

Figure 19 shows the accuracy of thickness predicted from CDR
according to Eq. (30) for various L and SNR, where the value of
CDR is evaluated either directly from FDTD-simulated physical
experiment [Figs. 19(b) and 19(c)] or theoretically via the
Eq. (29) [Fig. 19(c)]. The close match with the CDR values
obtained from FDTD simulations of a physical experiment con-
firm the accuracy of the CDR estimates in the conditions of
experimental noise as derived in Eq. (29).

4.3.2 Decay of the frequency-space spectrum

Another signal processing algorithm capable of accurate sample
thickness measurements at even lower values of SNR utilizes
the fact that no light scattering events occur at z > −L, and
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Fig. 19 (a) Example spectrum for L ¼ 3 μm, l c ¼ 34 nm originally simulated by FDTD (red), with added
noise to imitate experimental conditions in the case of poor SNR ¼ 2 (cyan), and after applying low-pass
frequency filter to remove noise (black dashed). The filtered signal approximates the original with 2%
accuracy and is used for further CDR calculations. (b) Thickness predicted from CDR for various
SNR (solid lines in red for L ¼ 3 μm, green for L ¼ 2 μm, blue for L ¼ 1 μm). True sample thickness
is indicated by dashed lines of the corresponding color. (c) Thickness predicted from CDR at
SNR ¼ 10 measured from FDTD-simulated spectra (blue) as well as predicted theoretically (orange)
for a wide range of true sample thicknesses.
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therefore, the expectation (E½·�) of the absolute value of fre-
quency-space spectrum E½jĨ2ðzÞj� always decays at jzj > L.23

While the exact shape of E½j~I2ðzÞj� decay tail at jzj > L has
no closed-form analytical expression, this shape can be quanti-
fied and stored numerically using the library if FDTD-simulated
data for a range of sample properties.

Since the shape of j~IðzÞj depends on the RI correlation length
lc, a fourth-order polynomial was fitted to all FDTD-calculated
frequency-space spectra E½jĨðzÞj� at jzj > L for samples with 20
values of lc (between 20 and 250 nm), and a library of corre-
sponding polynomial coefficients was stored. Then, the optical
thickness of the sample is determined as the z-location corre-
sponding to the best fit between an arbitrary experimentally
measured E½j~IðzÞj� decay and that reconstructed from the stored
library of E½j~IðzÞj�. The excellent accuracy of thickness pre-
dicted from the tail of E½j~IðzÞj� at jzj > L for FDTD-synthesized
SM data from sampled with various L and SNR is shown
in Fig. 20.

To summarize, optical thickness of a studied sample can be
calculated from the SM signal using the frequency content of the
registered spectra. One option is to use the decay rate of spectral
correlation function, CDR. This method allows accurate thick-
ness predictions for samples thicker than 800 nm [Fig. 19(c)].

In addition, thickness can be predicted for each diffraction-
limited spot. The disadvantage of this method lies in the high
sensitivity of CDR to the presence of experimental noise: when
SNR < 4 the thickness predictions become inversely propor-
tional to Σ̃ [Fig. 19(b)].

Another method for thickness reconstruction using an SM
signal is based on evaluating L directly from the shape of its
Fourier transform. The advantages of this method include the
independence of noise floor for SNR > 1 and a high accuracy
in predicting thickness for samples as thin as 200 nm. However,
this method requires calculation of the expected value of the
frequency-space spectra, which means that j~IðzÞj from different
diffraction-limited spots needs to be calculated and averaged to
yield E½j~IðzÞj�. Thus, the spatial resolution of thickness deter-
mined with this method is ∼5 × 5 diffraction-limited spots.23

Other disadvantages of this method stem from the fact that it
is based on a curve-fitting, error-minimization algorithm. Thus,
in addition to requiring longer computational time, this method
can be prone to large errors when the experimental and the theo-
retical curves do not match well, such as when the experimental
sample has microscale roughness, or when due to certain hard-
ware specifics the system’s noise is not white noise.

Finally, Fig. 21 shows the comparison of thickness predic-
tions from a complex, rough experimental sample (tissue
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Fig. 20 (a) Example Fourier transform of spectrum for L ¼ 2 μm, generated by FDTD (blue) and
the decay fit (black). (b) Thickness predicted from decay tail for various SNR (solid lines in red for
L ¼ 3 μm, green for L ¼ 2 μm, blue for L ¼ 1 μm). True sample thickness is indicated by dashed
lines of the corresponding color. (c) Thickness predicted from decay tail measured from FDTD-simulated
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Fig. 21 Lðx; yÞ of a fixed prostate tissue section (μm) calculated using: (a) thickness reconstruction
from CDR considering every pixel independently, and (b) applying a median filter with a window size of
a diffraction-limited spot, pixels with SNR <1 excluded, (c) thickness reconstruction using frequency-
spectral decay, and (d) atomic force microscopy measurements. Panels c-d reproduced with permission
from Ref. 23, courtesy of J. Biomed. Opt.
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biopsy) predicted via CDR [Figs. 21(a) and 21(b)], decay of
the frequency-space spectrum [Fig. 21(c)], and an atomic force
microscope [Fig. 21(d)].

5 Alternative Markers of Spectroscopic
Microscopy

Naturally, the SM microscopy signal can be analyzed in a range
of ways. In this paper, we provided an in-depth review of the
spectral variance Σ̃ and its measurement of the nanoscale struc-
ture within weakly scattering samples. In fact, the disorder
strength measured through Σ̃ in the SM-based PWS microscopy
technique has proven effective in detecting hallmarks of carcino-
genesis in histologically normal-appearing cells, facilitating the
development of accurate screening techniques for multiple early
stage human cancers, including cancers in lung,13,42 colon,41,42,47

ovaries,14 pancreas,42 esophagus,15 and prostate.16

At the same time, an optical parameter equivalent to Σ̃ can be
calculated when the standard deviation of reflectance (at a single

wavelength of light) fΣpðλÞ is taken across pixels of the regis-
tered bright-field microscope image, instead of evaluating it
across different wavelengths as reviewed herein.48 That is,
the standard deviation of reflectance across different realizations
of media with same statistical properties (i.e., standard deviation
across pixels) is identical to standard deviation of reflectance
from the same medium (registered in a single pixel) measured
at different wavelengths of light. In general, measuring the spec-
tral standard deviation Σðx; yÞ has the advantage of quantifying
the sample subvolumes imaged by individual pixels independ-
ently and thus not making the assumption of different pixels
imaging statistically equivalent samples with similar physical
thicknesses. Nevertheless, in cases when samples can be
assumed to be statistically homogeneous, evaluation of a sam-
ple’s internal properties using few (≈30) wavelengths of light
instead of 200 has the advantage of system speed improvement
by orders of magnitudes along with the possibility of obtaining
measurements of whole microscopy slides,48 both of which have
great promise for the translational applications of the technique.
The applicability of reduced-wavelength Σ̃pðλÞ to a given type
of samples can be tested by performing an initial set of
full-wavelength Σðx; yÞ measurements after which the spatial

homogeneity of structural properties within those sample can
be evaluated when Σ̃ is compared to Σ̃p.

Another array of possible ways to quantify sample properties
is through the frequency decomposition of reflectance spectra,
i.e., their Fourier transform. From the physical origin of the SM
signal as described by Eq. (6), frequency decomposition allows
us to identify the depth inside the sample at which the measured
scattering events have occurred (Fig. 20) with a resolution
defined by the bandwidth of light. This information can be
used in a range of ways, as follows. First, in the case of thick
samples with L > 1 μm the frequency spectrum ĨðzÞ can be
used with no further postprocessing as means of depth-resolved
nanoscale structural quantification. Second, a partial integration
of the frequency-scape spectrum can be performed: ΣLmin

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ Lmin

0 jĨðzÞj2dz
q

, where Lmin is the smallest possible thickness

for the given sample type. This method avoids the thickness-
dependence of measured quantity ΣLmin

, as only the scattering
events occurring within z ∈ ð0;−LminÞ are quantified regardless
of the true sample thickness. The disadvantage of this method
lies in the fact that when reflectance at z ¼ −L is not measured,
ΣLmin

∝ ΣR [Eq. (14)] which is a nonmonotonic function of the
structural LS lc.

Finally, since ~IðzÞ conveys the power of light scattered at
depth z, it can be used to obtain two independent optical mea-
sures of sample structure: Σ̃R (scattering inside the sample) and
Σ̃L [scattering at z ¼ −L, Figure 22(a)23]. Hence, following the
known analytical equations for Σ̃R and Σ̃L [Eqs. (18) and (17)],
the explicit physical properties of sample structure lc and σn can
be independently calculated [Fig. 22(b)]. The obvious great
advantage of this approach lies in measuring nonambiguous,
explicit, spatially resolved parameters of sample structure.
The disadvantages include the assumption of sample statistical
properties being similar at z ¼ −L∕2 and z ¼ −L as well
as the necessary multistep signal postprocessing algorithm
which, given imperfect experimental data, can cause error
accumulation.

6 Summary and Outlook
Despite the diffraction limit of imaging resolution, the second-
order statistic of the spectroscopic content of a reflected-light
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Fig. 22 (a) Σ̃R∕
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p
and Σ̃L as a function of the correlation length l c obtained for a sample with thick-

ness L ¼ 2 μm according to analytical equations (solid lines) and calculated from FDTD simulation
(circles with error bars corresponding to the standard deviation between nine ensembles per statistical
condition). (b) Corresponding true σnΔ

and l c (solid lines) and reconstructed from FDTD-synthesized
SM signal (circles with error bars corresponding to the standard deviation between nine ensembles per
statistical condition). Reproduced with permission from Ref. 23, courtesy of J. Biomed. Opt.
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bright-field microscope image contains information about the
structural organization within a label-free weakly scattering
sample at arbitrarily small length scales, limited only by the
SNR rather than by a physical phenomenon. Here, we have
reviewed the fundamental principles behind the technique’s
LS sensitivity and provided a detailed description of its various
aspects. In addition, we discussed the different approaches to
data analysis which can be taken depending on the characteris-
tics of studied samples, such as degree of nanoscale surface
roughness and sample thicknesses, as well as on how important
the spatial resolution of nanoscale information (Σ̃ðx; yÞ) and the
speed of data acquisition (Σ̃p) are for the particular application.
Similarly, some of the instrumentation features can be adjusted
to achieve the desired depth of focus, or the sample geometry
can be altered to allow measurements from other sample types,
such as living biological cells,18,49 while satisfying the require-
ments of the technique.

From the instrumentation perspective, the SM technique
is quite simple and can even be built into a commercial
microscope.18 A crucial aspect of the technique is the sample
geometry. First, it ensures the existence of a reference arm
and leads to an SNR (Σ̃ ∝ σnΔ ) that is much greater than that
of methods detecting the intensity of scattered light directly
from the sample (∝ σ2nΔ ). Second, combined with the sample
thickness not exceeding the microscope’s depth of field,
it defines the nature of SM’s LS sensitivity, as discussed in
Sec. 3.2.21

Importantly, the unique aspect behind the technology is not
the instrument itself, but rather the derived nanoscale-sensitive
marker Σ̃2. It offers distinct advantages compared to the text-
book optical properties which the common light scattering
spectroscopic techniques quantify, such as the backscattering
(σb) and the total scattering (σs) cross sections. σb has a non-
monotonic dependence on lc which makes the inverse problem
ambiguous,37 and σs increases steeply ∝ l3c and thus is relatively
insensitive to structural changes at small length scales.39 Σ̃, in
turn, is a “monotonic” function of the length scale composition
of the sample, with its value saturating at large length scales, as a
result of which it exhibits a predominant sensitivity to changes
at subdiffraction length scales.19 Finally, as reviewed herein,
Σ̃ possesses a unique ability to detect structures at any length
scale whatsoever.21

The SM approach also clearly differs from other label-free
techniques utilizing the spectral content of diffraction-limited
microscope images for extracting structural information about
the sample. Unlike the high-precision quantitative phase tech-
niques, it measures the fluctuations of RI rather than its longi-
tudinal integral. Compared to subdiffraction-sensitive techniques
such as confocal light scattering and absorption spectroscopy,1

spatial-domain low-coherence QPM,8,9 spectral encoding of
spatial frequency,2–4 or nanoscale nuclear architecture mapping,10

the theory behind SM1 does not impose strong assumptions such
as approximation of the medium as solid spheres or having a
dominant length scale2 and provides an explicit relation between
the sample’s complex 3-D RI distribution and the derived quan-
titative measure Σ̃2. This relation is applicable to arbitrary types of
RI distribution within the sample: continuous or discrete, random
or deterministic, statistically isotropic or not.

SM, with its great advantages for basic science, biology and
medical applications, enables quantitative assessment of the
microscopically indiscernible, nanoscale structural features of
optically transparent materials such as biological cells and

tissues without the need for external contrast agents. Thus,
PWS microscopy utilizes SM to detect intracellular structural
alterations preceding tumor formation both for the development
of early cancer screening methodology,17 and for basic biology
studies of the mechanisms behind tumor-specific intracellular
alterations as well as their effect on gene regulation.50 Prospects
for the reviewed technique also include identification of new
cancer therapeutics by offering intracellular ultrastructure-
based approach to screen drugs for their ability to revert malig-
nancy-associated changes. In addition, the relatively simple
instrumentation requirements open the door to a wide range
of possible directions for further technology development. This
includes a high-throughput automated whole-slide SM approach
complementing highly effective tools such as whole-slide
microscopy and digital pathology, sample geometry alterations
to allow both structural and temporal data acquisition from live
biological cells, as well as implementation of confocal, struc-
tural, or other illumination techniques to obtain axially resolved,
3-D cubes of the nanoscale-sensitive marker Σ̃ or the explicit
parameters such as RI correlation length and variance.
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