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Abstract. Visualization of deep blood vessels in speckle images is an important task as it is used to analyze the
dynamics of the blood flow and the health status of biological tissue. Laser speckle imaging is a wide-field optical
technique to measure relative blood flow speed based on the local speckle contrast analysis. However, it has
been reported that this technique is limited to certain deep blood vessels (about ρ ¼ 300 μm) because of the high
scattering of the sample; beyond this depth, the quality of the vessel’s image decreases. The use of a repre-
sentation based on homogeneity values, computed from the co-occurrence matrix, is proposed as it provides an
improved vessel definition and its corresponding diameter. Moreover, a methodology is proposed for automatic
blood vessel location based on the kurtosis analysis. Results were obtained from the different skin phantoms,
showing that it is possible to identify the vessel region for different morphologies, even up to 900 μm in depth.
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1 Introduction
The visualization of blood vessels is of fundamental importance
for a wide variety of biological and biomedical applications,
such as obstruction, stiffness, and response to an external stimu-
lus. Laser speckle imaging (LSI) is a technique based on the
spatial–temporal integration of the light scattered from a bio-
logical sample when illuminated with coherent light and imaged
by an optical detector (i.e., CCD camera).1,2 Particle motion
(i.e., blood cells) in the illuminated area causes a decrease in
contrast, seen as a blurring effect in the image, which is related
to the speed of the particles in the illuminated sample. Hence,
LSI is used to measure the relative blood flow speed.3,4

For deep vessels, LSI shows some limitations5 because of the
strong scattering produced by static structures, such as the skull
or the epidermis. Several approaches have been proposed to
overcome these limitations. Pulsed photothermal radiometry
(PPTR) photoinduces heating in blood vessels with a laser pulse
to improve the visualization.6 Photothermal-LSI is a recently
developed technique that combines the photoinduced heating of
PPTR and the contrast of integrated intensity of LSI to improve
the visualization of the deep blood vessels.7 Magnetomotive laser
speckle imaging uses paramagnetic nanoparticles introduced in
the vasculature. Under the influence of an external magnetic
field, the mobility of those particles increases, allowing their
visualization through the contrast of integrated speckle.8 Physi-
cochemical tissue optical clearing (PCTOC) uses a topical sub-
stance that matches the refractive index of the skin.9 Although
these techniques may increase the visualization of the deep
blood vessels up to a few hundred micrometers, all of them require
an external agent or stimulus. In a recent work, Postnov et al.10

proposed a computational algorithm based on a second-order
gradient that allows vessel location and measurement of its
diameter from the contrast speckle images. However, the algo-
rithm was applied to a relatively superficial vessel.

In this work, we present a noninvasive technique to improve
the visualization and location of deep vessels in skin phantoms
through digital image processing of raw speckle images (RSI).
The approach consists of: (a) processing the RSI as texture
images to obtain its homogeneity representation through the
co-occurrence matrix (CM) and (b) automatically locating the
vessel through a kurtosis analysis. Kurtosis has been used in
other approaches to study the speckle patterns produced by the
surface’s roughness,11,12 but here, kurtosis is used to estimate the
vessel location and its diameter in an automatic way. Results of
the homogeneity representation are compared with a standard
LSI image. In addition, the accuracy of this methodology is
demonstrated by estimating the vessel diameter at different depths.
The proposed kurtosis analysis was compared with the full
width at half maximum, demonstrating that the former can pro-
vide more accurate results.

The sections of this work are divided as follows. In Sec. 2,
materials and concepts used in this work are described. Section 3
describes the proposed methodology. In Sec. 4, the obtained
results for different sets of RSI are presented. Finally, the con-
clusions and the future work are presented in Sec. 5.

2 Materials and Methods

2.1 Texture and Co-occurrence Matrix

In computer vision, a texture is characterized by gray-level
variations in an image that form small similar and repetitive
regions.13 Thus, in order to describe a texture, it is necessary to
analyze the distribution of its gray levels. While a histogram
provides information about the distributions of gray levels, it
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does not take into account the relationship between a central
pixel p and its neighbors.14 This information is important to pro-
vide a rich description of the texture. The gray level CM is one
of the standard methods to analyze texture in digital image
processing13 and can be used for describing the information of
RSI, as we report in an initial approach.15 Through second-order
statistics, this approach studies the way in which the gray levels
are distributed in an image or region and their spatial relation-
ships.16,17 A CM indicates the frequency at which a pair of pixels
with gray values i and j, located spatially at a distance of d pix-
els in the direction θ, occurs in an image I. A distance value
must be chosen carefully because a large distance may result
in texture overlapping; oftentimes, d ¼ 1 is used. The analysis
direction takes values of θ¼f0 deg;45 deg;90 deg;135 degg;
the analysis in all the directions is obtained by the addition of
the four matrices.

Let p be a pixel in the image IH×W of H rows and W col-
umns, where p takes gray values in the range ½0; G − 1�,G being
the range of possible values (256 for an 8-bit image). For in-
stance, if I is an image with five possible gray values from 0
to 4 (G ¼ 5), as shown in Fig. 1(a), and the parameters d ¼ 1
and θ ¼ 45 deg are considered for its CM, then the procedure is
as follows. A matrix CMG×G is generated and set to zeros; CM is
always square and its dimensions depend on G. To assign values
to the CM, each pair of pixels in I is analyzed considering the
parameters d and θ. Figure 1(b) shows that for the central pixel
p, the parameters indicate that q1 is the neighbor pixel to ana-
lyze. Often, the neighborhood analysis is made symmetrically;
hence, the cooccurrence is also extended to q2. Suppose wewant
to know the cooccurrences of a gray level i ¼ 1 (reference level)
with a gray level j (comparison level), denoted as CMði; jÞ. For
j ¼ 0, the cooccurrences with i happen when the coordinates of
p are fIð1;0Þ; Ið1;1Þg, therefore CMð1;0Þ ¼ 2. For j ¼ 1, the
cooccurrences with i happen in coordinates fIð2;0Þ; Ið2;1Þg
by considering a neighborhood in q1. Also, in this case, the
cooccurrences happen in a symmetrical way, when p has coor-
dinates fIð1;1Þ; Ið1;2Þg by considering a neighborhood in q2;
therefore, CMð1;1Þ ¼ 4. The final CM is obtained by analyzing
the cooccurrences between all the possible values of i and j, as
shown in Fig. 1(c) for this example.

From the CM calculus, two important things should be
noted: (a) a new representation of the gray levels in I is provided
by the CM, which is considered a symmetric two-dimensional
histogram, but it does not characterize a texture by itself;13,18

(b) although the amount of information in I has been reduced

in the CM, a large amount of data remain for texture characteri-
zation, i.e., G ×G characteristics.

2.2 Feature Extraction

In order to use the information provided by the CM, some fea-
tures must be calculated. Haralick et al.17 proposed 14 textural
features that can be calculated from the CM to identify differ-
ence among textures. One of the most used features is the
inverse difference moment, a measure of the local homogeneity,
calculated as

EQ-TARGET;temp:intralink-;e001;326;441Hg ¼
XG
i¼1

XG
j¼1

Pði; jjd; θÞ
1þ ji − jj ; (1)

where Pði; jjd; θÞ is the probability density function obtained by
dividing the CM matrix by the total pixels of image I (H ×W);
i and j are the reference and comparison levels of the CMmatrix
described in Sec. 2.1.19,20 This feature provides information
regarding the differences between gray levels in the image,
taking values in the range [0, 1], where 1 indicates a limited
range of gray levels (high homogeneity) and 0 indicates a wide
diversity of gray levels (high roughness). For instance, texture
T1 in Fig. 2(a) contains coarse structures (bricks) identified by
having close gray values and smooth transitions among them.
Thus, high occurrences are expected near the CM diagonal of
this image with Hg ¼ 0.3631. In the opposite case, when an
image contains fine granulated structures (T2), the scattered
occurrences are expected throughout the CM, as in the case of
Fig. 2(b), and consequently, a lower homogeneityHg ¼ 0.1169.
Thus, it is possible to find differences among textures by
calculating features, such as homogeneity based on the CM
values.

2.3 Skin Phantoms

These skin phantoms consist of two parts: dermis and epidermis
with specific characteristics, as suggested by Saager et al.21 For
the dermis phantom [Fig. 3(a)], we used a transparent resin with
the necessary amount of titanium dioxide (TiO2 1.45 mg∕mL)
to simulate the scattering coefficient of the skin (μs ¼ 2 mm−1).
The epidermis phantom [Fig. 3(b)] was made of silicone (poly-
dimethylsiloxane) mixed with TiO2 powder (2 mg∕mL) to sim-
ulate the corresponding scattering properties (μs ¼ 3.0 mm−1)
and dried coffee (10 mg∕mL) to simulate the absorption

Fig. 1 (a) Example of a small image I with G ¼ 5, (b) the neighborhood for cooccurrence analysis, and
(c) its resulting CM.
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coefficient (μa ¼ 0.2 mm−1).21 Different thicknesses of phan-
tom epidermis layers, namely 200, 400, 500, 600, 700, and
900 μm, were placed on top of the phantom dermis to simulate
different depths of the vessels [Fig. 3(c)].

2.3.1 In vitro vessels

For this work, two types of in vitro vessels were used: straight
and bifurcated. For the straight vessel, a glass capillary with an

Fig. 2 Example of textures with (a) wide homogeneous regions (T1) and (b) fine granulated structures
(T2) and a plot of their respective cooccurrence matrices.

Fig. 3 Silicon phantoms for (a) dermis, (b) epidermis, and (c) the scheme of the skin phantom.
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inner diameter of 700 μm was used, whereas for the bifurcated
vessel, a slide with 300-μm-inner diameter microchannels
(thinXXS Microtechnology AG, Germany) was used. Both
in vitro vessels were placed above silicon layers containing TiO2

powder to mimic the scattering properties of the soft biological
tissues. The phantoms described in Sec. 2.3 were placed on top
of the slide to simulate the depth of the vessels [Fig. 3(c)].

2.4 Experimental Setup

The LSI setup (Fig. 4) consists of laser He–Ne (632.8 nm) that
impinges on a static engineered diffuser (Model ED1-C20,
Thorlabs Inc.), which in turn illuminates homogeneously a
circle with a 1-cm diameter on the phantom’s surface. If the
phantom is not homogeneously illuminated, the intensity distri-
bution can influence the corresponding spatial contrast. A lens
coupled to a CCD camera (Model Retiga 2000R, QImaging,
Canada) images the surface of the phantom on the CCD. The
magnification of the optical system is M ¼ 0.285 and the cor-
responding speckle size is ≈7.9 μm. Alinear polarizer is placed
in front of the lens with its transmission axis crossed with the
He–Ne polarization to minimize the specular reflection. The
CCD camera is connected to a computer to save the captured
speckle images. The camera exposure time is set to T ¼ 10 ms
because this value is quite common for in vivo LSI applica-
tions.22 This exposure time is approximately three-orders of
magnitude larger than the correlation time reported23 for a sim-
ilar LSI experiment at a flow speed of 8 mm∕s. An infusion
pump (Model NE-500, New Era Pump System Inc.) was used
to inject the intralipid at 3% in water as blood substitute, whose
scattering coefficient is μs ≈ 150 cm−1 at 630 nm.24 The pump
allows control of the speed of the intralipid through the glass
capillary. In this work, we use two different flow speeds: 10 and
20 mm∕s. A similar range of speeds has been used in similar
experiments.25

3 Proposed Methodology for Automatic
Vessel Location

This proposal addresses the analysis of an alternative represen-
tation to the traditional contrast representation in a laser speckle.
In order to compare both representations, an introduction to
the known contrast representation is first given.

3.1 Contrast Representation

Briers and Fercher26 demonstrated that it is possible to estimate
the relative blood flow speed from the blurring (contrast) of a
spatial and temporal integrated speckle pattern. The contrast mea-
sure (C) is defined as the ratio between the standard deviation (σ)

and the mean intensity gray value (μ̄) over a sliding window J in
the image I [Eq. (2)]. Low values of C indicate a reduced range
of gray levels (smoothness), whereas high values of C indicate
a high dispersion among the gray levels (variability).

EQ-TARGET;temp:intralink-;e002;326;708CðJÞ ¼ σðJÞ
μ̄ðJÞ : (2)

The contrast highlights the difference between static (skin)
and dynamic (blood vessel) regions of an RSI (Fig. 5), improv-
ing their visualization (contrast representation). As shown in the
two views of the LSI [Figs. 5(b) and 5(c)], the contrast changes
abruptly in any given region, which may hinder vessel bounda-
ries location, and this task becomes harder as the depth
increases. In a blood vessel location task, this is a drawback
because it implies that vessel limits become harder to define as
the depth increases. Therefore, in this work, we propose the use
of a homogeneity descriptor based on a CM computing that not
only takes into account the spatial relations among gray values
but also provides a representation that is less sensitive to the
variability of the speckle pattern. This is an important character-
istic as it provides a better definition of the vessel location, as
described next.

3.2 Homogeneity Representation

It must be taken into account that the vessel region usually occu-
pies a small area in the image; therefore, the homogeneity value
must be computed for the small regions. Hence, the image IH×W

is divided into subimages or subregions through an analysis
window Jh×h [Fig. 5(a)], and a CM is calculated for this area,
just as the contrast image is calculated. With the aim of increas-
ing the precision in the location of the vessel, a certain level of
information redundancy is necessary. There must be an overlap
between each pair of subregions, i.e., Jmþ1 must have a displace-
mentΔwith regard to Jm with 1 ≤ Δ ≤ ðh − 1Þ∕2where h is the
size of the analysis window. In this way, we generate a new rep-
resentation of the RSI through the homogeneity image, shown in
Figs. 5(d) and 5(e), in which it is possible to improve the dis-
crimination between dynamic and static regions. As shown, high
and low values of homogeneity will be associated to dynamic and
static regions, respectively. Homogeneity representation enables
smoother transitions among consecutive regions and defines the
vessel better.

Often, the analysis window has a small size, such as 5 × 5 or
7 × 7, but if a large area is analyzed, it is possible to find sta-
tistics that better describe the characteristics of that area. This is
particularly interesting because the speckle pattern is generated
randomly. If the analysis is made using a small window, a higher
dispersion is found [as shown in Figs. 5(b)–5(c) and Figs. 5(d)–
5(e)]; but if a larger window is used, that dispersion is attenuated
because the occurrence of gray levels becomes higher, i.e., some
of them are no longer seen as isolated occurrences and the rela-
tionship among pixels is higher, although they still reflect local
values. As the use of a larger window improves the homogeneity
representation by avoiding strong variations, the use of a larger
window with h ¼ 31 and Δ ¼ 5 will be explored. As shown in
Figs. 5(f) and 5(g), the use of a larger window improves the
homogeneity representation by avoiding strong variations.
The transversal view of IHg

(PHg
, hereinafter named as homo-

geneity profile) shows with more detail that low homogeneity
values are related to static region, whereas high homogeneity
values are related to dynamic regions, i.e., regions of high

Fig. 4 Optical setup where the diffuser is used to produce a homo-
geneous illumination on the skin phantom.
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contrast. We can also observe that the homogeneity rapidly
increases in the regions closest to the vessel until it reaches
its maximum level at the center of the vessel. In this new rep-
resentation, it is clearer to distinguish the static and the dynamic
regions, thereby improving the vessel location. Although this
homogeneity profile corresponds to an RSI at ρ ¼ 0 μm in
depth (which we call the reference case), this analysis can be
extended to deeper vessels.

3.3 Homogeneity Profile Characterization

In LSI, it is known that the vessel region is associated with
a blurring effect due to the blood flow (dynamic region);1

however, as the depth increases, this effect is reduced, making
it difficult to identify the vessel region. Although a certain level
of blurring remains in the image, the dynamic region becomes
very similar to the static region. Therefore, we need to find other
ways to identify the vessel region from an image that appears to
be completely noisy. The homogeneity representation will be
used for this purpose.

For the proposed methodology, an initial set of RSI (S1) was
tested. The set contains a package of images obtained using the
experimental setup described in Secs. 2.3 and 2.4. Table 1
describes the characteristics of this package, consisting of 30
RSI images at ρ ¼ 0 μm in depth. This is done in order to study
whether there is a characteristic pattern in the homogeneity
behavior. The starting point (reference case) is ρ ¼ 0 μm. All
the homogeneity profiles were found to present a distribution

with a tall narrow peak and long tails due to the extreme
deviation from the central tendency of the values, this feature
suggest the use of kurtosis. This deviation was caused by the
rapid increase of homogeneity values in the dynamic region
[similar to Figs. 5(e)–5(g)].

The kurtosis is a measure that describes the shape of a dis-
tribution based on the ratio between the central tendency and the
deviation of the data.27 When values are greatly deviated from
the central tendency, the kurtosis takes values >3, and the dis-
tribution is called leptokurtic. Given that a superficial vessel at
ρ ¼ 0 μm has a characteristic leptokurtic homogeneity distribu-
tion, kurtosis can be used as a parameter of reference for vessel
location. In order to prove this statement, the kurtosis value (k)
was calculated for the 30 profiles, according to

EQ-TARGET;temp:intralink-;e003;326;215k ¼ u4

σ4
¼

P
n
a¼1

ðza−zÞ4
n

σ4
; (3)

Fig. 5 (a) An RSI of a superficial vessel (i.e., ρ ¼ 0 μm) and (b, c) its contrast image computed with an
analysis window of 5 × 5. The homogeneity computed images using analysis windows of (d, e) 5 × 5 and
(f, g) 31 × 31, respectively. Left and right columns show the transversal and frontal views of the images,
respectively.

Table 1 Characteristics of the reference set (S1) of RSI.

Image
dimensions
(pixels)

Vessel
diameter (μm) ρ (μm)

Speed
(mm∕s) k̄ PSNR

329 × 200 700 0 20 4.42� 0.02 32.70
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where μ4 is the fourth moment about the mean, i.e., the sum of
the difference between the mean z and each z value raised to the
fourth power in a given set of n values; σ is the standard
deviation. The obtained mean kurtosis (k̄) of the reference case
ρ ¼ 0 μm is 4.42� 0.02 confirming its leptokurtic distribution
(Table 1). In order to determine the quality of the set S1, the peak
signal-to-noise ratio (PSNR) for all RSI images of S1 was esti-
mated using

EQ-TARGET;temp:intralink-;e004;63;664PSNR ¼ 10 log10
G − 1

1
H×W

P
H−1
a¼0

P
W−1
b¼0 ½Î − Iða; bÞ�2 ; (4)

where Î is the mean value of the image I.28 The images of S1
were found to have a high PSNR; therefore, we use its mean
kurtosis value k ¼ 4.42 as a reference for the proposed analysis.

Once the reference homogeneity profile has been established,
it is necessary to locate the vessel and later to estimate its diam-
eter, as shown in Sec. 4.1. A transversal cut of the homogeneity
profile [Fig. 6(a)] shows that it is highly correlated with the
actual dimension of the blood vessel [Fig. 6(b)]. Also, it notes
that the dotted blue lines correspond to the actual vessel loca-
tion, whereas the region comprised between a continuous red
line and a dotted blue line is associated to the area around the
vessel due to the migration of photons from the vessel to the
surrounding regions [Figs. 6(a) and 6(b)]. The actual vessel
region in the homogeneity representation was found to be best
defined in the interval comprised between the maximum value
(vessel center) and a standard deviation of the homogeneity
profile, i.e., maxðPHg

Þ � σ (dotted blue lines).
Nonetheless, the supposed location depends on a distribution

with high kurtosis since the standard deviation may comprise a
wide or narrow region, depending on the peak width of the
homogeneity distribution. As observed in Fig. 7(a), the deeper
the vessel, the wider the homogeneity profile (and therefore, the
lower the kurtosis). Figure 7(b) shows a close up around the
peak and the vertical dotted lines indicate the actual vessel loca-
tion for reference purposes only. In the same figure, the circular
markers correspond to maxðPHg

Þ − σ for the different depths of
the vessels. Note that the criteria for vessel location established
for the reference case is no longer valid for deeper vessels.

Hence, the one standard deviation is not a good parameter
for locating deep vessel.

We propose a weighted standard deviation (σw) parameter
[Eq. (5)] that compensates the flattening of the distribution
caused by the increasing depth. The weight (w) depends on
the ratio between the kurtosis of the homogeneity profile at a
given depth d (kd) and the kurtosis of reference k0 ¼ 4.42. The
deeper the vessel, the lower the σw. Thus, w controls the pro-
portion that must be considered from the standard deviation at
a given depth (σd); therefore, it restricts the peak width associ-
ated to the vessel region. Figure 7(c) shows the vessel location
obtained with σw, as we observe it fits best with the actual vessel
location,

EQ-TARGET;temp:intralink-;e005;326;609σw ¼ σd
kd
k0

: (5)

The proposed methodology is summarized in Fig. 8, where the
input is an RSI image processed by an analysis window, just as it
is in a traditional LSI, in order to calculate its corresponding CM
and homogeneity values. Once the homogeneity has been cal-
culated for the whole image, the kurtosis analysis is made by
sections and the blood vessel is located according to Eq. (5).
Finally, a segmented image that shows only the vessel region
is obtained.

4 Results

4.1 Linear Vessel

In order to assess the proposed methodology under different
conditions, we tested it using another set of RSI obtained at
different depths as described in Table 2.

For the set S2, the vessel was manually located among the
rows [141, 168] for ρ ¼ 0 μm, and this location is used as a
reference for future analysis, whereas for other depths, the loca-
tion of the straight vessels was done automatically by searching
for the peak of the homogeneity profiles and performing the
kurtosis analysis. The proposed methodology was first tested
in straight vessels by processing homogeneity profiles for each
column and computing the kurtosis analysis. Figure 9 shows
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Fig. 6 (a) Peak analysis for vessel location in a homogeneity profile at ρ ¼ 0 μm and (b) its correspond-
ing RSI.
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the vessel extracted from S2 at different depths and with a veloc-
ity of 10 mm∕s. As one can see, the located vessel is better
defined at lower depths. At higher depths, the image is noisier,
and therefore, the homogeneity values in static and dynamic
regions become similar and harder to define.

The goal of performing in vitro tests at different depths is to
demonstrate that σw allows the estimated vessel location to
match with the real vessel location, and therefore, it is possible

to measure the vessel diameter. For our skin phantoms, it is a
known value (700 μm). Thus, based on the obtained location
at each depth, we were able to estimate the vessel diameter
and its deviation from its actual value. Figure 10 shows the
plot of this estimation for set S2 by comparing the results at
two velocities. We can observe that the speed does not seem to
affect the estimation significantly of the vessel diameter as the
majority of the values lies within 10% of the actual vessel diam-
eter (dashed lines). The plot shows how close the automatic
location is to the reference diameter (solid line).

4.2 Bifurcated Vessel

In in vivo situations, the vessels are not straight but takes com-
plicated forms and even bifurcations. In order to apply our pro-
posed kurtosis analysis, a bifurcated vessel with a diameter of
300 μm and a depth of ρ ¼ 400 μm was tested [Fig. 11(b)].
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Fig. 7 (a) Homogeneity profiles of S2 at different depths. Close up around the peak vessel location (b) by
taking maxðPHg

Þ − σ and (c) by taking maxðPHg
Þ − σw .

Fig. 8 General diagram of the proposed methodology.

Table 2 Characteristics of the set S2 of RSI used for testing the
proposed methodology.

Set
Image dimensions

(pixels)
Vessel

diameter (μm) ρ (μm)
Speed
(mm∕s)

S2 298 × 313 700 0, 200, 400, 500,
600,700, 900

10,20
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In this vessel morphology, the analysis of distributions is per-
formed along each column and each row.

Figure 11(a) shows the unidimensional profile corresponding
to column c ¼ 10, where the two main peaks indicate a high
homogeneity area related to the left branches of the vessel
[Fig. 11(b)]. The same analysis is performed but along the row
r ¼ 165 [Fig. 11(c)]. It is important to remark that only the most
prominent peaks are considered, and each one is analyzed as an
individual distribution. Evidently, these peaks match with the
center of the vessel branches but they cover a wider area
than the reference as expected. For instance, the upper peak in

Fig. 11(a) comprises rows [210, 270]. However, using the pro-
posed parameter σw, a better location of the vessel is achieved
once again now between rows [233, 251]. The final location of
the vessel is given by adding both results, and it is used as
a marker. When this marker overlaps with the homogeneity
representation, it generates the segmented image of the vessel.
Figures 11(d) and 11(e) show the result of automatic vessel loca-
tion performed in the contrast and homogeneity representations.
Although the vessel is well located in both representations, it
presents a poorer definition in the contrast representation unlike
the homogeneity representation, which retains better the vessel
shape. The white lines in Fig. 11(b) indicate the ideal definition
and location of the vessel.

4.3 Discussion

The full width half maximum (FWHM) is a common measure
often used to estimate the width of a function or signal.29 In this
way, the FWHM and σw accomplish a similar function. Here, we
compare the performance for vessel location of the FWHM and
w measurements for each depth (set S2). Figure 12 shows the
differences in the vessel diameter when the vessel location is
estimated with σw and with FWHM. We can observe that the
FWHM has a marked deviation from the actual diameter, mainly
for higher depths since the homogeneity profiles tend toward
a normal distribution. As shown in Fig. 10, the deviation of
the automatic location proposed here is smaller than the 10%
(dashed lines) of the diameter of the reference (black continuous
line).

Fig. 9 Automatic vessel location at different depths by the proposed methodology: (a) ρ ¼ 0 μm,
(b) ρ ¼ 400 μm, (c) ρ ¼ 700 μm, and (d) ρ ¼ 900 μm; colors are related to the homogeneity values.

0 100 200 300 400 500 600 700 800 900

Depth (μm)

350

400

450

500

550

600

650

700

750

800

850

V
es

se
l d

ia
m

et
er

 (
μ m

)

V=10 ms
V=20 ms
Reference 700 μm
±  10% of the reference

Fig. 10 Vessel diameter estimation for S2 at two different velocities.
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EQ-TARGET;temp:intralink-;e006;63;274CVðRMSEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

s
a¼1

ðvr−veÞ2
n

q

v
: (6)

With the aim of measuring the error between σw and FWHM, the
coefficient of the variation of the root-mean-square error [CV
(RMSE)] was calculated by Eq. (6), where vr is the actual vessel
diameter, ve is the diameter estimated for each depth, and
v̄ is the mean value of the estimations. Error estimation for
S2 (Fig. 12) indicates values of CVðRMSEÞσw ¼ 0.089 and
CVðRMSEÞFWHM ¼ 0.561. Although the main objective of this
work is to locate the vessel, we were able to provide an accurate
estimation of its diameter based on σw. Since the homogeneity
provides a representation where the transitions between the
static and dynamic regions are smoother, the kurtosis analysis
allows locating the blood vessels accurately. Although the kur-
tosis analysis can also be applied to the traditional contrast rep-
resentation, it provides less accurate results because of the high
variations in its representation [Fig. 5(b)] as shown in Fig. 11.

Fig. 11 (a) Homogeneity profile for c ¼ 10, (b) bifurcated vessel at ρ ¼ 400 μm in the RSI, (c) homo-
geneity profile for r ¼ 165, and the segmentation of the bifurcated vessel according to the estimated
location using kurtosis analysis over (d) a contrast and (e) a homogeneity representation.
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Fig. 12 Comparison of vessel diameter estimation using σw and
FHWM in set S2.
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However, both representations can complement each other. On
one hand, contrast is a well-known representation and provides
information to calculate the speckle flow index (SFI), which is
proportional to the blood flow velocity.30 On the other hand, the
homogeneity representation and its kurtosis analysis provide a
better blood vessel location even at higher depths. Therefore, the
result of the latter can be used as a marker to indicate the region
where the former should be calculated and still obtain the SFI.

Table 3 shows a comparison among different methods based
on LSI analysis to improve the visualization of deep (hundreds
of microns) blood vessel. Some of them use an external agent,
for example, photothermal-LSI uses a 595-nm laser pulse to
thermally excite the blood flow, resulting in a local increase
of temperature and thus, a transient decrease in speckle
contrast;7 this technique should not be applied on temperature-
sensitive areas, such as brain. PCTOC uses glycerol to reduce
the scattering of in vivo and ex vivo skin samples; 60 min after
the application of PCTOC, a sequence of RSI is acquired and
processed with the LSI algorithm.9 LSI-SFDI uses structured
illumination and LSI to separate a 2-mm-diameter shallow ves-
sel (2 mm depth) from a deeper one (4 mm depth) but the vessel
diameter is not estimated.22 Postnov et al.10 proposed an image-
processing algorithm based on second-order gradient analysis of
LSI images to estimate the vessel diameter and blood flow from
an exposed rat mesenterium and a mouse cortex. Our results
compare quite well with the previous results but, in addition,
can improve the visualization of deep vessels and estimate its
diameter without the use of external agents and in a noninvasive
way.

Although in all image-processing methods there is a loss of
information, due to the required processes for generating the
homogeneity representation and the kurtosis analysis, there is
also a trade-off in the location of the blood vessel that has dem-
onstrated to be accurate. Moreover, the homogeneity represen-
tation visually improves the blood vessel definition, and whereas
the loss of information is inevitable, new information is also

gained (vessel location). It is important to remark that several
versions of the information are generated as the information
is being processed and then, at the end of our process, the seg-
mented image can be used as a marker. The resulting marker in
our proposal can be used just for indicating the vessel location,
as the white lines in Fig. 11(b), over the homogeneity represen-
tation or over the raw speckle. In this way, original and new
information can be complemented. Even more, if a contrast rep-
resentation is also computed, the marker can be used over it.

5 Conclusions
In this work, it has been demonstrated that by exploring a rep-
resentation based on the homogeneity values and using second-
order statistics, it is possible to improve the visualization and
definition of deep blood vessel regions in RSI obtained from
skin phantoms. Moreover, a relationship between the vessel
region and high kurtosis levels has been demonstrated. The kur-
tosis analysis tests prove that it is possible to obtain well-defined
vessels and provide a good accurate estimation of their corre-
sponding diameter. This work provides a methodology that
works automatically and can locate vessels with different mor-
phologies and depths as large as 900 μm in depth, three times
the depth previously reported by other authors. Nevertheless,
it is necessary to apply the proposed methodology in in vivo
experiments. This research topic will be addressed in future work.
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Table 3 Reported works for visualizing deep blood vessels.

Method
Diameter
vessel Speed or flow Depth Brief description

Photothermal
LSI7

320 μm 4 mm∕s 400 μm epidermal
phantom

Improve the visualization of blood vessels by increasing
local temperature with a 595-nm laser pulse. It could not
be applied on temperature-sensitive areas. The diameter
vessel is not estimated.

PCTOC9 Not specified 0 and 5 mL∕s 1.45 mm ex vivo porcine
skin sample

PCTOC method was employed to enhance the contrast
of LSI in ex vivo and in vivo experiments. The diameter
vessel is not estimated.

LSI-SFDI22 2 mm 6 mm∕s 2 and 4 mm∕s epidermal
phantom

Depth-sensitive speckle contrast is shown in skin phantoms
by separating a shallow vessel (2 mm) from a deep vessel
(4 mm) using a high spatial frequency of illumination and
LSI analysis. The vessel diameter is not estimated.

Gradient analysis
and LSI10

200 μm Not specified Exposed blood vessels,
in vivo

Use an image-processing algorithm based on second-order
gradient analysis of LSI images to estimate the vessel
diameter and blood flow from rat mesenterium exposed
and mouse cortex.

This work 700 μm 10 and 20 mm∕s 0 to 900 μm epidermal
phantom

External agent is not required neither invasive procedures.
Vessel location is estimated only from the RSI. Vessel
diameter also can be estimated.
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