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Abstract

Significance: Multi-exposure laser speckle contrast imaging (MELSCI) estimates microcircu-
latory blood perfusion more accurately than single-exposure LSCI. However, the technique
has been hampered by technical limitations due to massive data throughput requirements and
nonlinear inverse search algorithms, limiting it to an offline technique where data must be
postprocessed.

Aim: To present an MELSCI system capable of continuous acquisition and processing of
MELSCI data, enabling real-time video-rate perfusion imaging with high accuracy.

Approach: The MELSCI algorithm was implemented in programmable hardware (field pro-
grammable gate array) closely interfaced to a high-speed CMOS sensor for real-time calculation.
Perfusion images were estimated in real-time from the MELSCI data using an artificial neural
network trained on simulated data. The MELSCI perfusion was compared to two existing single-
exposure metrics both quantitatively in a controlled phantom experiment and qualitatively
in vivo.

Results: The MELSCI perfusion shows higher signal dynamics compared to both single-
exposure metrics, both spatially and temporally where heartbeat-related variations are resolved
in much greater detail. The MELSCI perfusion is less susceptible to measurement noise and is
more linear with respect to laser Doppler perfusion in the phantom experiment (R2 ¼ 0.992).

Conclusions: The presented MELSCI system allows for real-time acquisition and calculation of
high-quality perfusion at 15.6 frames per second.
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1 Introduction

Noninvasive in vivo imaging of microcirculatory blood flow or perfusion (average speed times
concentration of moving red blood cells) is of interest in several clinical applications, including
monitoring of burn wounds1,2 and investigation of peripheral arterial disease,3 as well as several
others.4 One technique that has gained a lot of focus in the last decades is laser speckle contrast
imaging [LSCI; sometimes laser speckle contrast analysis (LASCA)] in which tissue is illumi-
nated with a laser and the resulting speckle pattern is detected with a camera. Light that scatters
when interacting with moving particles in the tissue will obtain a Doppler frequency shift
depending on the velocity of the particles. The interference of light with different frequencies
will give rise to fluctuations in the speckle pattern formed on the imaging sensor. The movement

*Address all correspondence to Martin Hultman, martin.o.hultman@liu.se

Journal of Biomedical Optics 116007-1 November 2020 • Vol. 25(11)

https://orcid.org/0000-0001-5912-3281
https://orcid.org/0000-0001-6385-6760
https://orcid.org/0000-0002-7299-891X
https://orcid.org/0000-0002-3454-6576
https://doi.org/10.1117/1.JBO.25.11.116007
https://doi.org/10.1117/1.JBO.25.11.116007
https://doi.org/10.1117/1.JBO.25.11.116007
https://doi.org/10.1117/1.JBO.25.11.116007
https://doi.org/10.1117/1.JBO.25.11.116007
https://doi.org/10.1117/1.JBO.25.11.116007
mailto:martin.o.hultman@liu.se
mailto:martin.o.hultman@liu.se
mailto:martin.o.hultman@liu.se
mailto:martin.o.hultman@liu.se


of the speckles on the sensor will cause an image blur that increases with exposure time. The
local spatial statistics of this blur can be related to the movement of particles in the tissue, as is
done in LSCI.5

LSCI has been increasingly used over laser Doppler imaging mainly due to its simple setup
and fast acquisition and data processing. However, conventional LSCI has drawbacks such as a
nonlinear response to perfusion, dependency to static scattering contrast, and a high variability in
the presence of noise.5,6 Recent work has gone into calibrating and correcting for these issues to
make LSCI a more accurate technique.7 Despite this, while it is generally accepted that LSCI is
related to microcirculatory perfusion, the relationship is complex and a direct mapping is still not
known.4,8 For the older laser Doppler flowmetry (LDF) technique, the relation to microcircular
perfusion is better understood, where it is, for example, possible to theoretically show that the
perfusion estimate is linearly related to the flow speed.9,10

To address the nonlinearity of LSCI to perfusion, Parthasarathy et al.11 proposed a new setup
using multiple exposure times. The technique, called multi-exposure laser speckle contrast
imaging (MELSCI, sometimes MESI), obtains information about the speckle motion blur at
various exposures, enabling more advanced models to be used when estimating perfusion from
the contrast.5,12 Several approaches to capture multi-exposure images have been proposed. The
initial approach by Parthasarathy et al.11 was to use a time-modulated laser to achieve multi-
exposure images. By capturing all images with a fixed exposure time but only illuminating the
tissue during parts of that time, multi-exposures can be generated. However, a problem with this
approach is that images with different exposure times are separated in time since they are cap-
tured sequentially. Dragojević et al.13 suggested another approach that addressed this drawback.
This was based on a high-speed camera, only capturing images at the shortest exposure time
required, and in postprocessing adding successive images together to create longer exposure
times. These synthetic exposure times are valid if the interframe delay in the camera is negligible.
This method is faster and more accurate than previous methods due to all exposure times essen-
tially being captured simultaneously, but it produces immense amounts of data that must be
transferred and processed. At the time, this was, therefore, limited to an offline technique.
Hence, MELSCI has so far been held back by technical limitations in both the imaging setup
and the computation time of the models.

To address this problem of a data and processing bottleneck, we have previously presented
a system for synthetic MELSCI,14 based on a high-speed 1000-frames per second (fps)
1-megapixel camera directly interfaced to a field programmable gate array (FPGA) performing
the multi-exposure contrast algorithm outlined by Dragojević13 in real-time. Processed contrast
images were sent to a computer, massively reducing the data throughput requirements. This
system could produce multi-exposure contrast images at 15.6 fps, using all available frames
from the 1000-fps camera, without any loss of data. However, due to insufficient processing
power, the system was not able to transfer the processed images to the computer fast enough,
and thus could not provide a real-time video-rate output. Furthermore, while the calculation of
multi-exposure contrast images was fast enough, at the time there was no multi-exposure per-
fusion algorithm fast enough to keep up with the continuous stream of contrast images. The
model proposed by Parthasarathy et al.11 and later refined by Kazmi et al.15 requires nonlinear
fitting to extract perfusion-related parameters from the multi-exposure contrast. This process
must be performed individually in each pixel for full field perfusion images, which is not feasible
in real-time with satisfactory frame rates.6

We have previously presented a method using machine learning and simulated data from
thousands of Monte Carlo tissue models from which we train an artificial neural network
(ANN) to translate multi-exposure contrast to laser Doppler perfusion. We showed that this
technique not only achieves a model-inference time of <30 ms per image, but also has higher
accuracy and less susceptibility to noise than other available models.6

The aim of this paper is to present a complete system for continuous real-time video-rate
perfusion imaging using both our previous methods in an integrated processing pipeline. We
validate the accuracy of the perfusion estimate in a controlled phantom experiment and present
results from an occlusion-release provocation of the forearm of a healthy subject. We use these
measurements to compare both the quantitative and qualitative similarities and differences
between our perfusion estimate and two common single-exposure metrics.
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2 Method

2.1 Processing System

We designed and implemented an integrated system consisting of three main parts, as visualized
in Fig. 1. We use a Lux1310 R2 CMOS camera sensor (Luxima Technology, Pasadena,
California) capable of 1280 × 1024 pixels (1.3 megapixel), 12-bit images at 1000 fps. This con-
nects to a Mercury+ XU1 SoC (Enclustra GmbH, Zürich, Switzerland; SoC—system on chip),
equipped with a Zynq Ultrascale+ 15EG MPSoC (Xilinx, San Jose, California; MPSoC—multi-
processing system on chip) and a 4-GB DDR4 SDRAM. The MPSoC contains both an FPGA
and a 64-bit quad-core processor, enabling efficient implementation of the static image process-
ing algorithm as well as dynamic tasks such as the transfer of data to the computer. The con-
nection between the camera sensor and SoC is made by a custom-designed carrier board using
16 parallel low-voltage differential signaling (LVDS) data channels to enable continuous data
transfers between the camera and SoC of 2 GB∕s. The processed data from the SoC are sent via
Universal Serial Bus (USB) 3.0 to a computer. This design with the custom carrier board and
MPSoC addresses the problems we encountered in our previous iteration of the system14 where
the transfer speed to the computer was insufficient.

The main portion of the MELSCI algorithm is implemented in the FPGA on the Zynq
MPSoC. The implementation is functionally similar to our previous iteration,14 but for the
benefit of the reader, we will explain the main ideas here as well. The algorithm takes a set of
64 consecutive images (1280 × 1024 pixels), each image with an exposure time of 998 μs and an
interframe delay of 2 μs. For convenience, we refer to each image having an exposure time of
1 ms. Because the interframe delay is sufficiently small, we can create synthetic exposure times
by pixelwise summing of pairs of images in this set, as first demonstrated by Dragojević et al.13

This doubles the exposure time for the summed images. Those can then be summed pairwise to
again double the exposure time. This process continues until a single image with exposure
time 64 ms remains. This results in seven different exposure times at powers of two, i.e.,
T ¼ 2k ms, k ¼ 0;1; : : : ; 6.

The number of images at each exposure time isN ¼ 64∕T, for a total of 127 images. For each
of these, we calculate the variance σ2nðTÞ in nonoverlapping 4 × 4-pixel regions, reducing the

Fig. 1 Visualization of the system flow from the Lux1310 camera sensor, through the multi-expo-
sure contrast algorithm in the FPGA, and noise correction and perfusion models in the computer.
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image size by a factor of 16. For each exposure time, the average variance image
σ2ðTÞ ¼ 1

N

P
N
n¼1 σ

2
nðTÞ is then calculated, where exposure time T is averaged over N images.

We also calculate the average intensity hIi in the 4 × 4 × 64-pixel block, i.e., the average 1-ms
intensity image. The average intensity for the other exposure times is calculated by scaling the
1-ms average intensity, i.e., hIðTÞi ¼ ThIi. This is not an approximation, but an exact repre-
sentation of the algorithm that allows it to be implemented more efficiently. Note that Fig. 1
depicts taking the average intensity separately for each exposure time. This is to make this figure
easier to follow, and the result is equivalent for both methods.

In total, this process gives seven variance images, one for each exposure time, and one aver-
age image, and these are then used to calculate the squared speckle contrast

EQ-TARGET;temp:intralink-;e001;116;614K2
measuredðTÞ ¼

σ2ðTÞ
T2hIi2 : (1)

All the calculations before this division are implemented in fixed-point format, and the
division is performed by first converting the images to single-precision floating-point format.
The precision loss due to this conversion is negligible. The seven K2ðTÞ images are packaged
together with the average image hIi as a 320 × 256 × 8-pixel multi-exposure contrast cube and
sent to the computer over USB 3.0.

The entire processing chain is implemented in a pipelined fashion so that new images can be
acquired while the previous set of 64 images is being processed. This enables continuous capture
of images without any delay, for an effective frame rate of the output contrast cubes of
1000∕64 ¼ 15.6 fps.

2.2 Noise Correction and Calibration

Dark noise and shot noise in the raw images give rise to an unwanted increase in the contrast
images.11 As has been described by others,7,16 in variance space, this can be modeled as a first-
degree polynomial of the average intensity. For the exposure time used to capture images,
T ¼ 1 ms, we get

EQ-TARGET;temp:intralink-;e002;116;374σ2measuredð1 msÞ ¼ σ2ð1 msÞ þ hIiNshot þ Ndark þ Econst; (2)

where hIi is the average 1-ms intensity image, σ2 is the variance due to speckle statistics, and
σ2measured is the variance we actually measure in the presence of noise. Nshot and Ndark describe the
variance contribution from shot noise and dark noise, respectively, both of which are assumed to
be Gaussian distributions. Econst describes the variance contribution from any constant inhomo-
geneities in the sensor, such as gain of individual pixels and different analog-to-digital convert-
ers. In a single-exposure system, Econst is indistinguishable from Ndark, but for multi-exposure
they must be treated separately. In the ideal case, with a perfectly calibrated sensor, Econst will be
zero. However, this is not always possible.

To correct the noise variance for longer exposure times, we could use Eq. (2) for each expo-
sure time individually, effectively correcting seven independent single-exposure systems using
two-parameter models (because Ndark and Econst are indistinguishable in this case). However,
under the assumption that the shot noise and dark noise in two consecutive 1-ms images are
independent, we can extend Eq. (2) to a joint model for all exposure times T using the additivity
of variances

EQ-TARGET;temp:intralink-;e003;116;172σ2measuredðTÞ ¼ σ2ðTÞ þ ThIiNshot þ TNdark þ T2Econst: (3)

Note the T2 scaling for Econst, which is due to the static pattern being identical from one
image to the next, and therefore, the variance contribution grows with the square of the number
of accumulated images T. We have validated this model on real data and in simulations (data not
presented).

To estimate the constants Nshot, Ndark, and Econst, we measured variance images over a wide
range of intensities using a halogen light source (Flexilux 150 HL Universal, Schölly Fiberoptic
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GmbH, Denzlingen, Germany) inside an integrating sphere (barium sulfate coating, 10 cm diam-
eter, Oriel Instruments, Stratford, Connecticut). The lens was removed to ensure a homogeneous
illumination on the entire sensor, which was placed in the center of the opening in the sphere. We
also equipped the sensor with a 785-nm bandpass filter (55-nm FWHM, BN785, Midwest
Optical Systems Inc., Palatine, Illinois) to only characterize the noise at the laser wavelength.
The dominant factor influencing the noise is the intensity of light impinging each pixel, thus the
optical setup for this measurement could be different from normal use and still yield the correct
noise constants. The temperature is also a factor that influences the amount of dark noise, but we
avoided this issue by allowing sufficient warm-up time, ensuring similar temperatures for every
measurement.

The intensity level was adjusted in 24 steps spanning a sufficiently large portion of the
dynamic range of the sensor. For each intensity level, we measured 150 contrast cubes
∼9.6 s), which were converted to variance by use of Eq. (1). We then calculated the global
spatiotemporal average for each exposure time and for the average intensity image. Equation (3)
was fitted to the spatiotemporal averages of variances relative intensity using the function
“fminsearch” in MATLAB 2020a (MathWorks, Natick, MA, USA). Since the light source used
was not coherent and we ensured an even illumination, we could assume σ2ðTÞ ¼ 0 and thus
estimate the noise constants Nshot, Ndark, and Econst. These were then used in contrast space to
make the correction according to

EQ-TARGET;temp:intralink-;e004;116;507K2
correctedðTÞ ¼ K2

measuredðTÞ −
Nshot

ThIi −
Ndark

ThIi2 −
Econst

hIi2 ; (4)

where K2
correctedðTÞ is the noise corrected contrast and K2

measuredðTÞ is the contrast output from
the FPGA.

As a final calibration, we calculated the maximum contrast from measurements of
a static homogeneous object illuminated by the laser source. The static object was a diffusely
scattering and absorbing custom-made large-form factor (20 × 20 × 2.5 cm3) optical phantom.
Polydimethylsiloxane was used as scatterer and India ink as absorber. From this, we scaled the
contrast to be in the range from 0 to 1 by

EQ-TARGET;temp:intralink-;e005;116;375K2ðTÞ ¼ K2
correctedðTÞ

K2
maxð1 msÞ ; (5)

where K2
correctedðTÞ is from Eq. (4) and K2

maxð1 msÞ is calculated as the average from a large
number of contrast images of the static object. Since K2

max was measured on a static object, the
decrease in contrast with exposure time was very small, and K2

maxð1 msÞ is, therefore, a good
approximation of K2

maxð0 msÞ. This effectively approximates the β-parameter used in many
speckle contrast models, e.g., in Refs. 5, 8, and 13, which is a correction factor that accounts
for the effect on contrast from having several speckles per pixel as well as from polarization.8

One could argue to correct each exposure time independently, but we choose to correct all expo-
sures with the maximum contrast of the 1-ms image, not to introduce empirical nonlinearities in
the processing.

The calibration was performed only once as part of the characterization of the sensor.
It is reasonable to assume that the calibration constants will not change from one measurement
to the next, as it depends only on the intensity and temperature and the latter was the same for
all measurements.

2.3 Perfusion Estimation

After noise correction and calibration according to Eqs. (4) and (5), we estimated perfusion from
the multi-exposure contrast in each pixel using a technique we have presented previously.6 Using
100,000 randomized tissue models spanning a wide range of properties such as blood flow speed
distribution, blood amount, skin layer thickness, etc., together with Monte Carlo simulations of
the light transport in these models, we created a large dataset from which we calculated both
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multi-exposure contrast and laser Doppler perfusion. We then trained an ANN to estimate laser
Doppler perfusion from the multi-exposure contrast in each pixel, i.e.

EQ-TARGET;temp:intralink-;e006;116;711PANN ¼ ANN½K2ð1 msÞ; K2ð2 msÞ; K2ð4 msÞ; : : : ; K2ð64 msÞ�; (6)

where “ANN” represents the trained neural network. As we have shown previously, this tech-
nique achieves R2 ¼ 0.990 correlation between expected and estimated laser Doppler perfusion
in vivo and is orders of magnitude faster than other available multi-exposure algorithms for esti-
mating perfusion.6 This enables real-time calculation of perfusion images at the full 15.6 fps.

For comparison, we also calculated two single-exposure LSCI perfusion estimates at various
exposure times. A common single-exposure model is the speckle flow index, the reciprocal of
the speckle decorrelation time τ. There is no closed form solution for calculating τ from the
speckle contrast and although it is possible to approximate the solution, for example, by analytic
series expansion,17 the problem is often replaced with a simplified expression.18 This is directly
proportional to the inverse of squared contrast, the same model that is used in the Moor FLIP-2
commercial device (Moor Instruments, Millwey, UK). Although they call the metric “flux,” we
refer to this as perfusion

EQ-TARGET;temp:intralink-;e007;116;535PK2ðTÞ ¼ 1

K2ðTÞ ; (7)

where T is the exposure time of the camera and KðTÞ is the speckle contrast at said exposure
time. It is common to include a calibration factor in the model to change the scale of the per-
fusion values, but for the analysis in this paper this would yield equivalent results and is, there-
fore, omitted.

In addition to this, we compared with the perfusion model used in the Pericam PSI (Perimed
AB, Järfälla, Stockholm, Sweden), another commercially available LSCI device

EQ-TARGET;temp:intralink-;e008;116;419PKðTÞ ¼
1

KðTÞ − 1: (8)

One noteworthy difference between the single-exposure perfusion models is that the latter
equals zero for K ¼ 1, which is expected when measuring on an object not containing any mov-
ing scatterers. Also note that the two single-exposure perfusion models utilize the same amount
of recorded data as the MELSCI model when calculated in this study. For example, for an expo-
sure time of 8 ms, the contrast is calculated as the average during 64 ms, i.e., from eight contrast
values.

To compare the accuracy of the perfusion models, we used probe-based LDF as a reference
technique. This estimates the laser Doppler perfusion PLDF, which compared to LSCI has a better
understood theoretical basis and responds linearly to flow speeds.9,10 The process of calculating
PLDF is not the focus of this paper but has been described elsewhere.5

2.4 Measurements and Optical Setup

The camera was equipped with a 12-mm lens (Kowa Optimed Deutschland GmbH, Düsseldorf,
Germany) set to #f/1.4 (maximum aperture) and a 785-nm bandpass filter (55-nm FWHM,
BN785, Midwest Optical Systems Inc., Palatine, Illinois). The focus distance was set at 35 cm,
and all measurements were performed at 26 to 27 cm from the camera. This ensured that the
image was out of focus, which reduced the influence of structural contrasts in the surface,
increasing the contrast-to-noise ratio. The need for this is a consequence of the large aperture
(see Sec. 4).

To evaluate the perfusion estimate from the MELSCI system, we simultaneously measured
PANN, probe-based laser Doppler perfusion PLDF, and temperature in a beaker of milk (12 cm
diameter, 1 cm deep). PLDF and temperature were measured using a PF6010 LDPM/temp unit
(Perimed AB). The temperature was varied from 50°C to 10°C using a water bath with hot water
first cooled by ambient room temperature, then by ice [see Fig. 2(b)]. The milk beaker was raised
1 cm above the floor of the water bath, allowing homogeneous heating of the entire milk, thus
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eliminating most effects on the results due to delayed heating in the center. Due to Brownian
motion, the measured perfusion in the milk increased with temperature.19 The thermistor and
laser Doppler probe were fixed in place ∼2 mm below the surface of the milk in the center of
the beaker. To avoid specular reflections, the camera was placed at an angle of ∼20 deg to the
normal of the milk surface. This had no discernible effect on the perfusion image.

We also performed an occlusion-release provocation of the forearm of a healthy male subject,
47 years old. After the subject rested 15 min in a supine position in a temperature-controlled
room (23°C), we measured 5-min baseline, 5-min brachial occlusion at 200 mmHg, and 5 min
after releasing the occlusion. The measurement protocol was approved by the Regional Ethical
Review Board in Linköping, Sweden (D. No. 2018/282-31), and written informed consent was
obtained from the subject before the measurement.

3 Results

3.1 Validation Measurements

The results of the validation measurement are presented in Fig. 2. The perfusion estimates in
(b)–(e) were averaged over the region of interest (ROI) shown in (a), except, of course, for PLDF

in (b). The laser Doppler signal was unaffected by the illumination from the MELSCI system, but
the light from the laser Doppler probe interfered with the perfusion signal of the MELSCI sys-
tem, as seen by the high perfusion in the center of the beaker. The ROI was selected to minimize
this influence. The large ROI also removed some of the influence of slow convection movements
in the milk, seen as the local variations in the image. To remove the influence of convection
movements in PLDF, it was smoothed using a 10-min moving average filter. This also removed
higher frequency noise that was due to the small sampling volume of the laser Doppler system.
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Fig. 2 (a) Image of PANN at the beginning of the experiment, chosen at 4 min in (b). The ROI used
to create (b)–(e) is also shown. (b) PANN, PLDF, and temperature of the milk phantom as a function
of time. (c)–(e) Regression plots of the three camera-based perfusion estimates against PLDF. The
blue lines correspond to a perfect agreement with PLDF. The data were normalized to the average
perfusion at 25°C.
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Furthermore, PLDF, PK2ðTÞ, and PKðTÞ were scaled to the average value of PANN in the
temperature range 24.5°C to 25.5°C. We can see in Fig. 2(b) that this corresponds to
PANN ≈ 250 PU.

Figure 2(b) shows PANN, PLDF, and temperature over time, where the temperature axis was
scaled to show the high similarity to the perfusion. The bottom row of Fig. 2 presents PANN,
PK2ðTÞ, and PKðTÞ, all relative to PLDF after normalization to 25°C. For this comparison, PK2ðTÞ
and PKðTÞwere evaluated at 8 ms, but results for all exposure times are presented in Tables 1 and
2. The relation between PANN and PLDF corresponds to a coefficient of determination of
R2 ¼ 0.992, in line with our previous results using the ANN model.6 As summarized in
Table 1, this value of R2 is higher than R2 for both single-exposure models at all exposure times.
This indicates that PANN uses the extra information present in multiple exposure times to
improve the ability of the model to resemble PLDF.

In Table 2, we also present the slope coefficients of the first-degree polynomials fit to each
camera-based perfusion measure relative to PLDF after normalization to 25°C. It is apparent that
the slope is strongly dependent on the selected exposure time for PK2ðTÞ and PKðTÞ.

3.2 In vivo Measurement

The results from the in vivo occlusion-release experiment are presented in Figs. 3 and 4. In Fig. 3,
PANN is compared with PK2ð8 msÞ and PKð8 msÞ in a large ROI covering most of the visible
area of the arm in Fig. 4. The single-exposure perfusion estimates PK2 and PK were normalized
to PANN to give the same average baseline (0:00 to 5:00 min). A 2-s moving average window was
applied to the data on the full timescale to remove the heartbeat signal. The data in the zoom plots
show the full-time resolution without the 2-s averaging, i.e., including the heartbeats. The
gridlines in the zoom plots indicate 1-s intervals, and the range of perfusion values in the zoom
boxes are indicated by the height of the corresponding selection lines. One might think there is a
discrepancy between the reperfusion data in the full timescale and the zoom, where the zoomed
data are overlapping but this is not reflected in the selected data. However, this is a side effect of
the 2-s time average and not an error in the data.

Table 1 R2 of the camera-based perfusion estimates relative to PLDF. ME is for multi-exposure,
using all 7 exposure times.

Exposure time (ms)

ME 1 2 4 8 16 32 64

PANN 0.992

PK 2 ðT Þ 0.975 0.972 0.971 0.969 0.966 0.960 0.935

PK ðT Þ 0.988 0.986 0.984 0.980 0.974 0.965 0.946

Table 2 Slope coefficients of a first-degree polynomial fit to each camera-based perfusion
estimate relative to PLDF. Before fitting, the data were normalized to the average perfusion at
25°C. ME is for multi-exposure, using all 7 exposure times.

Exposure time (ms)

ME 1 2 4 8 16 32 64

PANN 1.090

PK 2 ðT Þ 1.118 1.373 1.512 1.541 1.483 1.356 1.173

PK ðT Þ 1.175 1.146 1.074 0.977 0.867 0.745 0.608
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PANN displays higher dynamics during both baseline and reperfusion and shows significantly
less noise than the two single-exposure estimates (most easily seen in the inlay baseline plot).
Both factors contribute to a more clearly visible heartbeat signal in baseline and reperfusion.
The reperfusion peak is also significantly higher for PANN than for the two other estimates.

Figure 4 compares images of PANN with PK2 at 1, 8, and 64 ms exposure time and with PK at
8-ms exposure time during baseline, occlusion, and reperfusion. Note that the color scale is
different for occlusion to enhance the vascular structure in those images. All images were
calculated as time averages over 2 s (31 images) at time 4:00 min (baseline), 8:00 min (occlu-
sion), and 10:06 min (reperfusion). To make visual comparison easier, all PK2 images and PK

images were scaled to have the same average perfusion of the corresponding PANN image in a
large ROI covering most of the arm. This means that the relation between PK2 and PK images at
baseline, occlusion, and reperfusion is not representative of the exact change in perfusion, but it
enhances structural differences between the different exposure times and PANN. Interestingly,
while PANN is most similar to PK2ð1 msÞ for baseline and reperfusion, it resembles PK2ð8 msÞ
more during occlusion. This indicates that the ANN model utilizes the multi-exposure informa-
tion to extend the dynamic range of the perfusion estimate.

The results from the occlusion-release provocation are also presented in Video S1. It shows
a playback of the experiment with the PANN time trace corresponding to Fig. 3 and image
corresponding to Fig. 4. A slight difference is that we applied a 0.5-s moving average instead
of 2 s, allowing the heartbeat signal to be visible in the video.

4 Discussion

In this study, we have shown the first complete implementation of an MELSCI system capable of
continuous real-time video-rate acquisition and processing. We compared the perfusion estimate
from our machine learning model to two commonly used single-exposure metrics. With these
results, we have shown how perfusion imaging can gain the benefits of more information from
multi-exposure while retaining the speed of single-exposure systems.

The system presented in this paper is similar to our previous system.14 However, there are
some important differences. The previous design implemented the contrast algorithm with suf-
ficiently high data throughput, whereas the transfer of processed data to the computer was very
slow. This was a consequence of utilizing a pure FPGA-based chip in that design. We, therefore,
suggested that an SoC with both an FPGA and a hard central processing unit (CPU) could
address this issue. Hence, we designed a new system based on the Zynq Ultrascale+ MPSoC,
which solves this bottleneck. Furthermore, when we presented the previous system, we had not
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Fig. 3 PANN, PK 2ð8 msÞ, and PK ð8 msÞ during an occlusion-release provocation of the right fore-
arm of a healthy subject. Data on the full timescale have been averaged with a 2-s moving window
to remove heart beats. The data in the inlays were not averaged and show a clear heartbeat signal
during baseline and reperfusion; gridlines in the inlay plots indicate 1-s intervals. PK 2 and PK were
normalized to have the same baseline average as PANN (0:00 to 5:00 min).
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yet developed an algorithm capable of converting multi-exposure data to perfusion images in
real-time, thus the ANN model was a necessity for the results in this paper. Despite the faster
implementation, it is still worth noting that we have to use nonoverlapping pixel regions in the
contrast calculation to reduce the amount of data to a manageable amount that can be transferred
to the computer. This also reduces the resolution of the perfusion image, which is why it is
common to use a sliding pixel region to retain the original image resolution. In this work,
we valued the video-rate frame rate higher than the image resolution. However, in the future,
if the ANN can be implemented in the FPGA, the reduction in output data would allow us to
instead use a sliding window and thus retain the original image resolution.
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Fig. 4 (a) Images of PANN; (b)–(d) images of PK 2ð1 msÞ, PK 2ð8 msÞ, and PK 2ð64 msÞ; and
(e) images of PK ð8 msÞ at the three phases of the occlusion-release provocation. The columns
correspond to baseline (selected at 4:00), occlusion (selected at 8:00), and reperfusion (selected
at 10:06), respectively. Each image was averaged over 2 s (31 images). The PK 2 and PK images
have been individually scaled to match the average perfusion of the corresponding PANN image in
a large ROI. This highlights the structural differences between the three techniques rather than the
absolute values of the perfusion estimates. Note that the color scale for the occlusion phase is
different from the other phases to make the vascular structures more prominent (Video S1, MP4,
45.8 MB [URL: https://doi.org/10.1117/1.JBO.25.11.116007.1]).
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The implementation of the algorithm and real-time perfusion model is, in principle,
independent of the optical setup, and the discussion of the two should be held separate.
However, it is worth noting that using an f-number of 1.4 will cause many speckles per pixel.
Although the correction using K2

max according to Eq. (5) has been validated previously,6,20

too many speckles per pixel will increase the relative influence of nonspeckle related image
contrast from the tissue surface, e.g., from wrinkles and hair. This is a trade-off, since decreasing
the aperture also decreases the signal-to-noise ratio.6,21 Due to the short-exposure time, we have
determined that having the maximum amount of light is beneficial, but this is an area of
possible improvement. We mitigate some of the effect of surface contrasts by measuring out
of focus.

We choose not to compare PANN with any other multi-exposure perfusion model in this study.
As far as we are aware there are currently no other multi-exposure models that can run in real-
time at sufficiently high frame rates. Only single-exposure models have had that capability,
which is why we consider those comparisons are more appropriate for this paper. We have pre-
viously compared PANN with another multi-exposure model in an offline setting and shown that
our model has a higher correlation to laser Doppler perfusion and is less susceptible to meas-
urement noise.6 For the single-exposure data, we mostly chose the 8-ms data because that is
closest to what is used in commercial devices. We argue this is relevant since it shows the pos-
sible improvement in accuracy over most clinical studies that have been done with those devices.

As seen in Table 1, the results from the milk phantom in Fig. 2 show a higher R2 to laser
Doppler perfusion for PANN compared to PK2 and PK , even with an optimized exposure time.
This suggests that PANN uses the information present in multiple exposure times to improve the
perfusion estimate, both in terms of linearity to laser Doppler perfusion and noise. In Figs. 2(c)–
2(e), some similarities can be seen between the regression plots of PANN, PK2 , and PK , which is
not surprising considering they use the same contrast to calculate the respective perfusions. Some
of the deviation in the linearity between PLDF and the camera-based perfusion estimates can be
explained by the fact that PLDF is measured in a single point that may not correlate entirely with
the perfusion in the imaged sampling volume. Temperature gradients due to rapid heating or
cooling of the water bath can also explain some of the deviations. Furthermore, these temperature
gradients cause convection movements in the milk. These appear as inhomogeneities in Fig. 2(a)
and become obvious when viewed in video form. The perfusion is probably influenced by this in
the beginning of the experiment. The convection movements eventually settle down around
t ¼ 15 min in Fig. 2(b), when the temperature has decreased to 30°C. If we limit the analysis
to t ¼ 15 min and after, the slope coefficients in Table 2 become closer to 1 for all exposure
times for PK2ðTÞ, and for T ≤ 4 ms for PKðTÞ. For PANN, the slope essentially becomes
equal to 1.

The time traces in Fig. 3 show higher dynamics in PANN compared to the single-exposure
models, where the relative increase in the reperfusion peak compared to end of occlusion is ∼3
times for PK2, 7 times for PK, and 12 times for PANN. This indicates that PANN is more sensitive
to higher flow speeds than the two single-exposure models. This is expected as PANN is more
linear with respect to PLDF than PK2 and PK , and PLDF is, in turn, linear with respect to flow
speed.5 As demonstrated by Thompson and Andrews,12 MELSCI data from a sufficiently wide
range of exposure times can be used to directly calculate the Doppler spectra. It is, therefore,
reasonable to assume that PANN is sensitive to the same changes in the Doppler spectra as PLDF.
PLDF is linear to speed because it is linear to the average Doppler frequency shift, which is linear
to speed.22 Multiple Doppler shifts also cause a broadening of the Doppler spectrum, suggesting
that PANN is more sensitive to multiple Doppler shifts than PK2 and PK for the same reason that it
is more sensitive to speed changes. Multiple Doppler shifts are more common at higher blood
concentrations and have a larger influence on light that has penetrated deeper into the tissue. We,
therefore, hypothesize that the depth in tissue at which the models can extract information is
larger for PANN than for PK2 and PK , i.e., it is more sensitive to light that has penetrated deeper
and been multiple Doppler shifted. This may be another reason that the increase in the reper-
fusion peak is larger for PANN.

In Fig. 3, it can also be seen that PANN is less noisy than the other two signals, which is likely
because the ANN has been trained to recognize measurement noise and account for it in the
perfusion estimate. While we did not bring up the details of the ANN training in this paper,
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the full explanation of the process has been discussed previously.6 The difference in noise is
also evident in the milk phantom measurements in Fig. 2.

Figure 4 indicates that PANN is more sensitive to larger vascular structures than the two
single-exposure models. During baseline and especially reperfusion, there are well-defined hot-
spots and coldspots in the perfusion images that persist over time. This can be seen more clearly
in the video rendering of the experiment (Video S1). While these spatial heterogeneities in the
perfusion are present in the other images, especially in the PK2ð1 msÞ image, they are less visible
and more diffuse than for PANN. It is also apparent that the variations during the heart cycle are
much larger in PANN than in the two single-exposure models. This increased spatial and temporal
variability could be a further indication that PANN is more sensitive to deeper structures in the
skin where flow is generally higher, as discussed before.

It may seem surprising that the vasculature of some large vessels can be seen during the
arterial occlusion, especially for PANN, but also for 8-ms exposure time for the other perfusion
measures. This is likely an effect of the process where the vessels on the arterial side are dilating
in response to the reduced oxygen saturation, leading to a redistribution, i.e., movement, of the
blood. The result of this redistribution can be seen during arterial occlusion when measuring with
diffuse reflectance spectroscopy, where the amount of blood in the skin increases during the
occlusion.23 It is interesting to see that for single-exposure LSCI, the vasculature is more pro-
nounced in PK2ð1 msÞ than in the other exposure times during baseline, but more in PK2ð8 msÞ
during the occlusion, whereas it is even more pronounced in PANN during both baseline and
occlusion. This is yet another indication that the multi-exposure data processing can handle
information from different exposure times in a manner that results in valuable information about
the underlying flow. It is also an indication that the measurement depth is larger, as dis-
cussed above.

We expect that this new technique can be applied clinically in any setting where single-
exposure LSCI has been used, while also providing higher quality data. This is especially true
in applications where simultaneous assessment of spatial and temporal dynamics is needed.
A few such areas where LSCI has been used are burn wounds,24 intraoperative monitoring
of cerebral blood flow,25 and stroke models,26 where the function of the microcirculation can
vary a lot for different tissue regions. In a stroke animal model, Parthasarathy et al.27 showed that
MELSCI is more accurate than single-exposure LSCI, partially due to the ability to estimate flow
in the presence of static scatterers. Another example where the spatial information is important is
in patients with sepsis, where a significant spatial heterogeneity can be observed in the
microcirculation.28 It has also been suggested that LSCI could become a useful tool for mon-
itoring diabetic foot ulcers,29 where most studies to date have used laser Doppler perfusion
imaging,30 and, therefore, the MELSCI system that we have suggested may be important due
to its LDF mimicking properties. The increased quality in the pulsatile signal in PANN compared
to the single-exposure models is also interesting. Ghijsen et al.31 found that the speckle signal in
transmission through a finger had a higher frequency content in younger subjects that in older,
proposing this to be related to arterial stiffening. Although that study utilized much deeper mea-
surements than in this study, we see the possibility of performing a similar analysis to get spatial
maps of pulsatile information, which might enable new markers of tissue microcirculatory
function.

5 Conclusion

Since Parthasarathy et al.11 first presented the idea of MELSCI, the limitation has always been in
the amount of data that is required for the technique to be effective. Several reviews of the field
have concluded that more work should be put into developing the systems and algorithms for
MELSCI.4,8 As far as we are aware, this paper presents the first MELSCI system to successfully
run continuously in real-time with a video-rate speed comparable to those seen in commercial
single-exposure systems, while enabling more sophisticated and powerful models that can use
the multi-exposure information for a more accurate perfusion estimate. We believe this is an
important step forward in making LSCI feasible for clinical use.
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6 Appendix A—Video S1

Video S1 shows an arterial occlusion-release provocation of the forearm of a healthy male
subject, 47 years old. The provocation protocol was a 5-min baseline, followed by a 5-min
brachial occlusion at 200 mmHg, and 5 min after release of the occlusion. The image and graphs
show MELSCI perfusion PANN, where the graphs are averaged in the ROI marked in the image.
A 0.5-s moving average is applied to the images and full timescale plot. The graph in the 20-s
plot is not averaged and shows the full temporal resolution. The video is fast forwarded to
interesting time points.
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