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Abstract

Significance: Indirect imaging problems in biomedical optics generally require repeated
evaluation of forward models of radiative transport, for which Monte Carlo is accurate yet
computationally costly. We develop an approach to reduce this bottleneck, which has significant
implications for quantitative tomographic imaging in a variety of medical and industrial
applications.

Aim: Our aim is to enable computationally efficient image reconstruction in (hybrid) diffuse
optical modalities using stochastic forward models.

Approach: Using Monte Carlo, we compute a fully stochastic gradient of an objective function
for a given imaging problem. Leveraging techniques from the machine learning community, we
then adaptively control the accuracy of this gradient throughout the iterative inversion scheme to
substantially reduce computational resources at each step.

Results: For example problems of quantitative photoacoustic tomography and ultrasound-
modulated optical tomography, we demonstrate that solutions are attainable using a total
computational expense that is comparable to (or less than) that which is required for a single
high-accuracy forward run of the same Monte Carlo model.

Conclusions: This approach demonstrates significant computational savings when approaching
the full nonlinear inverse problem of optical property estimation using stochastic methods.
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1 Introduction

Inverse problems arise in many areas within biomedical optics, both for global characterization
of optical properties of media and for image reconstruction, among other applications.1 Inverse
problems are often considered as optimization problems, solved by deriving the gradient of an
objective function and iteratively descending through the solution space. This process requires
repeated solutions of forward and corresponding adjoint problems that are often computationally
demanding in their own right. If the forward problem is given by the solution to a partial differ-
ential equation (PDE), then one appealing approach is to solve the forward and inverse problems
simultaneously so that the forward problem is only approximately solved at intermediate stages
in the algorithm (i.e., before it has finally converged); this approach (which has its basis in opti-
mal control) is known as PDE-constrained optimization.2–4 In this work, we seek an equivalent
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framework for the case where approximate noisy solutions to the forward model can (or must) be
sought by stochastic methods.

The application of stochastic methods for the solution of PDEs is particularly pertinent in
problems involving diffuse optics, since the “gold standard” method of solving the radiative
transfer equation (RTE)—which is the most generally applicable description of the underlying
physics—is to use stochastic (Monte Carlo) techniques;5 their use in such applications parallels
their extensive employment in other fields such as neutron physics.6 While approximations to the
RTE (such as diffusion) which permit deterministic solutions are available, these are often not
valid in many cases such as in small domains, close to sources and boundaries, and in regions
with weak scattering or strong absorption. Analytical solutions to the RTE itself are known for
some geometries, such as infinite space7 and layered media,8 but such expressions are not readily
available for general domains. The practicality of Monte Carlo techniques has been significantly
boosted by recent advances in computational hardware developments, particularly in the appli-
cation of parallelization.9,10 Other approaches to improve their computational performance have
been explored, such as the introduction of perturbation techniques11 or variance reduction
techniques.12,13 Consequently, even when the aforementioned approximations to the RTE are
reasonable, Monte Carlo solutions may offer an attractive alternative to the use of deterministic
techniques such as the finite element method, when the complexity of the geometry or probe
requires a high-density discretization of the spatial domain.

With both deterministic and stochastic solvers, the computational cost of the forward model
typically remains the limiting factor in image reconstruction procedures. However, stochastic
methods have a particular quality distinct from deterministic methods: one may arbitrarily trade
computational expense against noise in the estimated solution without bias. In the case of diffuse
optics, this trade-off is mediated through the number of virtual photons simulated by the Monte
Carlo model for a given problem. This fact naturally leads one to consider how much noise can
be tolerated during the solution of the inverse problem, and if a strategy can be found by which to
approach this solution with the least work.

Parallels can be drawn between this problem and large-scale machine learning, where the
requirement is to find the global minimum of a loss function expressed through fitting a model to
a very large set of training data. The recent growth in this field has led to significant develop-
ments in optimization methods using stochastic subsets, especially the use of approximate gra-
dients at intermediate steps, which is a technique known as stochastic-gradient descent (SGD).
At the heart of this issue is the interplay between optimization and randomness, and the fact that
attaining highly accurate estimations of the gradient at each step in SGD can come at a high cost
when dealing with large datasets. However, if we can accept certain levels of randomness in our
gradient computation, then each step in the gradient descent (GD) can be achieved at a lower
computational cost. Returning to the context of biomedical optics, we may be able to accept
a “noisy” low-cost forward model computation (which would otherwise be undesirable in the
PDE-constrained approach) and simulate fewer photon trajectories during the earlier stages of
the inversion process, leading to an overall accuracy versus computation time benefit. Thus, the
topic of how to most efficiently utilize finite-sized datasets in machine learning is relevant to
the deployment of Monte Carlo-based solvers in biomedical optics.

In this study, we attempt to translate these recent insights from SGD in machine learning into
practical suggestions to improve the use of Monte Carlo methods in inverse problems that arise
in biomedical optics. To do this, we employ a fully stochastic computation of an objective gra-
dient using forward and adjoint models of the RTE solved by the Monte Carlo method. This
allows for the full nonlinear inverse problem to be approached. In our demonstration problems,
the inverse problem can be approximately solved using a total computational expenditure which
is similar or less than that which would typically be dedicated to a single high-quality (low
variance) solution of the forward imaging problem.

This paper is organized as follows. First, we outline some key aspects of GD in Sec. 2,
including what appropriate metrics can be used to quantify acceptable levels of variance in the
computation of subgradients via a stochastic process (i.e., Monte Carlo), and what step sizes to
use to allow convergence. In Sec. 3, we describe the example problems for evaluating the
improvements of SGD in a biomedical context, including details of the Monte Carlo for-
ward/adjoint models and gradient calculations. In Sec. 4, we apply these ideas to two different

Macdonald, Arridge, and Powell: Efficient inversion strategies for estimating optical properties. . .

Journal of Biomedical Optics 085002-2 August 2020 • Vol. 25(8)



coupled-physics imaging (CPI) modalities, namely, quantitative photoacoustic tomography
(QPAT) and ultrasound-modulated optical tomography (UMOT).14,15 Both of these problems
are nonlinear and entail the RTE for an accurate description, but exhibit different degrees of
ill-posedness and resolution; thus they serve to demonstrate the generality of our approach.
We evaluate the performance of various Monte Carlo inversions using simulated QPAT and
UMOT data in Sec. 4, and discuss what practical lessons can be taken from this in Sec. 5.

2 Modeling and Inversion Problems in Optical Tomography

A common problem in biomedical optics involves finding the internal distribution of some opti-
cal properties x within a medium using various measurements made around and/or within the
medium yobs. To do this, we can employ some forward model of the underlying physical problem
A, which produces an output y, given some estimate of the internal properties x,

EQ-TARGET;temp:intralink-;e001;116;572y ¼ Ax; (1)

where in this case, the forward model A could represent the RTE and all relevant aspects of the
optical setup (geometry of sources and detectors). In cases where A is not directly invertible, then
to solve for an unknown distribution of properties x, we can formulate a cost function as a mea-
sure of the quality of an estimate. This could for example be the L2-norm of the residual between
the real measured data, yobs, and our forward modeled data, y.

EQ-TARGET;temp:intralink-;e002;116;480FðxÞ ¼ 1

2
kyobs − yk2 ¼ 1

2
kyobs − Axk2: (2)

From this point, the problem now becomes one of minimization, where we will qualify our
solution x� as that which minimizes the cost function, x� ¼ arg minxFðxÞ. It is worthy to note
that the ground-truth parameters xtrue may differ from the minimizer x� leading to reconstruction
error. This minimization problem can be approached via iterative GD, where we start with some
estimate x0, and each successive iterate, xn, is determined by subtracting a (scaled) gradient of
our cost function ∇F (relative to the internal optical properties) from the previous iterate

EQ-TARGET;temp:intralink-;e003;116;367 xn ¼ xn−1 − αn∇Fðxn−1Þ; (3)

where αn is the step size which scales the update term. If we have access to some computation or
set of computations (sometimes referred to as a “first-order oracle”) which we can call to com-
pute Fðxn−1Þ and ∇Fðxn−1Þ, then this algorithm can be implemented and is said to converge if
limn→∞ FðxnÞ ¼ 0. In practice, the descent may be terminated early once the cost function
reaches some acceptable value, for example, when the norm of the difference between observed
and model data is of the same order as measurement noise, a criterion known as the discrepancy
principle.16

2.1 Stochastic-Gradient Descent

In a stochastic setting, for instance, when our forward model A is a Monte Carlo model of radi-
ative transport, then the true cost F and gradient ∇F given in Eq. (3) are not directly available.
Instead, we may only have access to estimates of the cost function and gradient (provided by a
stochastic first-order oracle). In Sec. 3, we detail the nature of these stochastic Monte Carlo
computations in the radiative transport setting. In the interest of generality, for now, we simply
assume such models exist, and we can make a call to a “stochastic oracle” to attain FSn and ∇FSn
which we assume are nonbiased approximations., i.e.,

EQ-TARGET;temp:intralink-;e004;116;130E½FSnðxnÞ� ¼ FðxnÞ; E½∇FSnðxnÞ� ¼ ∇FðxnÞ; (4)

where E denotes the mean (expected) value for scalar quantities or the mean (expected) vector
for vector quantities such as the gradient. Here, Sn denotes the n’th “sample” used in the com-
putation. The meaning of sample here depends on the application. For example, in machine
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learning, this may refer to a particular training example (or group of training examples) to be
used during one learning iteration.17 In Monte Carlo modeling of radiative transport, the sample
refers to the set of virtual photons (and their associated random number seeds) that are initiated in
the simulation to represent an optical source, which are subsequently used to estimate FðxnÞ and
∇FðxnÞ. The stochastic version of gradient descent (SGD) thus attempts to minimize a sampled
objective function, FSn , by updating the previous iterate with a scaled sampled gradient.

EQ-TARGET;temp:intralink-;e005;116;663xn ¼ xn−1 − αn∇FSnðxn−1Þ: (5)

As with any computation, a call to a stochastic oracle at each iteration comes with a certain
computational cost. The particular cost may depend on a number of factors, including the sample
size, jSnj. This is one of the reasons why the study of SGD is of such importance in modern
machine learning, where training datasets may be of an enormous size, which means that com-
puting a gradient based on all available data at each iteration could be very costly. Rather, indi-
vidual samples (jSnj ¼ 1) or batches of samples (jSnj > 1) may be used instead at each iteration.
While this degrades the quality of any individual gradient estimate compared to using all avail-
able data, if the variance of these estimates is maintained below an acceptable value, the overall
trade-off may be net positive.What this means in a Monte Carlo radiative transport context is that
we may be able to allow low-quality gradient estimations (simulating only a small number pho-
tons) for a large part of the inversion process when estimating optical properties, saving on per
iteration computational resources, and leading to an overall efficiency improvement. This is in
contrast to typical implementations of iterative Monte Carlo solvers in the biomedical optics
community, where each iteration is computed with large numbers of photons that are deemed
sufficient to produce “stable” and “smooth” (low variance) forward model data.18–24 In some
cases, where a linearized approximation is assumed for the inverse problem, the cost of rerunning
the forward model can be avoided using techniques such as perturbation Monte Carlo (PMC)
methods.11,25,26 However, for the full nonlinear problem, although PMC can be used for calcu-
lation of the problem Jacobian, this has to be recomputed at each iteration of, for example,
a Gauss–Newton optimization scheme.27

In this study, if we are to accept a level of variance and imperfection in our forward/adjoint
models, this of course raises the question of how much variance is acceptable in order for SGD to
be successful? Furthermore, what measure of the variance is the best indicator in terms of effi-
ciency/performance for common Monte Carlo solvers? To begin to answer this, it is important to
first note that fixed-step SGD does not in general converge to a solution.28,29 That is, if αn is fixed
for all n, eventually there will come a point where the next update of the estimate [with the term
αn∇FSnðxn−1Þ] will reliably “undo” the work of the prior step, which will effectively halt the
descent. The point at which this occurs depends on the variance of ∇FSn . We can see this by
rewriting the sampled stochastic gradient estimate as

EQ-TARGET;temp:intralink-;e006;116;281∇FSnðxnÞ ¼ ∇FðxnÞ þ ϵSnðxnÞ; (6)

where ϵ is a random vector with E½ϵSnðxnÞ� ¼ 0 for all n. As GD progresses successfully, the
“true” gradient ∇F will eventually begin reducing in size as we near the minimum. Once the
magnitude of the true gradient reduces to a point at which it is comparable to the randomness of
ϵSn , the problem arises. The larger the expected magnitude of ϵSn , the sooner the minimization of
the cost function reaches this limiting scenario, where further iterations will only lead to a ran-
dom walk about this point.

To prevent this from happening, we may take one of two actions (or a combination thereof):
(i) reduce the step size at each iteration such that we can avoid “backtracking” in the descent,
more on this in Sec. 2.3 or (ii) gradually improve the accuracy of our sampled gradient such that
the variance of the sampled gradient remains below some threshold value compared to the norm
of the true gradient ∇F. In other words, we may wish to ensure the inequality

EQ-TARGET;temp:intralink-;e007;116;115V2
totðxnÞ ≔

E½kϵSnðxnÞk2�
k∇FðxnÞk2

≤ γ2tot; γtot > 0; (7)
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where γtot is a positive coefficient describing the acceptable threshold. The aforementioned
inequality is known as the “norm test.”30 It is worthy to note that, since for any vector of random
variables the variance of its length is the sum of the variances parallel and orthogonal to any fixed
vector, this test equally penalizes the components of randomness parallel and perpendicular to
the true gradient. Recent studies, however, have demonstrated that controlling the component
of randomness parallel to ∇F is potentially a more relevant objective, as the component of
the sampled gradient orthogonal to the true gradient is zero in expectation. An alternative
measure of acceptable variance in ∇FSn has thus been introduced as the “inner product test,”30

which only aims to restrict the component of variance in the sampled gradient parallel to the true
gradient ∇F.

EQ-TARGET;temp:intralink-;e008;116;615V2
kðxnÞ ≔

E½hϵSnðxnÞ;∇FðxnÞi2�
k∇FðxnÞk4

≤ γ2k; γk > 0: (8)

This inner product test imposes a less restrictive limitation of the overall variance in the sampled
gradients, particularly in cases where the variance may be higher in directions orthogonal to the
true gradient than in the direction parallel to ∇F. However, either of these metrics will be able to
exploit the fact that an increased expected error, E½kϵSnk�, will correlate to a cheaper computation
of the estimated gradient. Thus, setting larger values of γtot or γk in the inequalities will cor-
respond to cheaper computational requirements for each step, but also a more pronounced ran-
dom walk component to the GD. In many cases, it may be found that the penalty paid by
increasing the random walk component is acceptable (up to a point) compared to the penalty
paid in computational cost for reducing the expected norm of ϵ to a negligible value. For exam-
ple, using Monte Carlo RTE simulations to compute ∇F with a negligible level of variance (i.e.,
setting γtot ≪ 1) may take billions of simulated photons at each step. Whereas, it may be possible
to compute a gradient that passes the norm test or inner product with larger values of γtot or γk
with many orders of magnitude less photons, particularly during the early stages of GD, where
we may be far from the minimum. The ideal choice of γtot or γk will depend on the specific
application.

2.2 Adaptive Sample Size

We have discussed two different measures of the variance in the sampled gradient ∇FSn that we
wish to investigate in the context of Monte Carlo estimation of media properties, viz., the norm
test [Eq. (7)] and the inner product test [Eq. (8)]. To satisfy the inequalities defining these tests as
the GD progresses, we will be required to reduce the variance in the sampled gradients ∇FSn
whenever the norm test or inner product test fail. This can be done by increasing the sample size
(number of photons used jSnj) when making a call to the stochastic oracle. Two practical con-
siderations are still required: first, how to compute the “true” gradient ∇F, which is needed to
evaluate the norm test and inner product test; and second, by how much we should increase the
sample size in a situation where one of the tests fails?

The true gradient ∇F is only calculable in the limit that an infinite number of photons are
used in the Monte Carlo model. This limit can equivalently be represented as an average over
independent repeated outputs of the sampled gradient

EQ-TARGET;temp:intralink-;e009;116;201∇FðxnÞ ¼ lim
Nrep→∞

1

Nrep

XNrep

j¼1

∇FSjðxnÞ; jSjj ¼ jSnj ∀ j: (9)

Using a finite value of Nrep in the evaluation of Eq. (9) provides an approximation to the true
gradient, and when this is used to compute the norm and inner product tests [Eqs. (7) and (8)], the
inequalities will fail before they would if Nrep ¼ ∞, thus acting as a conservative approximation.
It is noted that this method of approximating the true gradient is computationally taxing.
However, in practice, the inner product test and norm tests can still be conducted efficiently
if they are only computed occasionally (not at every iteration) of the descent. For example,
using Nrep ¼ 100 repeated computations of the sampled gradient to conduct the tests once every
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100 iterations (thus only updating our sample size every 100 iterations) would only double the
total number of simulated photons required for the inversion. In this study, we evaluate these
metrics once every 10 iterations using Nrep ¼ 100 repeated sampled gradients. While this is a
significant computational burden, we do so in this study as we are interested in assessing the best
case scenarios for such methods. It is worthy to note that although we compute the aforemen-
tioned approximation to the true gradient to evaluate the inner product and norm tests, we only
ever update our estimate using the sampled gradient.

In terms of increasing the sample size in the event where the inner product and/or norm tests
fail, this can be done in a number of ways. A simple method we will employ in this study is to
scale the current sample size by some factor κðnÞ to increase the number of photons used in the
next iteration

EQ-TARGET;temp:intralink-;e010;116;603jSnþ1j ¼ κðnÞjSnj: (10)

One option for κðnÞ is to use the same factor by which the variance exceeds our imposed limit at
a given point in the descent. For instance, upon failure of the inner product test for a chosen value
of γk, we can increase the sample size on the next iteration using κðnÞ ¼ V2

kðxnÞ∕γ2k. However,
we also investigate other forms of κðnÞ in Sec. 4, which better cope with statistical variations that
can lead to overestimating the required sample size increase.

2.3 Step Size

In cases where we are not taking actions to bound the error in the sampled gradient (such as
enforcing successful outcomes of an inner product test or norm test), fixed-step SGD may only
converge to a region around the solution. Reducing the step size sufficiently at each step is
usually required to allow convergence.31 However, it can be shown that if we are bounding the
error in the sampled gradient, e.g., by increasing the sample size, then fixed-step SGD may
converge so long as the following is satisfied for all n:30

EQ-TARGET;temp:intralink-;e011;116;399αn ≤
1

ð1þ γ2totÞL
; (11)

where L is the Lipschitz constant for F. The Lipschitz constant for a functional F is a measure of
its rate of change with respect to its parameter and can be defined, for example, as the smallest
constant such that ∇2F⪯LId, where Id is the identity matrix, and we assume that F is
twice continuously differentiable. It can also be interpreted as the largest eigenvalue of the
Hessian of F.32 As intuition may indicate, when the sample size (e.g., number of simulated
photons) increases toward the maximum number of samples jSnj → jSmaxj (jSmaxj ¼ ∞ in the
case of Monte Carlo RTE simulations), the expected error in the sampled gradient approaches
zero, jϵSn j → 0, as do the measures of variance in the sampled gradients (V2

tot → 0, V2
k → 0),

as defined in Eqs. (7) and (8). In other words, as the stochasticity in the problem reduces to zero,
we approach the classical step size of the deterministic problem given by α ¼ 1

L.
32

In this study, we aim to satisfy the aforementioned step size criteria for an assumed value of
the Lipschitz constant L, which we will choose conservatively depending on the particular sce-
nario. However, as we are primarily interested in reaching the best possible solution for a given
allocation of computational resources, convergence to a region around the unique solution may
be sufficient for our purposes. For this reason, we will also investigate larger step size criteria,
which violate Eq. (11), yet exhibit good performance in our scenarios of interest.

Taking the above considerations into account, we present a basic method for SGD using
adaptive sample sizes in Algorithm 1 (simplified from Ref. 30). The algorithm imposes a limit
on the total number of photons to be simulated using Monte Carlo transport models throughout
the entire descent, Nph.
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3 Stochastic Forward and Adjoint Models

In this section, we cover the computation of the stochastic forward model and stochastic gradient
approximation, referred to as the first-order stochastic oracle. We will cover the basic radiative
transport forward problem, and the gradient computations involved in our example problems of
absorption estimation in QPAT and UMOT. The specific details of these models are not required
to understand the main premise of this paper, but serve as a demonstration in a context familiar to
many in the biomedical optics community, where Monte Carlo models of optical transport are
employed to estimate medium properties.

3.1 Forward Model

For any optical sourceQðr; ŝÞ, either incident on a medium or present within it, we wish to model
the resulting radiance, ϕðr; ŝÞ, describing the radiant flux at each position r, and in each direction
ŝ. This can be achieved using the RTE.

EQ-TARGET;temp:intralink-;e012;116;217½ŝ · ∇þ μaðrÞ þ μsðrÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T μa;μs

ϕðr; ŝÞ ¼ μsðrÞ
Z
S2

pðŝ; ŝ 0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Sμs

ϕðr; ŝ 0Þdŝ 0 þQðr; ŝÞ; (12)

where T and S denote the attenuation and scattering operators, respectively, which together
compose the RTE operator, L. For notational convenience, we assume that Eq. (12) is combined
with appropriate boundary conditions, which we do not write explicitly here; see Ref. 33 for
more details. Here, μa is the absorption coefficient, μs is the scattering coefficient, and p is
the scattering phase function. Using the defined operators, Eq. (12) can be rewritten in a more
compact form:

EQ-TARGET;temp:intralink-;e013;116;85Lμa;μsϕ ¼ ðT μa;μs − SμsÞϕ ¼ Q: (13)

Algorithm 1 Inversion using Monte Carlo sampled gradients with adaptive sample size.

Choose initial photon sample size jS1j, and desired value of γk or γtot

while
Pn

i¼1 jSi j < Nph do

if run test? then

compute sampled gradient, ∇FSn
, and approximate true gradient, ∇F [using Eq. (9)]

check norm test (or) inner product test is satisfied

if test fail then

increase sample size on next iteration jSnþ1j ¼ κðnÞjSn j

else

set jSnþ1j ¼ jSn j

end if

else

compute sampled gradient only ∇FSn

set jSnþ1j ¼ jSn j

end if

update xnþ1 ¼ xn − αn∇FSn

end while
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To obtain (stochastic) estimates of the radiance resulting from a given source, and thus to obtain
an estimate of any derived data function yðϕÞ, we can implement a Monte Carlo solver, L−1

MC. In
this study, we have adapted a hardware-accelerated version (utilizing graphics processing units)
of the commonly employed “Monte Carlo multilayer” program used to simulate radiative trans-
port within a layered planar medium.34,35 The basic operation of this program is unchanged from
the original release. Simulated photons are initiated by sampling from a given source function,
Q, and scattering/absorption events are pseudorandomly generated along each photon’s trajec-
tory until either: (i) the photon leaves the domain or (ii) the photon drops its weight below some
threshold value. In this study, the scattering directions are sampled from the Henyey–Greenstein
scattering phase function. The expected accuracy of the computed radiance using Monte Carlo
solvers L−1

MC depends on the total number of photons used, i.e., the sample size jSnj. As
jSnj → ∞, the radiance approaches the deterministic solution of the RTE. Importantly, however,
Monte Carlo models allow an estimate of the radiance to be achieved with any number of pho-
tons with jSnj ≥ 1. The expected computational requirements (number of floating point oper-
ations) of the Monte Carlo solverL−1

MC also scales with the number of photons simulated, and it is
this trade-off between accuracy of the forward model (and corresponding adjoint model) and
computational cost that we will be investigating.

3.2 Gradient Computation: Adjoint Model

To compute the gradient of our cost function ∇F with respect to the optical properties of the
medium, we make use of an adjoint RTE model. Although direct methods of finding the deriva-
tive of a Monte Carlo method can also be developed,12 adjoint methods have more applicability
in general, and also allow closer comparison with optimization techniques used in machine
learning. For further details of forward and adjoint methods in the RTE, we refer to Ref. 36;
for specific details of CPI problems, we refer to Ref. 37. We first consider a change to Eq. (12)
where μa → μa þ μδa, μs → μs þ μδs , for the same source Q, which results in a change in radiance
ϕ → ϕþ ϕδ. This implies

EQ-TARGET;temp:intralink-;e014;116;394ðT μaþμδa ;μsþμδs
− Sμsþμδs

Þðϕþ ϕδÞ ¼ ðT μa;μs − SμsÞϕ;
⇒ ðT μa;μs − SμsÞϕδ ¼ −ðμδa þ μδs − Sμδs

Þϕ; (14)

EQ-TARGET;temp:intralink-;e015;116;332Lμa;μsϕ
δ ¼ −ðμδa þ μδs − Sμδs

Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Lδ

μδa ;μ
δ
s

ϕ: (15)

We also define the fluence, Φ, as the angular integral of the radiance:

EQ-TARGET;temp:intralink-;e016;116;286ΦðrÞ ¼
Z
S2

ϕðr; ŝÞdŝ: (16)

To proceed beyond this point, we must now consider the specific form of the data function
relevant to a particular modality of interest. We begin with the first of our two example modal-
ities, QPAT.

3.2.1 QPAT case

In QPAT, the medium is illuminated with a pulsed optical source, Q (see Fig. 1). The distributed
optical energy is absorbed at various points within the sample, giving rise to internal acoustic
waves. These acoustic waves can be detected at the surface of the medium by a sensor and
processed to locate the initial pressure distribution p0 within the medium.38–40 This internal pres-
sure distribution is related to the spatial distribution of absorbed optical energy, h, where

EQ-TARGET;temp:intralink-;e017;116;113hðrÞ ¼ μaðrÞΦðrÞ; (17)

and where Φ is the optical fluence of Eq. (16). We have omitted the Grüneisen parameter for
clarity of exposition, though this parameter can be included in practice. Assuming that we can
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recover the absorbed optical energy, h, the problem remains to find the distribution of μaðrÞ
within the medium.41,42 It is worth noting that although the optical source is pulsed, it is accept-
able to use a continuous-wave (time-independent) model to describe ϕ and Φ because the time
scale of the acoustic wave propagation is orders of magnitude slower than the optical
propagation.43 First, restating our cost function in terms of the QPAT data function, h, we have

EQ-TARGET;temp:intralink-;e018;116;507FQPAT ¼ 1

2

Z
Ω
ðhobs − hÞ2dr ¼ 1

2
hhobs − h; hobs − hiL2ðΩÞ: (18)

We then write the Fréchet derivative of FQPAT as

EQ-TARGET;temp:intralink-;e019;116;450DFQPAT ¼ −hhobs − h;DhμδaiL2ðΩÞ; (19)

where μδa is a small change in absorption. In this paper, we will neglect changes in scattering,
however, the below formalism is still general for the gradient with respect to absorption. The
gradient term with respect to scattering coefficient is described in Ref. 42 and will be included in
future investigations. Writing the Fréchet derivative of h as

EQ-TARGET;temp:intralink-;e020;116;368Dh ¼ Φþ μa · DΦ; (20)

and defining Φδ ¼ DΦμδa, we arrive at

EQ-TARGET;temp:intralink-;e021;116;325DFQPAT ¼ −hΦðhobs − hÞ; μδaiL2ðΩÞ − hμaðhobs − hÞ;ΦδiL2ðΩÞ: (21)

Next, we define the adjoint radiance, ϕ�, as the solution to

EQ-TARGET;temp:intralink-;e022;116;279L�ϕ� ¼ μaðhobs − hÞ (22)

where the right-hand side describes the “adjoint source” which is isotropic in ŝ. We then sub-
stitute the above into Eq. (21) to give

EQ-TARGET;temp:intralink-;e023;116;223DFQPAT ¼ −hΦðhobs − hÞ; μδaiL2ðΩÞ − hL�ϕ�;ϕδiL2ðΩ×Sn−1Þ; (23)

where we exploited the fact that the right-hand side of Eq. (22) does not depend on direction.
Using the definition of the adjoint operator, and the fact that the change in radiance is zero on the
boundary ∂Ω yields

EQ-TARGET;temp:intralink-;e024;116;154DFQPAT ¼ −hΦðhobs − hÞ; μδaiL2ðΩÞ − hϕ�;LϕδiL2ðΩ×Sn−1Þ: (24)

Finally, we make use of the perturbation expression Eq. (15), while again, here, we neglect
any change in scattering. This gives

EQ-TARGET;temp:intralink-;e025;116;95DFQPAT ¼ −hΦðhobs − hÞ; μδaiL2ðΩÞ þ hϕ�ϕ; μδaiL2ðΩ×Sn−1Þ; (25)

Medium

Acoustic wave

Acoustic sensor/ transducer

Optical source

Fig. 1 Setup for QPAT.

Macdonald, Arridge, and Powell: Efficient inversion strategies for estimating optical properties. . .

Journal of Biomedical Optics 085002-9 August 2020 • Vol. 25(8)



allowing us to define the (absorption) gradient as in Eq. (33) of Ref. 42

EQ-TARGET;temp:intralink-;e026;116;723

∂FQPAT

∂μa
¼ ∇FQPAT ¼ −Φðhobs − hÞ þ

Z
Sn−1

ϕ�ϕ dŝ (26)

To compute a stochastic approximation of this gradient, we can thus use the forward model
Monte Carlo solver L−1

MC to provide estimates of ϕ and Φ, and an adjoint Monte Carlo solver
L−1�
MC to produce ϕ� from an adjoint source term Qadj ¼ μaðhobs − hÞ, as defined in Eq. (22). Due

to the symmetry of the problem, the adjoint solver is identical to the forward solver and follows
the same basic operating principles. The only difference is that here the adjoint source Qadj ¼
μaðhobs − hÞ may in fact be negative in some locations. This is handled by splitting the source
term into two parts, one purely positive,Qþ

adj, and one purely negative,Q
−
adj. Two simulations are

then run (where the total number of photons to be used is split between the two simulations
accordingly), and the results summed to produce ϕ�. Algorithm 2 describes the basic operation
for computing a sampled gradient, ∇FSn , for QPAT using the above derivation. This will be used
in conjunction with Algorithm 1 to conduct an inversion with adaptive sample size for each
iterate, jSnj.

3.2.2 UMOT case

Referring to Fig. 2, in UMOT, we have an optical light source Qq incident on a medium, as well
as an optical detector Jm. In addition, an ultrasound source is incident on the medium, where the
focus ηðrÞ is scanned through the sample.44,45 Assuming for simplicity an ideal (delta function)
ultrasound focus, the data of interest in this case are found to be of the form46

EQ-TARGET;temp:intralink-;e027;116;439bðrÞ ¼ ηðrÞΦqðrÞΦmðrÞ; (27)

where Φq is the fluence resulting from the optical source Qq, and Φm is the resulting fluence
from a virtual source Qm which is reciprocal to the detector Jm.

46 From this point, we proceed in
similar fashion as in Sec. 3.2.1, where now our data fitting error is given by

EQ-TARGET;temp:intralink-;e028;116;370FUMOT ¼ 1

2

Z
Ω
ðbobs − bÞ2dr ¼ 1

2
hbobs − b; bobs − biL2ðΩÞ; (28)

and its Fréchet derivative as

EQ-TARGET;temp:intralink-;e029;116;315DFUMOT ¼ −hbobs − b;DbμδaiL2ðΩÞ: (29)

In this case, the Fréchet derivative of b becomes

Medium

Optical source

Ultrasound source

Ultrasound focus

Optical detector

Fig. 2 Setup for UMOT in the transmission geometry.
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EQ-TARGET;temp:intralink-;e030;116;735Db ¼ ηΦq · DΦm þ ηΦm · DΦq; (30)

leading to

EQ-TARGET;temp:intralink-;e031;116;701DFUMOT ¼ −hηΦqðbobs − bÞ;Φδ
miL2ðΩÞ − hηΦmðbobs − bÞ;Φδ

qiL2ðΩÞ: (31)

Here, we need to define two adjoint radiances, ϕ�;1 and ϕ�;2, as the solution to

EQ-TARGET;temp:intralink-;e032;116;653L�ϕ�;1 ¼ ηΦqðbobs − bÞ; (32)

EQ-TARGET;temp:intralink-;e033;116;609L�ϕ�;2 ¼ ηΦmðbobs − bÞ; (33)

and substituting into Eq. (31) to give

EQ-TARGET;temp:intralink-;e034;116;586DFUMOT ¼ −hL�ϕ�;1;ϕδ
miL2ðΩ×Sn−1Þ − hL�ϕ�;2;ϕδ

qiL2ðΩ×Sn−1Þ; (34)

by the same arguments as for QPAT we get

EQ-TARGET;temp:intralink-;e035;116;540DFUMOT ¼ −hϕ�;1;Lϕδ
miL2ðΩ×Sn−1Þ − hϕ�;2;Lϕδ

qiL2ðΩ×Sn−1Þ: (35)

Again using the perturbation expression [Eq. (15)], we have

EQ-TARGET;temp:intralink-;e036;116;493DFUMOT ¼ hϕ�;1ϕm; μδaiL2ðΩ×Sn−1Þ þ hϕ�;2ϕq; μδaiL2ðΩ×Sn−1Þ; (36)

allowing us to define the (absorption) gradient as

EQ-TARGET;temp:intralink-;e037;116;447

∂FUMOT

∂μa
¼ ∇FUMOT ¼

Z
Sn−1

ðϕ�;1ϕm þ ϕ�;2ϕqÞdŝ: (37)

Thus, similar to the QPAT case, here we are able to compute a stochastic approximation of
this gradient using the forward model Monte Carlo solver L−1

MC to provide ϕq and ϕm from our
two sources, and an adjoint Monte Carlo solver L−1�

MC to produce ϕ�;1 and ϕ�;2 from the adjoint
source terms Q1

adj ¼ ηϕqðbobs − bÞ and Q2
adj ¼ ηϕmðbobs − bÞ, as defined in Eqs. (32) and (33).

Here as well, adjoint source terms are split into two parts, one purely positive, Qþ
adj, and one

purely negative, Q−
adj, with the photon budget being split accordingly. Algorithm 3 describes the

basic operation for computing a sampled gradient, ∇FSn , for UMOT using the above derivation.
This will be used in conjunction with Algorithm 1 to conduct an inversion with adaptive sample
size for each iterate, jSnj.

3.3 Fluence Monte Carlo

It should be noted that numerous Monte Carlo radiative transport solvers do not explicitly output
the radiance, as this requires additional programming to store the angular ordinates at each loca-
tion. Commonly, only the fluence will be available, which is the angular integral of the radiance
Eq. (16). In such cases, the aforementioned integrals for the gradients of interest Eqs. (26) and
(37) can be computed under the assumption of approximately angularly isotropic radiances,

Algorithm 2 Monte Carlo sampled QPAT gradient.

1. Compute L−1
MCQ ↦ ϕ, Φ, using jSn j∕2 photons

2. Construct internal adjoint source Qadj ¼ μaðhobs − hÞ

3. Compute L−1�
MCQadj ↦ ϕ�, Φ�, using jSn j∕2 photons

4. Use Eq. (26) to compute gradient ∇FSn
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where for example ∫ϕ�ϕdŝ becomes Φ�Φ. The accuracy of this approximation of course
depends on the true angular dependence of the radiances, where the approximation is poorest
in regions close to directional light sources, but improves further away. The higher the scattering
asymmetry g of the medium, the slower the approximation improves as a function of distance
from these sources. In many cases, however, this is a satisfactory assumption and is employed in
the below example cases.

4 Results

In this section, we present the results of a number of investigations using our two example prob-
lems of QPAT and UMOT. We will demonstrate the implementation of the forward-adjoint
Monte Carlo solvers described above, along with adaptive sampling strategies to estimate the
absorption coefficient of a medium via SGD. Here, we investigate media with a semi-infinite slab
geometry, with numerous layers in the z direction having different optical properties, but other-
wise homogeneous in the x and y directions. The application to layered geometry in this dem-
onstration was chosen for simplicity to provide an easily recognizable setting to test these
adaptive sampling methods. Furthermore, while apparently simplistic, layered geometries are
still of practical interest for applications including instrument calibration and validation, and
the imaging of biological structures with small curvature but significant heterogeneity in depth.
The latter example includes studies such as functional (cognitive) imaging when localized to
small activation regions. Application of these new methods in more complicated 3D geometries
will be carried out in future work. Each of the medium layers can be described in terms of thick-
ness, scattering coefficient, absorption coefficient, (background) refractive index, and scattering
asymmetry parameter. We will assume all parameters of the layered medium are known a priori
with the exception of the absorption coefficient, which we will attempt to solve for. For the
examples in this study, we set the total slab thickness to 2 cm, and the inversion is conducted
with a resolution of 0.25 mm, (80 layers). The true “measured” data in all problems are generated
using a single forward model Monte Carlo simulation using a large sample size of 109 photons.
With this sample size, the variance of the measured forward data hobs, bobs is found to be neg-
ligible in this setup, and as such can be treated as effectively equivalent to the deterministic
solution of the RTE.

To conduct an inversion, we stipulate a total photon budget, Nph, for which all combined
sample sizes in the descent must not exceed, i.e.,

P
njSnj ≤ Nph. Once the total photon budget is

expended, we terminate the descent. This is to emulate an imposed restriction on computational
resources required to reach a solution. While each iteration (involving forward and adjoint runs
of the Monte Carlo) has a nonzero computational overhead, optimization of these Monte Carlo
programs for repeated iteration (such as employed in Ref. 23) allows this overhead to become
negligibly small. This means that the required computational resources of the inversion (and
therefore required computation time) are proportional to the total number of simulated photons
used throughout the descent, i.e., the photon budget Nph. The inversions are carried out using
Algorithm 1, along with Algorithms 2 and 3 to compute the gradients for QPAT and UMOT,
respectively. In Algorithm 1, we will compute the metrics V2

tot and V2
k and conduct the norm test

and inner product test once every 10 iterations to evaluate the quality of our computed gradients
(using Nrep ¼ 100 independent repeated samples of the gradient), and to update the step size and
sample size. It is worthy to note that as this is an investigation of how such methods might

Algorithm 3 Monte Carlo sampled UMOT gradient.

1. Compute L−1
MCQq ↦ ϕq , Φq , and L−1

MCQm ↦ ϕm , Φm , each using jSn j∕4 photons

2. Construct internal adjoint sources Q1
adj ¼ ηΦqðbobs − bÞ and Q2

adj ¼ ηΦmðbobs − bÞ

3. Compute L−1�
MCQ

1
adj ↦ ϕ�;1, Φ�;1, and L−1�

MCQ
1
adj ↦ ϕ�;2, Φ�;2, each using jSn j∕4 photons

4. Use Eq. (37) to compute ∇FSn
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perform in best case scenarios, we do not include the photons used to compute these metrics as
counting against the total allowed photon budget.

There are three different strategies we have employed to control the step size and sample size
as the inversion progresses, see Table 1 for a summary. Strategy 1 uses a fixed-step size as
described in Eq. (11) for a chosen value of γtot. The sample size is adaptive and attempts to
enforce successful outcomes of the norm test (V2

tot ≤ γ2tot), by increasing the sample size when
the norm test is violated. In the event of a violation of this inequality, the fractional increase in the
sample size is equivalent to the factor by which the norm test fails, V2

tot∕γ2tot. Strategy 2 uses an
adaptive step size which still satisfies Eq. (11); however, it selects the largest step size possible
for this criterion each time the metrics are evaluated. In this strategy, the sample size is also
adaptive and attempts to enforce successful outcomes of the inner product test (V2

k ≤ γ2k) by
increasing the sample size when the inner product test is violated. In the event of a violation
of this inequality, the fractional increase in the sample size is equivalent to the factor by which
the inner product test fails, V2

k∕γ
2
k. In strategy 3, we attempt to accelerate the descent using a

larger adaptive step size with V tot in the denominator in place of V2
tot. Upon failure of the inner

product test, the sample size is increased by fraction Vk∕γk, and differs from strategy 2 to reduce
the speed at which the photon budget is depleted. This is an attempt to reduce premature increase
of the sample size caused by volatility in the computation of the norm and inner product metrics.

Finally, we introduce an error function for the estimated absorption distribution, μa, as

EQ-TARGET;temp:intralink-;e038;116;323Fμa ¼
1

2
kμtruea − μak2: (38)

This metric would not be available under normal circumstances (as we do not know the ground
truth μtruea ), however it is useful to monitor in terms of the underlying performance of each strat-
egy. Furthermore, as we will see, the sampled data cost function FSn is itself heavily dependent
on the number of photons (sample size) used in the forward Monte Carlo and is thus not an ideal
indicator of proximity to the true solution.

4.1 QPAT

We begin with our example QPAT problem. The starting sample size in all cases shown is jS1j ¼
200 photons per iteration (100 for each forward run, and 100 for each adjoint run in accordance
with Algorithm 2), and the total photon budget for the inversion was set to Nph ¼ 2 × 106 pho-
tons. The Lipschitz constant was set at L ¼ 2.5, as this displayed stable descent in our test prob-
lems using large photon budgets (low-variance case). The initial estimate of the absorption
distribution in the medium is μa ¼ 0.2 cm−1 in all layers. The scattering coefficient of all layers
was set to μs ¼ 40 cm−1, and the scattering asymmetry parameter was set to g ¼ 0.9. The
ground-truth absorption μtruea is shown in Fig. 3(a), along with the final retrieved absorption
distributions obtained via strategies 1, 2, and 3 using the stated values of γtot and γk.
Figure 3(b) shows the corresponding measured data and the final forward modeled data for each

Table 1 Table showing the different inversion strategies used. Strategy 1 has a constant step
size, with adaptive sample size. Strategies 2 and 3 both have adaptive step sizes and adaptive
sample sizes. It is worthy to note that in accordance with Algorithm 1, the sample size is only
increased upon a failure of the relevant test. If the test passes, then jSnþ1j ¼ jSnj.

Strategy Step size, αn Sample size, jSnþ1j ¼ κðnÞjSn j

1
1

ð1þ γ2totÞL
jSnþ1j ¼

V 2
tot

γ2tot
jSn j

2
1

ð1þ V 2
totÞL

jSnþ1j ¼
V 2

k
γ2k

jSn j

3
1

ð1þ V totÞL
jSnþ1j ¼

V k
γk

jSn j

Macdonald, Arridge, and Powell: Efficient inversion strategies for estimating optical properties. . .

Journal of Biomedical Optics 085002-13 August 2020 • Vol. 25(8)



of the strategies. Figure 4 shows the outcome of each strategy in terms of the sampled data cost
function FSn and the absorption error function Fμa . It can be seen that the ranking of these meth-
ods in terms of the lowest achieved value of the sampled cost function FSn does not correlate
directly to the best outcomes in terms of the error in the estimated absorption Fμa . This is due to
the above-mentioned dependence of the sampled data cost function on the sample size used in
the forward model, where for example the case of strategy 2 only appears to perform poorly in
terms of FSn due to its small sample size used throughout the inversion. This is more clearly
shown in Fig. 3(b), where the final forward modeled data from strategy 2 are noisier than the
other strategies due to the low sample size at the end of the inversion, where this noise would
clearly impact the sampled cost function. It is worthy to note that the relevant step sizes and
sample sizes for each of these three examples are shown in Fig. 5. Before finding the best param-
eter for strategy 1, we trialed a range of values of γtot over the range (0.1, 200). With lower
values, the adaptive sample size was required to increase rapidly to maintain high-quality (low
variance) sample gradients. This resulted in the photon budget being depleted early, terminating
the descent after around 100 iterations, which did not perform well. Too large a value of γk and
the norm test never failed, meaning the sample size was never required to increase and the inver-
sion progressed for the maximum 10,000 iterations permitted by the photon budget. However, as
strategy 1 has a fixed value of γ2tot in the denominator of the step size, large values also result in
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(a) (b)

Fig. 3 QPAT inversion: (a) ground-truth absorption distribution, μtruea , and estimated absorption
distribution, μa, at the point where the photon budget is expended, using each of the three strat-
egies with the stated values of γtot or γk. (b) Associated measured data from ground-truth medium
and simulated forward data at the end of the inversion using each strategy.
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Fig. 4 QPAT inversion: (a) sampled cost function, FSn
, as a function of iteration, n. (b) Error in

absorption estimate, F μa , as a function of iteration, n.
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step sizes that were too small to perform well. A value of γtot ¼ 4 was found to strike a balance
between these two extremes and was the best performer using strategy 1. Strategy 2 has an
adaptive step size which selects the largest possible step size that still satisfies Eq. (11), instead
of selecting a constant step size that accounts for the worst case scenario, as in strategy 1. For this
reason, we found that the largest value of γk ¼ 20 was the best performer for this strategy, where
the photon budget remained at 200 photons for each of the 10,000 iterations. For strategy 3, the
best performer was a value of γk ¼ 10, where larger values appeared to allow too much variance
in the gradient, leading to unstable descents. In all strategies, the recovered absorption distri-
bution matched the ground-truth absorption more closely in the regions of the sample closest to
the light source at z ¼ 0. This is due to the decay of the fluence as a function of depth, as we can
see the QPAT signal is highest at shallow depths in Fig. 3(b). The deeper regions of the sample
were the last to approach the ground truth in each of the three strategies.

From Fig. 6, we see the values of our two metrics Vk and V tot. In all cases, both measures of
the variance begin at low values, indicating that even with low numbers of photons being simu-
lated, the computed gradients are of reasonable quality, likely due to the poor initial first guess
being far from the true solution. Each of the measures of variance increase as the inversion
progresses until they begin to violate the norm test or inner product test depending on the strat-
egy. It is seen that the strategy 1 example attempts to keep V tot ≤ 4, however, due to some level of
variation in the metrics themselves, this condition can be seen to be violated regularly, requiring
regular updates to the sample size. For strategy 2, the imposed limit of Vk ≤ 20 is never violated,

100 101 102 103 104
10-4

10-3

10-2

10-1

100

100 101 102 103 104
102

103

104

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10

Iteration (n) Iteration (n)

(a) (b)

Fig. 5 QPAT inversion: (a) step sizes, αn , as a function of iteration, n. (b) Adaptive sample size,
jSn j, as a function of iteration.
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Fig. 6 QPAT inversion: (a) V k as a function of iteration and (b) V tot as a function of iteration.
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and thus the sample size is never required to increased. We also see that strategy 3 manages to
keep Vk ≤ 10 for the majority of the descent.

In addition to these experiments shown in Figs. 3–6, we also trialed a number of other con-
ditions including media with isotropic scatterers (i.e., with g ¼ 0), various scattering coeffi-
cients, and various initial estimates of the absorption. In all cases explored, the methods
showed similar behavior as above, but with some differences in the ideal values of γtot and
γk for each strategy. The outcomes of a range of these experiments are shown in Table 2 for
various problem parameters. Strategy 3 was used in all cases in the table, with the same Lipschitz
constant (L ¼ 2.5), starting sample size (jS1j ¼ 200 photons), photon budget (Nph ¼ 2 × 106

photons), and ground-truth absorption distribution μtruea as used in the above examples. The final
attained values of the sampled data cost functionFSn and absorption errorFμa are similar in all cases
with the exception of the high asymmetry and low scattering case (g ¼ 0.9 and μs ¼ 4 cm−1).
In this case, the reduced scattering coefficient is only μs

0 ¼ μsð1 − gÞ ¼ 0.4 cm−1, meaning
much lower overall attenuation of the light through the sample. This results in a more uniform
data function, h, where the simulated photons probe the domain more uniformly, and allows the
problem to converge significantly faster than in the higher attenuating cases demonstrated in
Figs. 3–6. It is also worth noting that in the regime with low scattering and high scattering
asymmetry, it is generally problematic for the performance of approximate transport models
such as the diffusion approximation, and the results here highlight the flexibility of RTE based
approaches, and the efficiency of the proposed adaptive sampling techniques.

Finally, interesting behavior was observed when using certain initial guesses of the absorp-
tion. An example of this is shown in Fig. 7, where we show the resulting cost functions for a
starting estimate of μa ¼ 1 cm−1 (significantly overestimating the absorption at all depths), and
medium properties of g ¼ 0.9 and μs ¼ 40 cm−1. In this case, we see that the descent appears to
encounter local minima in the data cost function FSn at various points during the descent,
depending on the particular strategy used. However, the algorithm manages to escape these local
minima and converge to a better solution. This is seen to be the case for all three strategies shown
in Fig. 7.

4.2 UMOT

Next, we demonstrate similar experiments performed using the UMOT modality described in
Sec. 3.2.2 for the transmission geometry. In this setup, we used the same medium slab size as the
QPAT example, and the same optical properties apart from the absorption distribution. The start-
ing sample size in all cases shown is jS1j ¼ 4000 photons per iteration, 1000 for each forward

Table 2 Final outcomes of QPAT inversions with various medium optical properties and starting
values of μa. Values of FSn

and F μa are the final values at the end of each inversion after the stated
number of iterations. In each case, strategy 3 was employed, with a starting sample size of jS1j ¼
200 photons per iteration, and a total photon budget of Nph ¼ 2 × 106 photons. Slab thickness is
2 cm in all cases, with the same ground-truth μtruea distribution as shown in Fig. 3(a).

Starting μa (cm−1)

0.01 0.2 1.0

Medium
properties

g ¼ 0.9
μs ¼ 40 cm−1

γk ¼ 20, 10,000 iterations
FSn

¼ 2.35 × 10−3

F μa ¼ 3.26 × 10−5

γk ¼ 10, 4476 iterations
FSn

¼ 4.20 × 10−4

F μa ¼ 7.65 × 10−6

γk ¼ 10, 6533 iterations
FSn

¼ 3.38 × 10−4

F μa ¼ 1.01 × 10−5

g ¼ 0.9
μs ¼ 4 cm−1

γk ¼ 5, 3819 iterations
FSn

¼ 5.30 × 10−4

F μa ¼ 2.3 × 10−7

γk ¼ 5, 2579 iterations
FSn

¼ 9.31 × 10−5

F μa ¼ 3.56 × 10−7

γk ¼ 5, 2834 iterations
FSn

¼ 1.06 × 10−4

F μa ¼ 2.19 × 10−7

g ¼ 0
μs ¼ 4 cm−1

γk ¼ 20, 10,000 iterations
FSn

¼ 4.01 × 10−3

F μa ¼ 8.36 × 10−5

γk ¼ 5, 2056 iterations
FSn

¼ 1.39 × 10−4

F μa ¼ 3.44 × 10−5

γk ¼ 10, 10,000 iterations
FSn

¼ 2.92 × 10−3

F μa ¼ 8.72 × 10−5
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run (per each of the two sources), and 1000 for each of the two adjoint sources as outlined in
Algorithm 3. The total photon budget for the inversion was set to Nph ¼ 4 × 108 photons. The
Lipschitz constant was set at L ¼ 50, as this displayed stable descent in our test problems using
large photon budgets (low-variance case). The initial estimate of the absorption distribution in
the medium is μa ¼ 0.1 cm−1 in all layers. The ground-truth absorption μtruea is shown in
Fig. 8(a), along with the final retrieved absorption distributions obtained via strategies 1, 2, and
3 using the stated values of γtot and γk. Figure 8(b) shows the true measured UMOT data, bobs,
along with the forward modeled data from the final estimated medium for each strategy. Figure 9
shows the outcome of each strategy in terms of the sampled data cost function, FSn , and the
absorption error function, Fμa . The relevant step sizes and sample sizes for each of these three
examples are shown in Fig. 10, and the values of the metrics measuring the variance in the
sampled gradients are presented in Fig. 11. Similar to the QPAT modality, we found that strategy
3 performed the best in terms of the final achieved value of the error in the absorption esti-
mate Fμa .

In addition to the results shown in Figs. 8–11, in Table 3 we present a summary of results for
a range of different medium optical parameters and starting estimates of the absorption. In all
cases, strategy 3 was used, and the starting photon budget was the same as in the previous UMOT
examples (jS1j ¼ 4000 photons), with a total photon budget of Nph ¼ 4 × 108 photons. For each
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Fig. 7 QPAT inversion: with initial estimate of μa ¼ 1.0 cm−1: (a) sampled cost function, FSn
,

as a function of iteration, n. (b) Error in absorption estimate, F μa , as a function of iteration, n.
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Fig. 8 UMOT inversion: (a) ground-truth absorption distribution, μtruea , and recovered absorption
distribution μa using each of the three strategies with the stated values of γtot or γk. (b) Associated
measured data from ground-truth medium and simulated forward data at the end of the inversion
using each strategy.
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of the inversions presented in this table, we conducted the inner product test once every 50
iterations, using Nrep ¼ 50 repeated evaluations of the gradient. The resulting inversions display
similar error in these cases to the above examples where we used Nrep ¼ 100 repeated evalu-
ations of the sampled gradient once every 10 iterations to run the inner product test. This dem-
onstrates that the described methods can still be successful when dedicating fewer computational
resources to the inner product or norm test metrics, which control the adaptive sample size and
step size.

5 Discussion and Conclusions

The results shown in Sec. 4 demonstrate that the adaptive sampling strategies performed well
in both our example problems of QPAT and UMOT. We were able to achieve low error esti-
mates of the medium absorption using a total computational expenditure that was either com-
parable to or significantly lower than the resources required to simulate a single low-variance
run of the forward problem. In each demonstration, the adaptive sampling strategies main-
tained low photon numbers throughout the early stages of the inversion. Photon numbers were
only increased when required to keep the variance in the gradients below the stipulated limits.
These adaptive sampling strategies thus enabled significant computational savings compared
to a naïve implementation, which might seek to use low-variance (high quality) computations
of the gradient at every iteration. For instance, if we were to use a constant step size of 1∕L and
the same number of photons per iteration as that which was used to generate the measured data
(109 photons), then we find we still required hundreds of iterations to reach a similar quality
estimate of the absorption as seen in the above problems. This means that the computational
requirements of the low-variance approach would be proportional to Nph ¼ 1011 photons.
Comparing this to Nph ¼ 2 × 106 photons used in the QPAT examples or Nph ¼ 4 × 108 pho-
tons used in the UMOT examples, the required computational resources/time to attain our
solutions with these adaptive sampling methods is multiple orders of magnitude lower com-
pared to the naïve low-variance approach.

In this work, we have emphasized the similarities between our approach and that of SGD, as
employed in the context of machine learning. However, it should be noted that there are sig-
nificant differences between the two settings. In machine learning, the measured data are
assumed to consist of a large number of samples to be fit to a deterministic model to minimize
a suitable loss function, and each stochastic gradient is generated by a random subset of these
data forming the descent direction of a subfunction. The same method has also been applied in

Table 3 Final outcomes of UMOT inversions with various medium optical properties and starting
values of μa. Values of FSn

and F μa are the final values at the end of each inversion after the stated
number of iterations. In each case, strategy 3 was employed, with a starting sample size of jS1j ¼
4000 photons per iteration, and a total photon budget of Nph ¼ 4 × 108 photons. Slab thickness is
2 cm in all cases, with the same ground-truth μtruea distribution as shown in Fig. 8(a).

Starting μa (cm−1)

0.01 0.1 1.0

Medium
properties

g ¼ 0.9
μs ¼ 40 cm−1

γk ¼ 15, 11,412 iterations
FSn

¼ 1.88 × 10−3

F μa ¼ 4.23 × 10−5

γk ¼ 10, 3495 iterations
FSn

¼ 2.50 × 10−4

F μa ¼ 2.20 × 10−5

γk ¼ 10, 7823 iterations
FSn

¼ 5.69 × 10−4

F μa ¼ 9.37 × 10−5

g ¼ 0.9
μs ¼ 4 cm−1

γk ¼ 15, 19,017 iterations
FSn

¼ 4.71 × 10−3

F μa ¼ 8.19 × 10−5

γk ¼ 15, 15,813 iterations
FSn

¼ 5.48 × 10−3

F μa ¼ 2.07 × 10−5

γk ¼ 15, 14,249 iterations
FSn

¼ 4.08 × 10−3

F μa ¼ 3.36 × 10−5

g ¼ 0
μs ¼ 4 cm−1

γk ¼ 15, 11,594 iterations
FSn

¼ 1.65 × 10−3

F μa ¼ 7.13 × 10−5

γk ¼ 15, 7304 iterations
FSn

¼ 5.87 × 10−4

F μa ¼ 4.17 × 10−5

γk ¼ 15, 13,981 iterations
FSn

¼ 1.05 × 10−3

F μa ¼ 7.98 × 10−5
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alternative image reconstruction techniques where the data can be more naturally considered as
consisting of a large number of random samples from some underlying distribution, for example,
in positron emission tomography.47 By contrast, our image reconstruction approach considers the
complete measured data on each iteration, with stochasticity arising from the approximation
within the forward model: we are effectively subsampling the gradient in terms of the parameter
space, rather than data space. This is to say that at each iteration we utilize a subset of some
notionally complete model, rather than of the data. The motivation by which each approach is
employed is consistent: stochasticity is intentionally introduced to whichever part of the objec-
tive function introduces the greatest computational demand. This suggests a third possible
approach, where the computational load of the (sub) gradient computation can be lowered
through some stochastic division of both the data and the model; this might be relevant in im-
aging modalities with discrete counting data, such as time-domain and/or dynamic diffuse opti-
cal tomography.

Our work suggests a number of interesting future developments:

• In the examples shown here the “observed” data were effectively “noise free” by virtue of
running the forward Monte Carlo on a very large number of photons. Thus an interesting
topic for further study will be to evaluate these methods on noisy forward data, wherein the
data fitting term should not be iterated to convergence, but where regularization should be
introduced either by early stopping (i.e., by setting a minimum threshold for the data error)
or by adding an explicit penalty term.

• Related to the previous point, we further note that our objective function employed a least-
squares data fitting term in this study. Depending upon the nature of the noise in the data
and that of the stochastic forward model, more suitable metrics may include the Kullback–
Leibler discrepancy (for Poisson likelihood) or a generalized measure of the distance
between samples of probability distributions (Wasserstein distance48).

• Our results demonstrate a consistent tendency for the adaptive sampling method to exhibit
a geometric increase in the sample size as the descent progresses. This suggests that our
adaptive approach could be employed to find a particular set of sampling parameters that
perform well in a given regime, including the starting photon budget jS1j, rate of increase
of the sample size κðnÞ, and rate of change of the step size αn. If a suitable set of such
parameters could be found, they could help determine a fully prescribed sampling strategy.
Once calibrated for a given problem of choice, this would avoid the need to explicitly
compute the variance of the sampled gradients during the descent, and lead to even greater
efficiency and speed in the inverse problem.

• Further topics of interest include more advanced methods of variance reduction (e.g., recur-
sive gradients49); adaptive estimates of the Lipschitz constant as described in Ref. 30;
alternative optimization strategies such as back-tracking line-search, or primal dual
methods;50 the use of preconditioning and/or second-order optimization methods;51 and
an in-depth comparison of these nonlinear adaptive models to the alternative approaches
such as PMC.27

In summary, we have successfully demonstrated a means by which stochastic forward mod-
els, not directly amenable to standard variational methods for optimization, can be employed
efficiently in nonlinear image reconstruction. We expect this concept to lead to many new direc-
tions of research in optical image reconstruction.
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