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Abstract

Significance: The light dose in photodynamic therapy (PDT) has a considerable influence on its
treatment effect, and irradiance uniformity is an issue of much concern for researchers. However,
achieving intelligent and personalized dosimetry adjustments remains a challenge for current
PDT instruments.

Aim: To meet the requirements of intelligent and personalized dosimetry adjustments for
the light dose on an irregular surface, a new PDT device with its optimal control method is
proposed.

Approach: This research introduces a new PDT device that includes a 3D scanner, a light-emit-
ting diode (LED) array, and a computer. The 3D scanner is proposed to generate the point cloud
of the lesion and the LED array light source, and obtain the relative position and rotation param-
eters between them. Then, an image segmentation algorithm is used to segment the lesion point
cloud into several cluster regions. Last, the current of each LED unit is adjusted separately to
achieve the expected irradiance on each cluster.

Results: Compared with the general light source, the optimized light source increases the effec-
tive irradiance area by 9% to 15% and improves its uniformity by ∼9% on a human port-wine
stain head model.

Conclusions: The device and its optimal method may be used for optimizing the light dosimetry
to realize intelligent and personalized treatment.
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1 Introduction

Photodynamic therapy (PDT) is a new method of treating clinical diseases in recent years, espe-
cially in dermatology.1 PDT is a dynamic interaction involving a photosensitizer, oxygen, and
light. A photosensitizer is injected into the human body and retained in the lesion tissue. After a
specific wavelength of light irradiance is received, a photochemical reaction occurs between the
photosensitizer and the oxygen in the tissue, and reactive oxygen with cytotoxicity is also gen-
erated; this destroys the lesion tissue and achieves the therapeutic purpose.2–4

The clinical efficacy of PDT depends partially on the light dose delivered to the target area.5–8

Studies have shown that overdosing has a side effect with the risk of scarring, but a slight
deficiency in the light dose may fail to achieve the expected clinical outcomes.9–11 Such a failure
causes undue stress and time for the patient and the healthcare system. However, due to indi-
vidual differences, accurately adjusting the irradiance according to the shape and size of the
lesion on an irregular surface is necessary to avoid damage to surrounding normal tissues and
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optimize the treatment, by adjusting the light dose according to the degree of local lesions.12

Therefore, the light dose, including irradiance (mW∕cm2) and radiance (J∕cm2), is one of the
most important factors during PDT, which is a highly localized treatment.13,14 In practice, most
clinical PDT researchers worldwide pay attention to the calculation or measurement of the deliv-
ered light dose on a lesion surface. Beigzadeh et al.14 proposed a method of measuring the light
dose in water, which is generally considered the best equivalent medium for human tissue. This
method is based on digital holography and has the advantage of providing continuous optical
dose distribution for phantom tissue. Kim et al. developed a PDT dosimeter that simultaneously
measures the concentration of the light dose and a photosensitizer through eight isotropic detec-
tors to collect data on the light dose in the cavity. To track the position of the light source in the
treatment cavity during light delivery, an optical infrared navigation system was designed to
monitor the reflection passive mark on the modified and improved treatment transfer rod.15,16

Many other factors must be considered when choosing the right light source. Two of the most
important factors are its irradiance (mW∕cm2) and homogeneity. The radiance (J∕cm2) should
be high enough to provide a good therapeutic response for thick, dark, and deep lesions, whereas
the irradiance must be low enough to reduce pain and avoid scar formation for children
and lightly colored superficial lesions.17,18 A light-emitting diode (LED) has been successfully
applied in the treatment of many skin diseases in PDT due to its high cover area and
uniformity.19–22 Other light modulators, such as a micromirror, are also used for PDT to achieve
homogeneous irradiance by modulating the pulse duty factor. However, the coupling factor of
such a device is limited by a digital mirror device.23 Another medical manipulator system with a
binocular vision system was also built to supervise the PDToperation, but the uniformity of laser
irradiance was not discussed.18 Therefore, a new LED array treatment device and its light dose
uniformity optimization method for PDT is proposed in this research. According to the proper-
ties of a light source and the spatial relationship between a lesion and a light source, the light
intensity matrix of LED can be solved. The light intensity of each LED can also be adjusted
according to the calculated matrix value to allow every patch of the surface lesion to receive the
expected irradiance.

2 Materials and Methods

2.1 System Composition

The proposed demo system (Fig. 1) comprises a 3D scanner, an LED-array panel, and a head
model with skin lesions. The point cloud data of the head model are obtained with an industrial
3D scanner (Surface120, Zhixiang, China) with a resolution of depth map of 640 × 400, res-
olution of color image of 2560 × 1600, and field of view of 52 deg×31 deg. The point accuracy
of the 3D scanner is �0.22 mm at a distance of 50 cm. The LED-array panel comprises 15
rows and 15 columns of LEDs with an interval of 1 cm. The specifications of each LED

Fig. 1 System composition diagram.
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(XLamp® XQ-E, Cree) are the same, and the current can be adjusted independently from 0 to 1 A
with an irradiance intensity up to 750 mW∕Sr. The lens (FP16558_LISA3-RS-PIN, Ledil,
Finland) couple efficiency is 90%, with a half angle of 15 deg. The head model is purchased
from a market, whereas the skin lesions are painted red to model the port-wine stains.

2.2 Surface Topography from Point Cloud Acquisition

According to the pinhole linear model, the 3D point cloud can be projected first onto a two-
dimensional (2D) plane with a determined mapping relationship. The 2D image can then be
converted from RGB color space to CIE-L*a*b color space. The brightness channel (L channel)
is normalized to eliminate the influence of uneven illumination on lesion extraction.
Subsequently, the foreground and background saliency of pixels are constructed using the color
difference between the skin lesions and the foreground and background eigenvalues. The pixels
are classified according to saliency by threshold segmentation. Finally, the 2D image of the
lesion is segmented, and the 3D point cloud of the lesion is obtained through the mapping rela-
tionship between the 3D point cloud and the 2D image.24,25

For our head model, the point cloud data of lesions generally have thousands of points, and
the illumination range of each LED unit covers hundreds of points. In general, three points make
a triangle patch. The whole lesion is divided into dozens of small cluster patches. The weighted
center of mass distance method is used to aggregate a hierarchical cluster tree for all points. A
maximum of n clusters with the distance criterion is also constructed. Thus, the calculation and
optimization for the driving current of each LED is simplified by setting the expected irradiance
on the clustering center points.

2.3 Light Intensity Adjustment

According to the properties of a light source and the spatial relationship between a lesion and a
light source, the light intensity of each LED is calculated for a target irradiance value on the
lesion. The irradiance of a certain point on the lesion from a single LED source is expressed as
follows:26

EQ-TARGET;temp:intralink-;e001;116;374Ep ¼ IðφÞ · cosðθÞ
r2

; (1)

where IðφÞ is the radiation intensity of a single LED, θ is the angle between the normal vector of
point cloud and the connection vector from the center of the LED to the point, and r is the
distance from this point to an LED. The intensity distribution of LED is approximated by
Eq. (2) as follows:

EQ-TARGET;temp:intralink-;e002;116;281IðφÞ ¼ I0 · cosmðφÞ; (2)

where I0 represents the light intensity on the direction of normal vector and φ is the angle
between the LED normal vector and the connection vector between the LED to a point. The
coefficient m is calculated as

EQ-TARGET;temp:intralink-;e003;116;213m ¼ − ln 2

lnðcosðψÞÞ ; (3)

where ψ is the half luminous angle. Thus, the expected irradiance of the illumination point from
a single LED corresponds to

EQ-TARGET;temp:intralink-;e004;116;145Ep ¼ I0 ·
cosðθÞ · cosmðφÞ

r2
: (4)

Under the illumination of an array light source, the irradiance of a certain point of the lesion
should be the sum of the irradiance of all LED units at that point:
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EQ-TARGET;temp:intralink-;e005;116;735ET ¼
X225

i¼1

IðiÞ0 ·
cosðθiÞ · cosmiðφiÞ

r2i
: (5)

Then, it is transformed into solving the least square curve fitting problem, which minimizes the
difference between the actual irradiance and the expected irradiance of each cluster center as
follows:

EQ-TARGET;temp:intralink-;e006;116;658min
I0

1

2
kET − Ẽk22; (6)

where the solution range of I0 is ls ≤ I0 ≤ hs with ls and hs being the lower and upper limits of
the light intensity of each LED, respectively, that are modulated by its driver current and Ẽ is the
expected irradiance on the surface of skin lesions.

3 Results

3.1 Irradiance Distribution on a Typical Surface

The ability of the proposed LED array panel to form effective irradiance on a typical lesion
surface was verified. Figure 2 shows the irradiance distribution map of a single LED and a 15 ×
15 LED array on a plane, a cylindrical surface with a radius of 5 cm and a height of 10 cm,
and a sphere with a radius of 10 cm. The verification area is on the XOY plane (parallel to the
plane of the LED array) within a square of 10 cm × 10 cm. Taking the irradiance requirement
for port-wine stain PDT as an example, the expected irradiance on the surface of skin lesions
is 100ð�10Þ mW∕cm2. When the light intensity of a traditional LED light source is at
372 mW∕Sr, the maximum irradiance on the plane surface at a distance of 10 cm reaches

Fig. 2 Distribution of irradiance on a typical surface: (a) single LED on a plane and LED array on
(b) a plane, (c) a cylinder, and (d) a sphere.
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110 mW∕cm2 [Fig. 2(b)]. The coefficient of variation and effective irradiance occupancy rate of
these surface types under the LED array panel are calculated and listed in Table 1, where the
coefficient of variation refers to the quotient between the standard deviation and the average of
the irradiance of all points on the surface. Given that the point cloud is evenly distributed in the
lesion cloud, the evaluation index of effective proportion is the ratio between the number of
points in which the irradiance on it is within the range of the expected irradiance and the total
number.

3.2 Image Acquisition and Point Cloud Cluster

In our test, the number of point clouds for the head model is 50,754, and the average distance
between points is 0.69 mm. The segmented lesion cloud is composed of 1941 points, as shown in
Fig. 3(b). The lesions are divided into 50 regions by point cloud clustering technology, as shown
in Fig. 3(c). Different clusters are rendered by a pseudocolor map in which the circle represents
all points in the point cloud and the cross represents the cluster center.

3.3 Light Intensity Matrix

Three adjacent points form a patch, and the normal vector set of the patch is used to replace the
normal vector set of the point cloud. The normal vector of the light source plane is collinear with
the average normal vector of the lesion point cloud. The light source is placed 10 cm away along
the average normal vector of the lesion cloud (Fig. 4).

Each cluster region on the lesion is expected to reach 100 mW∕cm2 but not more than
110 mW∕cm2. The traditional light source with constant 372 mW∕Sr diode light intensity is
used to irradiate the lesion as the control group. The ET value in Eq. (6) (100 mW∕cm2) is
used in our approach as the experimental group, considering the pulse width modulation ability
of the LED driver. The solution range of I0 within 0 to 750 mW/Sr is regarded as the constrained
condition to compare the performance between the general and optimized operations. The inten-
sity value and the irradiance distribution of the lesion surface are shown in Fig. 5.

Table 1 Statistics on a typical surface.

Total number
of points

Effective
proportion (%)

Coefficient of
variation (%)

Plane 34,596 85.63 5.11

Cylinder 18,416 45.58 36.16

Sphere 25,848 63.98 12.28

Fig. 3. Head model point cloud segmentation and clustering: (a) head model, (b) segmented
lesion point cloud, and (c) point cloud clustering.

Wang et al.: Irradiance uniformity optimization for a photodynamic therapy. . .

Journal of Biomedical Optics 078001-5 July 2021 • Vol. 26(7)



3.4 Statistics and Evaluation

The irradiance on every point in the point cloud before and after the optimization of I0 of the
LED is analyzed in Fig. 6, and the distances of the LED and the point cloud are 80, 90, 110, and
120 mm. In the general group, the distance between 110 and 120 mm is too large to achieve
an effective irradiance. Therefore, under the premise of the maximum effective irradiance not
exceeding 110 mW∕cm2, the normal light intensity of the LED was increased to 411 and

Fig. 5 The light source intensity and irradiance distribution before and after optimization. The light
intensity for (a) general operation and (b) after optimization and the irradiance distribution on lesion
for (c) the general operation and (d) after optimization.

Fig. 4 Diagram of the relationship between an LED array and a lesion.
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449 mW∕Sr in both experiments. However, the distance between 80 and 90 mm was too short.
Thus, the maximum effective irradiance is greater than 110 mW∕cm2. Moreover, the normal
light intensity of LED is set to 296 and 334 mW/Sr in the two experiments. The irradiance
distributions before and after optimization are shown.

The effects of rotation on the stability of our method are also evaluated. Taking the center of
the lesion as the origin, the center of gravity of the light source as the vertex, and the distances
between the center of the LED panel and the point cloud at 110 mm, the normal vector of the
light source plane is rotated around the unit vector (0, 0, 1) by various angles (−10 deg, −5 deg,
5 deg, and 10 deg) for verification, as shown in Fig. 7. Meanwhile, the irradiance distributions
before and after optimization are shown in Fig. 8.

Fig. 7. Optimized light-source illumination at different angles: (a) −10 deg, (b) −5 deg, (c) 5 deg,
and (d) 10 deg.

Fig. 6 Irradiance distribution (a)–(d) without and (e)–(h) with optimization at different distances:
(a) 80 mm, (b) 90 mm, (c) 110mm, (d) 120mm, (e) 80 mm, (f) 90 mm, (g) 110mm, and (h) 120 mm.
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Intuitively, the irradiance distribution of the optimized light source on the lesion is generally
more uniform than that of the general light source. The uniformity is tested accurately by deter-
mining the effective irradiance and coefficient of variation of all points through the adjustment of
the relative angle and the distance between the LED array and the lesion, as shown in Table 2.

According to the statistical results, the proportion of the effective irradiance area of the opti-
mized light source to the lesion model is increased by 9% to 15%. In addition, the variation
coefficient of the irradiance on the lesion point cloud indicated that the uniformity of the optimal
method is better than that of the general device.

4 Discussion

4.1 Correction Ability for Typical Surface

As indicated in the previous section, meeting the requirements is difficult for the irradiance on
the nose and cheek due to their small radii of curvature. When the radius of curvature is only
5 cm [Fig. 9(a)], the angle between the normal vector on the cylindrical surface and the normal
vector on the plane of the light source is too large. As such, the light source cannot induce an

Fig. 8 Irradiance distribution (a)–(d) without and (e)–(h) with optimization at different angles:
(a) −10 deg, (b) −5 deg, (c) 5 deg, (d) 10 deg, (e) −10 deg, (f) −5 deg, (g) 5 deg, and (h) 10 deg.

Table 2 Evaluation of irradiance distribution before and after optimization.

Before optimization After optimization

Distance
(mm)

Angle
(deg)

Number of
points

Proportion
(%)

Coefficient of
variation (%)

Number of
points

Proportion
(%)

Coefficient of
variation (%)

120 0 1458 75.23 14.08 1642 84.73 8.60

110 0 1441 74.36 14.83 1642 84.73 8.43

100 0 1422 73.37 15.84 1694 87.41 8.26

90 0 1398 72.14 17.23 1671 86.22 8.75

80 0 1372 70.80 19.22 1597 82.40 9.64

100 −10 1403 72.39 15.64 1666 85.96 8.50

100 −5 1451 74.87 14.96 1674 86.34 8.07

100 5 1399 72.19 17.10 1667 86.02 8.95

100 10 1384 71.41 16.92 1676 86.48 9.10
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effective irradiance on the surface, resulting in an effective irradiance occupancy of 75.69% and a
coefficient of variance of 25.49%.

However, if the radius of curvature of the cylindrical surface is increased to 10 cm [Fig. 9(b)]
and the projected area on the XOY plane remains unchanged, then the effective irradiance occu-
pancy reaches up to 100%, and the coefficient of variance is 1.38%. Thus, the radius of curvature
has a considerable influence on the irradiance, which explains the consistently low level of irra-
diance at the nose and cheek with small radii of curvature.

4.2 Number of Clustering Regions

The lesion point cloud was divided into 50 regions in our previous discussion to reduce the diffi-
culty of solving the light intensity matrix of the light source. Figure 3(c) shows that the average
area of the clustering region is ∼50 mm2. If the lesion point cloud is divided into more categories,
then the average area of each clustering region will be smaller and accurate, but the time consumed
for solving will be prolonged. Under the condition of 100 mm distance from the light source, when
the lesion point cloud is divided into 70 regions, the number of effective points is 1689, the per-
centage of effective points is 87.15%, and the coefficient of variation is 8.25%. If the lesion point
cloud is divided into 100 regions, then the number of effective points is 1696, the percentage of
effective points is 87.51%, and the coefficient of variation is 8.11%. Thus, the effective points will
only change slightly by increasing the number of clusters, and 50 regions will meet most of the
requirements for the irradiance and coefficient of variation.

4.3 Tissue Optical Properties

Given that the effective light dose of the inner layer of blood vessels differs from that of the
surface, the proposed method achieves only the goal that the optimized light source can produce
uniform irradiance on the lesion surface. The effects of tissue optical properties and photosensi-
tizer properties, such as absorption and concentration, and the possibility of photobleaching
require further study in the future. Skin optical properties also play important roles in lesion
segmentation. Although the segmentation process works well for the Asian head model, it should
be optimized for people with other skin tones.

4.4 Feasibility for Real-Time Processing

Considering that most patients with port-wine stains are children who are almost impossible to
keep still throughout PDT, the capability for real-time processing is of the greatest need for
clinical use. As discussed above, the whole procedure includes 3D scanning, lesion segmenta-
tion, point cloud clustering, irradiance optimization, and LED current adjustment. The scanning
frequency of the 3D scanner can reach 15 Hz (67 ms), and the LED current adjustment can be
accomplished within 1 ms using a microcontroller circuit. During PDT, the healthy skin is pro-
tected by a black blanket, and the 3D scanner directly scans the lesions to generate point clouds
without the need for lesion segmentation. The proposed algorithm is evaluated on our personal

Fig. 9 Irradiance distribution on a cylinder surface with a radius of (a) 5 cm and (b) 10 cm.
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computer with 8 GB RAM. The processor is an Intel (R) Core (TM) i5-4210m CPU. The soft-
ware is implemented with MATLAB 2018a. The time consumed by the proposed method is
shown in Table 3. The entire procedure can be completed in <0.3 s. The time consumed for
clustering can be further reduced with the development of personal computers. Thus, such a
device can be feasibly run at a speed over 5 Hz.

5 Conclusions

An optimized method for an LED array PDT device with a 3D scanner is presented in this paper.
This device adjusts its unit current independently according to the relationship between the
lesion point cloud and the light source through a 3D scanner. The effective irradiance area pro-
portion and irradiance uniformity of the lesion surface is also improved. This device promotes
personalized illumination in PDT for skin diseases and improves efficiency in a single PDT
treatment.
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