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Abstract

Significance: Quantitative measurement of blood oxygen saturation (sO2) with optoacoustic
(OA) imaging is one of the most sought after goals of quantitative OA imaging research due
to its wide range of biomedical applications.

Aim:Amethod for accurate and applicable real-time quantification of local sO2 with OA imaging.

Approach: We combine multiple illumination (MI) sensing with learned spectral decoloring
(LSD). We train LSD feedforward neural networks and random forests on Monte Carlo simu-
lations of spectrally colored absorbed energy spectra, to apply the trained models to real OA
measurements. We validate our combined MI-LSD method on a highly reliable, reproducible,
and easily scalable phantom model, based on copper and nickel sulfate solutions.

Results:With this sulfate model, we see a consistently high estimation accuracy using MI-LSD,
with median absolute estimation errors of 2.5 to 4.5 percentage points. We further find fewer
outliers in MI-LSD estimates compared with LSD. Random forest regressors outperform pre-
viously reported neural network approaches.

Conclusions: Random forest-based MI-LSD is a promising method for accurate quantitative
OA oximetry imaging.
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1 Introduction

A robust and accurate quantitative measurement of blood oxygen saturation (sO2) with opto-
acoustic (OA) imaging, also called photoacoustic imaging, is one of the most sought after goals
of quantitative OA imaging research due to its wide range of immediate applications. Usually,
quantitative OA imaging research aims to achieve an absolute quantification of optical proper-
ties, such as the absorption coefficient μa, from measured OA signals Sðd; tÞ recorded at times t
at detector position d.1,2 In brief, such a quantification of μa encompasses a solution of two ill-
posed inverse problems. (1) The acoustic inverse problem from Sðd; tÞ to an initial pressure
spatial distribution p0ðxÞ. And (2), the optical inverse problem from Hðx0Þ ¼ p0ðx0Þ∕Γðx0Þ ¼
ϕðx0; μaðxÞ; μ 0

sðxÞÞ · μaðx0Þ to μaðx0Þ, at a location x0, with the Grüneisen parameter Γ and the
reduced scattering coefficient μ 0

s . The fluence ϕ is dependent on unknowns such as the absorp-
tion and scattering in the tissue surrounding x0. Quantitative OA imaging methods either depend
on model-based inversion2–7 or data-driven approaches.8–13 These approaches perform well
in silico but often struggle with the translation to real measurements in phantoms or in vivo.

In OA imaging, sO2 estimations are derived from multispectral OA measurements by first
performing an acoustic reconstruction yielding images of the OA signal

EQ-TARGET;temp:intralink-;e001;116;116Sðx0; λÞ ¼ Γðx0Þ · Aðx0Þ · ϕðx0; μaðx; λÞ; μ 0
sðx; λÞÞ · μaðx0; λÞ; (1)
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for each measured wavelength λ, with Aðx0Þ being an unknown spatially varying factor intro-
duced by the imperfectly solved acoustic ill-posed inverse problem (i.e., image reconstruction
from data with limited frequency bandwidth and a limited probe aperture). Using a linear image
reconstruction, the acoustic inverse problem can be assumed as wavelength independent. The
spectral coloring1 due to the wavelength-dependent fluence variation causes the dominant
distortion in any sO2 estimation made from multispectral signal stacks Sðx; λÞ. This spectral
coloring of OA signals needs to be corrected to yield accurate quantitative estimates of sO2.
To address this need, we combine two approaches to quantitative OA imaging of sO2.
(1) Multiple illumination (MI) sensing14—a method in which a sequence of OA measurements
is acquired with a sequence of illuminations at different positions. Usually, effective attenuation
of the illumination is then estimated with diffusion theory and then used for correcting spectral
coloring. (2) Learned spectral decoloring (LSD)15—a data science method in which a machine
learning algorithm is trained on Monte Carlo simulations of spectrally colored multispectral OA
measurements to decolor real measurements.

Both these methods can yield promising results on their own but still suffer from a range of
constraints, i.e., MI sensing implementations16 typically assume and use point illuminations,
which enables the use of closed-form solutions of the diffusion approximation of light
propagation14 but limits SNR due to the laser safety limit for skin.17 The resulting long acquis-
ition times make this method difficult to translate to realistic macroscopic applications.18

Furthermore, MI sensing so far has theoretical limits in highly inhomogeneous scenes due
to its reliance on the diffusion approximation. MI sensing implementations usually aim to esti-
mate absolute values of μa, which goes beyond what is needed for an estimation of sO2. LSD

15,19

and similar spectral approaches3 currently yield accurate in silico estimations and plausible ini-
tial results in highly constrained settings, but they have insufficient input to robustly generalize
these results over diverse geometries and applications.

We will investigate LSD as a method to analyze MI data. Both MI sensing and LSD are not
yet thoroughly validated; partially due to a lack of stable and reliable sO2 phantoms. Even
though substantial progress has been made in dynamic blood flow phantoms for OA imaging
validation, these blood or red blood cell suspension phantoms require extensive fine tuning and
even then yield reference values with limited accuracy.20 At best, a reference measurement of
2% to 4% is achievable with state-of-the-art blood flow phantoms.21,22 While validating quan-
titative OA oximetry methods, the validation phantoms are also often restricted to the extreme
sO2 values of 0% and 100% because other values cannot be set reliably.23 This causes an incom-
plete range and therefore insufficient validation.

Rather than implement such an sO2 flow phantom, we used copper and nickel sulfate solutions
in a relative copper sulfate model similar to work by Buchmann et al.24 to mimic absorption spectra
of blood with different oxygen saturation. This allowed a reliable sub 1% error in our ground truth
and allowed us to rapidly manufacture stable and highly reproducible phantoms with wide var-
iations in optical properties to generate high quality test sets for spectral decoloring methods.

2 Materials and Methods

We investigated a method combining LSD and MI measurements. To that effect we

1. developed a system to perform real-time MI-multispectral OA imaging,
2. implemented modified LSD machine learning algorithms using MI,
3. used these algorithms to train on exclusively in silico data from Monte Carlo optical for-

ward simulations with a relative copper sulfate model, and
4. validated and tested these machine learning models on comprehensive phantom measure-

ments using the copper and nickel sulfate-based sO2 model.

2.1 Multiple Illumination Optoacoustic Imaging

Our MI OA imaging setup is shown in Fig. 1. It uses a fast wavelength-tunable optical parametric
oscillator (OPO) laser system (prototype SpitLight, InnoLas Laser GmbH, Krailling, Germany)
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with 5-ns pulse duration and 100-Hz pulse repetition frequency. The laser pulses were sequentially
coupled into four high power fiber bundles (FiberOptic P.+P. AG, Spreitenbach, Switzerland)
with NA 0.22 fibers, each bundle with a 2-mm diameter. This was achieved using a galvo mirror
system (GVS011/M, Thorlabs Inc., Newton, New Jersey, USA) driven by an arbitrary waveform
generator (AWG) (TG5011, Aim-TTi, Cambridgeshire, UK), which was synchronized with the
laser system. The fiber bundle output sides were arranged in a line array with 8 mm spacing.
The illumination pulses were attenuated to have a maximum energy of 10 mJ per pulse at the
fiber output. To comply with ANSI safety limits,17,25 the beams are widened to 7-mm full-width
at half-maximum (FWHM) at the tissue or phantom surface. Illumination and acoustic detection
ensue through 18-mm-thick ultrasound gel pad (Parker Laboratories Inc., Fairfield, New Jersey,
USA). We measure the 64 center channels of a 128-element linear array transducer (L7-4,
Advanced Technology Laboratories Inc., Bothell, Washington, USA) with a center frequency of
5 MHz, a pitch of 0.3 mm, and a fractional bandwidth of 80%. The number of acquisition channels
was limited by our 64 channel US data acquisition system (V-1-64, Verasonics, Inc., Kirkland,
Washington, USA). For this study, we used the full tuning range of our OPO and acquired
OA measurements for 16 equidistant wavelengths from 680 to 980 nm in 20 nm steps, each for
four illumination positions. After firing one pulse of one wavelength in each fiber bundle, the
wavelength is tuned to the next in sequence. Using this 4 × 16 sequence, eachMI and multispectral
stack of OA images takes 640 ms to acquire. We generally recorded the raw data for 30 such stacks
for each scan. Live beamforming and visualization with 25 fps was performed using custom
MATLAB scripts but this live visualization was solely used for probe positioning and quality
control (e.g., avoiding air inclusions under the gel pad).

2.2 Image Processing

The acoustic reconstruction of OA images for further analysis was performed using the OA
image processing module from the Medical Imaging Interaction Toolkit (MITK).26 The raw data
were beamformed using a delay and sum (DAS) algorithm, with a fixed speed of sound of
1480 ms−1 and a Hann apodization over an angle of �30 deg. For noise reduction, the beam-
formed data were bandpassed. A B-mode image was formed using an envelope detection filter
and downsampling the result to a 0.15-mm isometric resolution. The full image processing pipe-
line including all relevant parameters is part of the open source appendix (see the Code, Data,
and Materials Availability section). The B-mode images were corrected for the mean laser pulse
energy at a specific wavelength. This mean laser pulse energy correction was determined directly
at the fiber bundles output before the experiments—averaging the pulse energy for 30 laser
pulses of each wavelength. For a single wavelength, the variation of pulse energy was <3%;
to reduce this noise component’s influence, we also averaged our OA measurements over
30 full stacks of measurements.

Fig. 1 MI OA imaging setup. Illumination via fast tunable OPO laser sequentially illuminating
fiber bundles using a galvo mirror system driven by an AWG. OA signals were measured with
a linear array ultrasound (US) probe and recorded by a 64-channel US data acquisition (DAQ)
system. An US gel pad is used to allow for in plane illumination.
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2.3 Phantoms

The phantoms used consisted of arrays of polythene tubing (Smiths Medical International
Ltd., Kent, UK) with 0.58-mm inner diameter and 0.96-mm outer diameter. These tubes were
filled with a relative copper sulfate model solution (as detailed in Sec. 2.3.1) and arranged as
shown in Sec. 2.3.3. The relative copper (rCu) in this model is mimicking blood oxygena-
tion (sO2).

Selecting the same small size tubes allowed us to rapidly assemble and modify phantoms
with many target structure locations. The small size of the tubes was also chosen because the rCu
solution in the tube did not include a scattering agent.

For all the phantom experiments, the background scattering medium was a fat emulsion
(SMOFlipid 20%, Fresenius Kabi, Switzerland) diluted to 1.5% fat content. To avoid errors
introduced by interbatch variations in the scattering properties of stock fat emulsions, such
as intralipid or SMOFlipid, the optical properties of the used stock emulsion were assessed with
a time-correlated single photon counting (TCSPC) technique as detailed in Sec. 2.3.2.

2.3.1 Relative copper sulfate model

The relative copper sulfate model solution was based on a 2.2-molar nickel sulfate (NiSO4) water
solution, produced using nickel(II) sulfate hexahydrate (>98%, Sigma-Aldrich), and on a 0.25
molar copper sulfate (CuSO4) water solution, produced using copper(II) sulfate pentahydrate
(>98%, Sigma-Aldrich).27 As shown in Fig. 2, these chromophores are mimicking the NIR
absorption spectra of oxy- and deoxyhemoglobin in average whole blood with a hemoglobin
concentration cwbðHbTÞ ¼ 150 gl−1.28 Copper and nickel sulfate were also chosen for their
temporal stability and resistance to bleaching.

The spectra of the sulfate solutions absorption coefficients μa in whole blood mimicking
concentrations are defined as cwb (NiSO4) :=2.2 M and cwb (CuSO4) :=0.25 M. These solutions
were measured using a 2-mm quartz cuvette (QS Hellma, Müllheim, Germany) in a UV–VIS–
NIR spectrophotometer (Perkin Elmer Lambda 750, Waltham, Massachusetts, USA), in the
range of 680 to 980 nm. The scattering in this wavelength range is negligible.27 The initial refer-
ence measurements were done in 2 nm steps, with a 10-s integration time and using a photo-
multiplier tube sensor. The absorption spectroscopy measurements were repeated on the
solutions after 70 days to verify their stability over time. Whenever new batches of the sulfate
solutions were produced, their absorption spectra were checked against the spectra of the first
batch. The solutions were corrected when they deviated from the reference spectra by more
than 1%.

The relative copper (rCu) in this model aims to mimic blood oxygenation (sO2) and is there-
fore similarly defined as

EQ-TARGET;temp:intralink-;e002;116;283rCu ¼ crðCuSO4Þ
crðCuSO4Þ þ crðNiSO4Þ

; (2)

with the respective concentrations of the sulfate solutions relative to their blood mimicking base
solutions

Fig. 2 Absorption coefficient μa spectra. (a) Oxy- and deoxyhemoglobin at whole blood concen-
trations cwbðHbTÞ ¼ 150 gl−1. (b) Copper and nickel sulfate in aqueous solution in whole blood
equivalent solutions using a relative copper sulfate (rCu) model. The reference measurements
of the five rCu mixtures used in our phantoms are plotted as “+.” Sulfate spectra were measured
with a spectrophotometer.
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EQ-TARGET;temp:intralink-;e003;116;735crðCuSO4Þ ¼
cðCuSO4Þ
cwbðCuSO4Þ

and crðNiSO4Þ ¼
cðNiSO4Þ
cwbðNiSO4Þ

: (3)

For comparison, the definition of blood oxygen saturation is

EQ-TARGET;temp:intralink-;e004;116;688sO2 ¼
cðHbO2Þ

cðHbO2Þ þ cðHbÞ : (4)

While of course not following hemoglobin spectra exactly, this sulfate model is a good quali-
tative fit to hemoglobin and is much easier to accurately control and reproduce than the satu-
ration of oxygen in hemoglobin. It is highly stable over time; i.e., over 70 days only changes
<1% in absorption were observed. Mimicking the blood volume fraction (BVF) in tissue, we
define a sulfate volume fraction (SVF) in our model as SVF ¼ crðCuSO4Þ þ crðNiSO4Þ. The
SVF within the blood vessel mimicking tubing was always 100% mimicking whole blood,
whereas the SVF in the background was varied as detailed in Sec. 2.3.3.

2.3.2 Optical property reference measurements of phantoms

In the background medium, the scattering comparable to tissue (i.e., μ 0
s ¼ 15 cm−1 at 750 nm)

was obtained using a 1.5% fat emulsion (diluted from SMOFlipid 20%, Fresenius Kabi,
Switzerland).

To ensure a reproducible and tissue mimicking scattering, the background medium was ana-
lyzed with TCSPC spectroscopy. The TCSPC instrument used for the spectral analysis of the
emulsions optical properties consisted of a white light supercontinuum laser (SuperK Extreme,
NKT Photonics, Birkerød, Denmark) with ≈100 ps pulse duration (varying with wavelength),
running at 39 MHz with <4 mW laser output. This white light was filtered by a tunable filter
(SuperK Varia, NKT Photonics, Birkerød, Denmark), which was tuned in a range from 600 to
840 nm in 20 nm steps, with a bandwidth of 10 nm; 840 nm being the maximum of the tunable
filter’s range. A single-photon avalanche diode (MDP PDM Series, Micro Photon Devices,
Bolzano, Italy) was used to detect single photons. The diode has a prolonged dead time of
≈80 ns after a photon detection. Because of that, the photon detection rate was kept sufficiently
low to make photon detection events during the dead time unlikely. We ensured a detection rate
lower than 105 s−1 (≪1∕80 ns), making a correction for missed photons during the dead time
unnecessary. The distributions of times of flight were recorded with single photon counting elec-
tronics (SPC-160, Becker & Hickl GmbH, Berlin, Germany). Source and detector fibers were
fixed in blunted hypodermic needles for stability. The laser pulse shape, temporal dispersion in
the optical fibers, and response of the detector were characterized in the overall instrument
response function (IRF), yielding an FWHM of ≈140 ps overall, varying with wavelength.
The source and detection fibers were placed perpendicular to the surface of the sample medium
and immersed in the medium by 0.5 mm. To reduce the detection of early arriving photons, a
carbon fiber mesh blocker was placed into the direct path, at a distance of 6 mm from the source
fiber (dimension: 1 mm depth, 4 mm width, 0.4 mm thickness). We measured the SMOFlipid
1.5% medium in an 8 cm radius, 10 cm deep beaker, with the fibers at the center. This is a
sufficiently large volume to be approximated as a semi-infinite medium for the analytic diffusion
model. The resulting media were both measured with a source detector separation ρ ¼ 20 mm,
for each wavelength until at least 107 photons were detected. For some wavelengths, the laser
needed to be attenuated to keep the photon detection rate below 105 s−1. This acquisition pro-
tocol ensured a high signal-to-noise ratio (SNR) and allowed us to fit our diffusion model only to
late arriving photons where the diffusion approximation is more accurate. For the phantom
experiments, two bottles of a new batch of SMOFlipid were used—both batches and bottles
were measured independently prior to experiments to avoid hidden variations in the background
medium.

An analytic diffusion model29 with an extrapolated boundary condition for a semi-infinite
medium30,31 was convolved with the corresponding IRF for each wavelength λ. The results were
then fitted to the measured histograms of the single photon arrival times, yielding a series of
tuples (μ 0SPC

s ðλÞ, μSPCa ðλÞ). Our tunable filter was limited in range to a maximum wavelength
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840 nm but we needed credible μ 0
s values up to 980 nm for the optical forward simulations.

Therefore, a generic tissue model [Eq. (5)] from the mcxyz framework32 was used to expand
and define the scattering properties within the optical forward simulation:

EQ-TARGET;temp:intralink-;e005;116;462μ 0
sðλÞ ¼ μ 0

s500 · ðfray · ðλ∕500 nmÞ−4 þ ð1 − frayÞ · ðλ∕500 nmÞ−bmieÞ; (5)

With μ 0
s500 ¼ 42.4 cm−1 the initial guess for μ 0

s at 500 nm, fray ¼ 0.62 the initial guess for frac-
tion of Rayleigh scattering at 500 nm, and bmie ¼ 1.0 the initial guess for the scatter power for
Mie scattering. This was fitted to the TCSPC data with a least squares fit—the entire data
processing pipeline with all parameters is part of the open source code supplement (see the
Code, Data, and Materials Availability section). The resulting fits are shown in Fig. 3.

2.3.3 Phantom data sets

Three sets of phantoms (A,B,C) were produced, with different layout as shown in Fig. 4. All
phantoms use polythene tubing filled with the relative copper sulfate model solution as target
structures. The phantom backgrounds consist of a 1.5% fat emulsion with added sulfates.

Phantom layout A was measured as a validation data set for hyperparameter tuning of the
machine learning models and validation of image reconstruction as well as parameter tuning in
the Monte Carlo simulations. Layouts B and C were exclusively measured as test data sets.
Phantom test set B is expected to be within the distribution of the simulation parameters (cf.
Fig. 5). Phantom test set C, however, consists only of longitudinal scans w.r.t. the tube orienta-
tion. Because the orientation of the illumination positions changes with the imaging plane, set C
was illuminated along the tubing. The measurements in set C are therefore expected to be out-of-
distribution (OOD) with respect to the Monte Carlo simulated training sets. As detailed in the
next section, the simulations were exclusively performed for transversal orientation of the
tubing.

The phantom data sets contain 164 multispectral MI OA scans from 115 scan configurations
as follows:

A. 30 scan configurations as laid out in Fig. 4(a): six phantom configurations, one with only a
1.5% SMOFlipid background solution and five with an added 1% SVF background with
relative copper rCubg set to {0, 25, 50, 75, 100}%. On each of these six configurations,
five MI multispectral scans were performed centering the transducer on each of the tubes
with rCutube ¼ f0;25;50;75;100g%.

B. 55 scan configurations as laid out in Fig. 4(b): eleven phantom configurations, one with only
a 1.5% SMOFlipid background solution, five with an added 1% SVF background with

Fig. 3 Optical properties of the uncolored phantom background medium. Single data points are
diffusion model results frommeasurements with the TCSPC spectroscopy instrument of a 1.5% fat
emulsion (diluted from SMOFlipid 20%). Each data point corresponds to a fit on a TCSPC histo-
gram of at least 107 photons collected over at least 100 s. Validation phantoms cf. Fig. 4(a) were
constructed with the “second batch, first bottle.” A generic tissue scattering model [Eq. (5)] fitted
to this first bottle measurement was used to set the background scattering properties (a) for the
Monte Carlo simulations. The “second bottle” was used for the background media in the test
phantoms. The absorption results (b) are shown together with a literature spectrum of water
absorption33 (dashed line).
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rCubg ¼ f0;25;50;75;100g%, and five with a 0.5% SVF. On these 11 phantom configura-
tions, MI multispectral scans were performed centering on each of the five four-tube-arrays
with rCutube ¼ f0;25;50;75;100g%. For each four-tube-array, two regions of interest (ROI)
(one containing the two lower and one the two upper tubes) were analyzed separately. The
imaging plane was positioned for transversal scans of the tubes.

C. 30 scan configurations as laid out in Fig. 4(c): three phantom configurations, one with
only a 1.5% SMOFlipid background solution, two with an added 1% SVF background with
rCubg ¼ f0;100g%. On these three phantom configurations, MI multispectral scans were
performed with each of the five shallowest tubes, and each of the five deepest tubes of the
four-tube-arrays in the imaging plane, with rCutube ¼ f0;25;50;75;100g%. The imaging
plane was positioned for longitudinal scans of the tubes.

All scan configurations were scanned for 19.2 s yielding 30 MI and multispectral sequences.
Due to the limited field of view of our US system (parallel read-out of 64 channels on a 19.2-mm
linear array), we repositioned the probe between acquisitions—i.e., measuring five scan posi-
tions for phantom geometries A and B. The center of the linear transducer was always placed
above the center of the targeted tubes. Scans with technical difficulties such as frame drops or
wrong positioning were discarded in postprocessing. This affected one of the 115 scan configu-
rations: the rCutube ¼ 100%, rCubg ¼ 50%, SVF ¼ 0.5% was discarded for erroneous position-
ing. All scans of phantom geometry C were performed twice. The SVF ¼ 0 scans on phantom

Fig. 5 The in silico training data set consists of 4000 volumes, simulated with Monte Carlo sim-
ulations, modeling the geometry of the real MI setup. An additional 1000 volume test set is kept
separate. Each volume has two sets of tubes each with a random number of tubes, uniformly
distributed as specified. Tube and background relative copper (rCu) as well as background
SVF are also drawn from uniform random distributions U. The sO2 training and test sets are simu-
lated identically, substituting rCu absorption spectra for hemoglobin spectra, cf. Fig. 2.

Fig. 4 Cross sections of the phantom data sets, with denoted parameters: relative copper sulfate
model in the tubes rCutube, in the background medium rCubg and sulfate model volume fraction in
the background medium SVFbg. (a) The validation phantoms with five single tubes. (b) The main
test phantoms. (c) The test phantoms in longitudinal scan direction and thereby somewhat OOD
of the training data. The shown two-dimensional cross sections correspond to the imaging plane.
In sets A and B, the tubes run perpendicular to the imaging plane. Phantom test C has the same
geometry as set B, with the imaging plane rotated by 90 deg to yield longitudinal scans instead
of transversal scans of the tubes.
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geometry B were performed five times on different days as a baseline measurement. The total
phantom data set consists of 164 scans.

It is important to note that both copper and nickel sulfate act as a demulsifier when mixed
with the diluted SMOFlipid background or any other fat in water emulsion. Phases will form and
the bulk optical properties will change significantly within tens of seconds. To avoid the forming
of phases, the background medium with added sulfates was continuously stirred with a magnetic
stirrer during all the measurements.

2.4 Optical Forward Simulations

As an optical forward model, we used GPU accelerated Monte Carlo simulations to generate
ground truth multispectral stacks of the absorbed energy distributions Hðx; λÞ. Figure 5 shows
the layout of the Monte Carlo simulated volumes.

To further illustrate that the rCu model is comparable to sO2, we performed all simulations
twice: once for rCu model absorbers and once for hemoglobin. The sO2 sets are simulated sub-
stituting sulfate absorption spectra for whole blood concentration hemoglobin spectra, cf. Fig. 2.
Each simulated data set consists of a 4000-volume training set and a separate 1000 volume test
set. For each volume, 16 wavelength and four positions of illumination were simulated, modeled
on the real MI OA imaging sequences. The simulations were performed with the open source
mcx toolkit,34 and we used the ippai framework for the illumination modeling and data organi-
zation. In all data sets, each volume has two sets of tubes with the tube count drawn from a
discrete uniform distribution Uf3;9g, uniformly distributed in the volume as specified in Fig. 5.
Tube and background rCu or sO2 are drawn from a continuous uniform random distribution
Uð0;1Þ. All tubes were set to a radius of 0.4 mm. The wavelength-dependent background scat-
tering parameters were set to the tissue model results from the fit of the TCSPC measurements
to Eq. (5). The background SVF or BVF was drawn from Uð0;3Þ%. Each simulation was per-
formed with 108 launched photon packets.

Running these simulations on a high performance computing cluster, we used mostly 1080
GTX (NVIDIA, Santa Clara) GPUs, with which a single wavelength and single illumination
position simulation took ∼2 min. All simulations for the test and training sets used a combined
2 years of GPU time (one for the rCu sets and one for the sO2 sets). This was made feasible by
usually running 40 GPUs in parallel. It should be noted that this seemingly excessive simulation
time was chosen after simulation results with 107 photon packets proved too noisy. This was
evaluated prior to the presented in silico data sets. Initial hyperparameter tuning was also per-
formed on two in silico data sets, simulated with 107 photon packets. These data sets are part of
the supplemental data (see the Code, Data, and Materials Availability section).

2.5 Machine Learning Algorithms

The estimation of an sO2 or rCu value from a measured spectrum is a regression problem. The
usual approach to this problem in OA imaging is linear spectral unmixing (LU).26,35 For one
pixel, the OA signal spectrum SðλÞ is measured at a set of wavelengths λ. This sampled
OA signal spectrum S is then fitted to a linear combination of known absorption spectra. Here,
LU is performed numerically using an iterative least squares solver implemented in Python’s
scipy.optimize submodule. These LU estimations (rCuLUest ) are given throughout the results sec-
tion as a reference.

We also compare our results to LSD, a type of machine learning algorithm. LSD also aims to
estimate sO2 or rCu from the same single illumination OA signal spectra S measured at wave-
lengths λ. Similar to prior implementations, our modified LSD models are machine learning
algorithms that are trained on large amounts of simulated absorbed energy spectra labeled with
ground truth rCu. Before training, each absorbed energy spectrum is normalized with its L1

norm to ĤðλÞ. This normalization makes them equivalent to a normalized OA signal spectrum

ŜðλÞ. This is because we can assume that for a signal spectrum S at a position x0

EQ-TARGET;temp:intralink-;e006;116;91Sðx0; λÞ ¼ Γðx0Þ · Aðx0Þ · Hðx0; λÞ (6)
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EQ-TARGET;temp:intralink-;e007;116;723 ⇒ Ŝðx0; λÞ ≈ Ĥðx0; λÞ: (7)

Assuming a linear acoustic reconstruction such as DAS, Aðx0Þ is a spatially varying but
wavelength-independent factor introduced by the imperfect acoustic reconstruction, the instru-
ment response, and the calibration. Γðx0Þ, as a material property is also independent of the illu-
mination wavelength.27 The LSD model, which was trained on the in silico training set tuples

ðĤ; rCutubeÞ, is then presented (1) unseen in silico test set spectra Ĥ or (2) spectra Ŝ from an
unseen phantom data test set to estimate the corresponding rCuLSDest .

Note that A actually does depend on the fluence distribution ϕðx; μaðx; λÞ; μ 0
sðx; λÞÞ. A vary-

ing optical wavelength may lead to different acoustic spectra of the OA signal corresponding to
the same structure, due to different spatial distributions in the absorbed energy. Our assumption
is that this effect is small compared with the spectral coloring introduced directly by the fluence
term in

EQ-TARGET;temp:intralink-;e008;116;575Hðx0; λÞ ¼ ϕðx0; μaðx; λÞ; μ 0
sðx; λÞÞ · μaðx0; λÞ: (8)

For MI-LSD, we have multiple such normalized spectra Ŝ as input variables. For illustration,
Fig. 6 shows spectra of the same pixel in an absorber with rCutube ¼ 100% with two example
illuminations I0, I1 and for two backgrounds with rCubg ¼ f0%; 100%g and SVF ¼ 1%. The
difference in background absorption causes a different spectral coloring but so does a variation
of the illumination position. We hypothesize that training our machine learning algorithms on,
i.e., four such spectra will allow us a more accurate and/or more robust estimation compared with
LU and LSD.

Two types of machine learning algorithms were employed for spectral decoloring: feed for-
ward neural networks (NN) and random forests (RF). Training of the MI-LSD models includes
mirrored illumination positions for each volume as a minor data augmentation. Sorting the train-
ing data illumination position spectra stacks by their L1 norm before training was also inves-
tigated but did not prove beneficial on the validation data.

2.5.1 Feedforward neural networks

Feedforward NNs were previously used for LSD implementations.15,19 We used this state-of-the-
art NN architecture as a starting point and further tuned the hyperparameters on the training and
validation sets. Doing so we mainly found the dropout layers of previous implementations to be
counterproductive—dropout leading to a much lower precision on the validation set. The two
final NNs used for both LSD and MI-LSD consisted of four hidden layers with twice the size of

Fig. 6 Examples for spectral coloring in L1 normalized spectra of an absorber with rCutube ¼
100%. Comparison between (a) in silico absorbed energy spectra Ĥ and (b) phantom OA signal
spectra Ŝ. Spectra for two background media are shown: rCubg ¼ 100% (yellow), rCubg ¼
0% (dark); with SVF ¼ 1%. The spectra for two illumination positions I0 (line) and I1 (dotted)
are shown as an example for two of the four illuminations. Systematic changes in the spectral
coloring can be seen for different background media and illumination positions. These changes
are qualitatively similar for Ĥ and Ŝ. On the validation phantom examples LU estimations for single
spectra rCuLUest are listed—spectral coloring can cause large estimation errors relative to the
rCutube ¼ 100% ground truth.
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the input layer (16 for LSD and 64 for MI-LSD), all with leaky ReLu activation layers (and for
comparison and dropout layers). For comparison to the previous implementation, additional
results for a dropout in the dropout layers with probability p ¼ 0.2 are presented in Figs.
S35–S50 and S66–S72 in the Supplementary Material. In the main results, no dropout was used
(p ¼ 0). We segmented all vessels in the 4000 volume training set and trained on the segmented
1,052,152 simulated MI signal spectra for 100 epochs. As in the previous implementation, we
used a batch size of 105 and a learning rate of 10−2 · 0.9epoch∕2. All implementations are doc-
umented in the open source appendix. The trained models are also available in the open data
appendix. We trained the algorithms on an RTX 2060 Super GPU (Nvidia, Santa Clara) and used
the CPU for inference.

2.5.2 Random forest regression

We also investigated RF regression,36 usually a highly accurate learning algorithm for regression
problems with few dimensions.8 RFs are also usually less impacted by noise models. In par-
ticular, they should not overfit to noise.36 This should prove useful as we did not try to model
a realistic wavelength-dependent noise. We used the Python scikit-learn v0.23 implementation of
RF regressors using 100 trees with a maximum depth of 30 to limit memory consumption.
Further parameters were set to default.

3 Results

We first show some qualitative comparisons between in silico rCu and phantom data and then
present the performance of our trained RF and NN models on our in silico rCu test set and the
two phantom test sets.

The hyperparameters of the machine learning models were tuned on the phantom validation
set. The rCu machine learning models that performed best on our validation data were used to
estimate rCu from the test sets. These models are presented in the results. For further information,
all estimations for all models (on the validation set and for every single test measurement) can be
found in the figures in the Supplementary Material; representative examples are shown here.

We trained the same RF and NN models, using the same hyperparameters, on an additional
sO2 training set.

We compare MI-LSD with LSD and LU. Comparing a method based on a single measure-
ment with a method based on multiple such measurements, the multiple measurement method
should generally be more accurate simply due to an increase in SNR. To more fairly compare
MI-LSD with the single spectrum methods such as LU and LSD, we estimated LSD and LU
results on the reconstructed signals, averaged over the four illuminations. Using this averaged
illumination spectrum as input for LU and LSD, we can compare methods for the same delivered
energy during the same time—giving no method an inherent SNR advantage. LSD was also
trained on in silico data using the same averaged illumination spectra from four simulated
illuminations.

In addition to using the validation data set for hyperparameter tuning, we also qualitatively
compared a set of our measurements with Monte Carlo simulations of one of the validation
phantoms, creating an exact in silico representation of the light propagation in the validation
phantom. Figure 7 serves as a qualitative (phantom to in silico) comparison for some of the
averaged illumination spectra.

We report the estimation error distributions on the three distinct test sets. Reported are rCu
estimation errors ΔrCuest ¼ rCuest − rCutube and their absolutes jΔrCuestj, with rCutube being the
ground truth rCu in the tube. In the in silico test set, all selected models are in close agreement.
As shown in Fig. 8, both LSD and MI-LSD estimations of rCu with both RFs and NNs yield
median Q2 absolute estimation errors of <3 percentage points (pp). The same can be seen in
Fig. 9 for the in silico sO2 test set. As expected, estimation with all used models is very fast
compared to LU. Inference on CPU for all the 266,105 samples in the in silico test sets took 1.6 s
for RF MI-LSD, 1.3 s for RF LSD, 0.2 s for NN MI-LSD, 0.04 s for NN LSD, compared to
642 s for LU.
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From phantom test set B, tube signal was segmented by thresholding. In each reconstructed
MI-multispectral OA image stack, two ROIs were chosen: one containing the two upper tubes
and one containing the lower two tubes. One such lower tubes ROI is shown in Fig. 10. Each ROI
has a fixed size of 3.75 mm × 3.3 mm. The 15% highest mean (over all wavelengths and illu-
minations) OA signal pixels in each ROI were segmented as tube and rCu was estimated from the
MI-multispectral OA signals in all pixels of these tube signal areas. The ROIs were thresholded
separately to get an equal number of lower tube samples into the test set. A thresholding on the
entire image or a larger ROI, using a lower cut-off percentage, would lead to more clutter and
noise in the test set and the lower tubes being underrepresented in the test set.

From phantom test set C, the tube signal was segmented in a similar fashion: from each
reconstructed MI-multispectral OA signal image stack an ROI of fixed size (7.5 mm × 1.5 mm)
was selected, containing either the upper tube or the lower tube. Two such lower tubes example

Fig. 8 Error distributions of the in silico rCu test set cf. Fig. 5. (a) rCu estimation errors ΔrCuest and
(b) their absolutes. Blue shows the rCu estimators using MI-LSD, orange the estimators using
LSD, and gray is the LU reference. Medians Q2 of the error distributions are shown, together with
interquartile ranges (IQR) and 90th percentiles P90. The two feedforward NN models and the two
RF models all have median absolute errors below 3 pp.

Fig. 7 Qualitative comparison between spectra in a validation phantom (for SVF ¼ 0) and its
digital twin from Monte Carlo (MC) simulations, showing the effects of various spectral coloring
on the mean illumination spectra. Relative copper rCutube is varied in the target tube (up-down) and
the background medium rCubg (left-right). For reference, linear unmixing (LU) rCu estimates are
given for each spectrum.
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ROIs are shown in Figs. 11(a) and 11(b) for varying reference rCutube. Within these ROIs, the
50% highest mean (over all wavelengths and illuminations) OA signal pixels were segmented as
tube. rCu was then estimated from the MI-multispectral OA signals in all pixels within these tube
signal locations.

The estimated rCu image examples from the test sets are shown for the RF models, because
with the exception of the in silico test set, NN models performed similarly or worse than RF
models. For all estimated rCu images from all models, see the figures in the Supplementary
Material. The error distributions for phantom test set B are shown in Fig. 12 and for phantom
test set C in Fig. 12. Descriptive statistics of the relative error distributions in the estimated rCu
data are reported in Table 1 for the two phantom test sets B and C.

4 Discussion

The qualitative comparison of the absorbed energy spectra from the Monte Carlo simulations and
the phantom OA signal spectra reveals a general agreement between the simulations and the
phantom results. The existing variations between the normalized spectra of the two domains
are likely due to discrepancies in the simulation, e.g., the beam profiles and the optical properties

Fig. 10 Example ROI in the phantom test set B with the estimation results for MI-LSD, LSD, and
LU. Shown are the lower two tubes of a four tube phantom with SVF ¼ 0.5% and rCubg ¼ 25%. To
indicate the content of the ROI, the mean OA signal in the ROI is shown left, with the ground truth
rCutube annotated. The brightness of the OA signal is independently and linearly autoleveled for
each ROI. The mean rCu estimate rCu over the ROI is noted for the three estimators.

Fig. 9 Error distributions of the in silico sO2 test set cf. Fig. 5. (a) sO2 estimation errors ΔsOest
2 and

(b) their absolutes. Blue shows the sO2 estimators using MI-LSD, orange the estimators using
LSD and gray is the LU reference. Medians Q2 of the error distributions are shown, together with
IQR and 90th percentiles P90. The two feedforward NN models and the two RF models all have
median absolute errors below 3 pp.
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of the gel pad. The gel pad for example is currently simulated as water but also has some low-
level scattering properties, which was omitted in the simulation. In addition, the realistic laser
noise was not simulated and the phantom positioning was only accurate to a millimeter. An
acoustic forward simulation (e.g., using k-wave) was also not included in the simulation pipeline
due to computational time constraints. While there are some acoustic artifacts (e.g., reflection
artifacts) in the real OA image reconstructions, it is sensible to assume that they do not vary for
different wavelength illumination, therefore, their effect on spectral coloring should be negli-
gible. Variations in the Grüneisen parameter were also not part of the training set, even though
it does vary significantly with rCu, because ΓðcwbðNiSO4ÞÞ ≈ 0.21 and ΓðcwbðCuSO4ÞÞ ≈ 0.14

at room temperature.27 This results in a systematically higher SNR for low rCu—an effect not
present in sO2,

37 which may explain why high rCu estimations are systematically worse in all of
our phantom test sets. Laser noise levels are also wavelength dependent, which is reinforced
by the pulse energy correction, e.g., resulting in a factor two SNR when measuring at 800 nm
compared with 680 nm.

Fig. 12 Error distributions of the phantom test set B [cf. Fig. 4(b)]. (a) rCu estimation errorsΔrCuest
and (b) their absolutes. Blue shows the rCu estimators using MI-LSD, orange the estimators using
LSD, and gray is the LU reference. Medians Q2 of the error distributions are shown, together with
IQR and 90th percentiles P90. The feedforward NN models performed similar to the RF models for
the LSD method but underperformed for MI-LSD.

Fig. 11 Example ROI 8 mm deep in the phantom test set C with estimation results for MI-LSD,
LSD, and LU. Shown are two ranges of five imaged tubes with their rCutube annotated above their
mean OA signal. The brightness of the OA signal is independently and linearly autoleveled for
each ROI. The mean rCu estimate rCu over the ROI is noted for the three estimators. The ROIs
for two sets of phantoms are shown. (a) A representative result (rCubg ¼ 100%, 1% SVF back-
ground), (b) a result with outlier estimation errors (0% SVF background). LSD has highest esti-
mation errors in deep vessels and in phantoms with no added sulfates in the background medium,
i.e., in (b) for rCutube ¼ 100%.
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Our MI-LSD method with RF estimators was highly accurate with median absolute estima-
tion errors of only 2.9 and 4.5 pp in the two phantom test sets, respectively. Our NN models,
however, failed to give accurate estimates for MI-LSD. LSD estimates using NN were only
improved over the LU reference and only in the phantom test set B. When testing on the OOD
test set C, our NN models showed no clear improvement over LU. This leads us to the initial
conclusion that the overly complex NN models are prone to overfitting to the in silico data, even
when optimizing their hyperparameters with simple phantom data. The attempt to remedy this
with dropout layers lead to overall inaccurate estimations.

It is not surprising that the overall quantification performance was worse in deeper tubes.
SNR in 8 mm deep tubes was very low, i.e., the longer distance illuminations with 980 nm light
often yielded no detectable OA signal. This is due to background water absorption in combi-
nation with the high scattering, even when adding no sulfates to the background medium. We
therefore also investigated omitting these higher wavelengths—training and testing with fewer
wavelengths from 680 to 920 nm spaced 20 nm. This yielded obviously worse model perfor-
mance overall, which either suggests that (these) 13 wavelengths are insufficient for accurate
estimation or suggests that spectral coloring due to water absorption can be useful for a pixelwise
correction of spectral coloring, as it can give implicit information on the optical path length.
For further investigation, it may be useful to add explicit information on the pixel position to
the input features. It may also be interesting to perform similar experiments with a wider range
of and/or more lower wavelength measurements and then optimize the wavelength selection on
these oversampled multispectral sequences. This was not done in this initial proof-of-concept
work because it risks overoptimizing on unrealistic aspects of the rCu model (e.g., the difference
in Grüneisen parameter of the two sulfate solutions) or setup specific aberrations (e.g., wave-
length-dependent SNR). Simulating more wavelengths also prolongs the already computation-
ally expensive, one GPU year, simulation time for the necessary training data (Fig. 13).

A final somewhat surprising observation was that estimation of both LSD and to a lesser
extent MI-LSD is poorest in phantoms with no added sulfates in the background medium.
Figure 14(b) shows the worst estimation results in the lower tubes of phantom test set B—
combining three detrimental circumstances: (1) great depth, (2) high rCu, and (3) only spectral
coloring of water. Though even in this worst case, MI-LSD is more accurate than the LSD or LU
estimations.

Table 1 Relative rCu estimation errors (ΔrCuest) and absolute rCu estimation errors (jΔrCuestj) for
the RFs, NNs, and linear unmixing. Mean, median Q2, first and third quartiles Q1 and Q3, and the
90th percentile P90 are listed for the phantom test sets B (transversal tubes) and C (longitudinal
tubes).

Set

ΔrCuest (pp) jΔrCuestj (pp)

Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 P90

RF MI-LSD B 0.6 −2.7 1.1 3.4 4.1 1.4 2.9 5.3 8.8

C 1.8 −3.1 1.7 6.3 5.6 2.1 4.5 7.9 12.4

LSD B −1.9 −4.4 0.2 2.2 5.2 1.5 3.3 6.2 10.7

C −2.8 −5.3 0.6 2.6 7.1 1.7 3.9 7.9 13.7

NN MI-LSD B −11.3 −18.4 −3.6 0.3 12.8 1.3 5.3 18.4 36.2

C −21.0 −38.2 −12.0 0.1 22.0 2.2 12.0 38.2 58.1

LSD B −3.1 −5.9 −0.3 1.8 6.4 1.1 3.4 8.1 16.7

C −8.7 −15.1 −2.6 1.3 11.4 1.7 5.8 15.7 32.6

LU B −1.2 −8.8 0.1 6.6 8.2 4.0 7.4 11.1 15.2

C −1.0 −8.0 −0.5 6.3 8.7 3.4 7.2 12.5 18.2
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One of the main shortcomings of the presented phantom validation is that it did not model
melanin absorption in skin. Spectral coloring by melanin still causes large errors in standard of
care pulse oximetry devices38,39 and needs to be addressed for quantitative OA imaging. We were,
however, not able to reproducibly include a skin mimicking layer with varying melanin absorption
in our liquid phantoms—future work will address this, using solid, layered gel wax phantoms.40

We showed a proof-of-concept setup with comparably poor image quality due to the US DAQ
and transducer. An in vivo applicable system should make use of state-of-the-art US components

Fig. 13 Error distributions of the phantom test set C [cf. Fig. 4(c)]. (a) rCu estimation errorsΔrCuest
and (b) their absolutes. Blue shows the rCu estimators using MI-LSD, orange the estimators using
LSD, and gray is the LU reference. Medians Q2 of the error distributions are shown, together with
IQR and 90th percentiles P90. The feedforward NN models performed similar to the RF models
for the LSD method but underperformed for MI-LSD.

Fig. 14 Worst estimation example in phantom test set B: deep tubes (b) compared with more
shallow tubes (a) in the same phantom with an SVF ¼ 0%. Estimation results for MI-LSD,
LSD, and LU. To indicate the content of the ROI, the mean OA signal in the ROI is shown left,
with the ground truth rCutube annotated. The brightness of the OA signal is independently and
linearly autoleveled for each ROI. The mean rCu estimate rCu over the ROI is noted for the three
estimators. Shallow tubes can be estimated very accurately while lower SNR in deep, high rCu
tubes correlates to poor estimation accuracy.
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and further engineering improvements to sensitivity and SNR, as this currently further limits the
achievable estimation accuracy for deep ROI using our setup. Wavelength selection and illumi-
nation geometry are suitable but their optimal choice was not the aim of this work. Lastly, while
the rCu model is a very useful tool for the investigation and thorough validation of a quantitative
OA oximetry method and while the MI-LSD approach shows similar results for in silico sO2, an
explicit translation to actual sO2 estimation in vivo must be the next step. One of the main chal-
lenges for this translation will be the adequate modeling of additional chromophore distributions,
such as melanin. Melanin will strongly affect both overall SNR and spectral coloring.

5 Conclusions

We presented MI-LSD, a quantitative OA oximetry method using MIs and machine learning; and
presented a real-time MI OA imaging setup with a linear ultrasound transducer. We used this
setup to image 115 phantom configurations by employing a highly reliable, reproducible, and
easily scalable phantom model.

MI-LSD with RFs was able to accurately and quickly estimate blood oxygen saturation mod-
eled by copper and nickel sulfate. Compared with LU, MI-LSD approximately halved the mag-
nitude of the relative estimation error, achieving median absolute estimation errors of only 2.9
and 4.5 pp in our two phantom test sets, respectively. To investigate such ML regression meth-
ods, thorough phantom validation is critical, as in silico tests do not give sufficient data to val-
idate a method, and in vivo measurements lack a reliable ground truth. This is further illustrated
by the fact that previously reported LSD NNmodels, which were only validated on in silico data,
slightly outperformed RF models on in silico data (as was previously reported) but underper-
formed RF models in phantom tests while simply breaking on OOD phantom data.

The results of this study give us a high degree of confidence that the domain gap from
in silico spectral decoloring to real data can be bridged using MI-LSD, paving the way to a
clinical application of quantitative OA oximetry imaging.
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The code for the methods as well as the experiments was implemented in Python 3.7 and is
fully open source, available at github:thkirchner/PA-MI-LSD. All training, validation, and test
data sets generated in this work are openly available at doi:10.5281/zenodo.4549631. The raw
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Monte Carlo simulation results and raw OA scans are too large for upload – 3 TB – but available
from the authors upon reasonable request.
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