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Abstract

Significance: Accurate early diagnosis of malignant skin lesions is critical in providing ade-
quate and timely treatment; unfortunately, initial clinical evaluation of similar-looking benign
and malignant skin lesions can result in missed diagnosis of malignant lesions and unnecessary
biopsy of benign ones.

Aim: To develop and validate a label-free and objective image-guided strategy for the clinical
evaluation of suspicious pigmented skin lesions based on multispectral autofluorescence lifetime
imaging (maFLIM) dermoscopy.

Approach: We tested the hypothesis that maFLIM-derived autofluorescence global features
can be used in machine-learning (ML) models to discriminate malignant from benign pigmented
skin lesions. Clinical widefield maFLIM dermoscopy imaging of 41 benign and 19 malignant
pigmented skin lesions from 30 patients were acquired prior to tissue biopsy sampling. Three
different pools of global image-level maFLIM features were extracted: multispectral intensity,
time-domain biexponential, and frequency-domain phasor features. The classification potential
of each feature pool to discriminate benign versus malignant pigmented skin lesions was evalu-
ated by training quadratic discriminant analysis (QDA) classification models and applying a
leave-one-patient-out cross-validation strategy.

Results: Classification performance estimates obtained after unbiased feature selection were as
follows: 68% sensitivity and 80% specificity with the phasor feature pool, 84% sensitivity, and
71% specificity with the biexponential feature pool, and 84% sensitivity and 32% specificity
with the intensity feature pool. Ensemble combinations of QDA models trained with phasor
and biexponential features yielded sensitivity of 84% and specificity of 90%, outperforming all
other models considered.

Conclusions: Simple classification ML models based on time-resolved (biexponential and
phasor) autofluorescence global features extracted from maFLIM dermoscopy images have
the potential to provide objective discrimination of malignant from benign pigmented lesions.
ML-assisted maFLIM dermoscopy could potentially assist with the clinical evaluation of
suspicious lesions and the identification of those patients benefiting the most from biopsy
examination.
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1 Introduction

Skin cancer is the most common type of cancer in the United States, with melanoma being the
fifth most prevalent among men and women.1 The 5-year survival rate of patients with early-
stage skin melanoma is ∼94%; however, ∼13% of skin melanoma patients are diagnosed with
lesions already at intermediate or advance stages,1 which are associated with 5-year survival
rates of ∼61% and ∼27%, respectively. The most common diagnosis strategy for skin cancer
is clinical evaluation of suspicious lesions followed by biopsy for histopathological evaluation to
confirm diagnosis and tissue staging. One major drawback of this practice is the inability to
clinically distinguish between similar lesions; in particular, melanoma is often mistaken for other
benign pigmented lesions such as seborrheic keratosis (pSK). In addition, it is known that the
accuracy of melanoma diagnosis with unaided eye is only about 60%.2 Therefore, clinical tools
that could provide objective, in situ, and accurate noninvasive discrimination between malig-
nant and benign skin lesions during clinical examination could significantly improve early
detection of skin cancer, reduce the risk of adverse events, and lead to improved cost-conscious
patient care.

One of the most common tools used by physicians to diagnose skin cancer lesions is the
dermoscope2–4 which helps the unaided eye by magnifying the features on the skin. This allows
doctors to examine the morphological features of concerning lesions at a significantly more
detailed level. Although dermoscopy is known to improve the diagnostic sensitivity of skin
lesions by ∼10% to 30%, its performance largely depends on both the level of experience
of the dermatologist and the type of lesions.2 The highly subjective nature and poor reproduc-
ibility of this method have led to the emergence of several proposed computer-aided diagnostic
(CAD) systems.3,5–7

CAD systems are becoming largely popular in both diagnosis and prognosis of various
diseases as they allow automated and noninvasive analysis of the tissue conditions. Table 1
summarizes some of the published works that reports the diagnosis and classification of pig-
mented skin lesions. Most of the works used dermoscopic images that were either collected by
the authors or from publicly available datasets (e.g., ISIC archive, ISBI, Atlas, HAM10000, or
PH2). Celebi and Zornberg8 explored the clinically significant colors in dermoscopic images
using K-means clustering and employed symbolic regression to classify the lesions. Ramlakhan
and Shang9 designed a melanoma recognition system using smart phone photographs that are
classified using k-nearest neighbor (kNN) algorithm. Satheesha et al.10 examined computerized
three-dimensional (3D) dermoscopy features of skin cancer lesions to develop multiclass clas-
sifiers using Adaboost, bag of features (BoF), and support vector machine (SVM) techniques.
Khristoforova et al.11 used logistic regression to classify benign and malignant skin lesions using
spectral features from Raman and autofluorescence spectroscopy measurements.

Classification of dermoscopy images of benign and malignant skin lesions using different
deep learning approaches has also been reported. Harangi13 used an ensemble of different con-
volutional neural network (CNN) classifiers, while Romero Lopez et al.14 used transfer learning
with pretrained VGGNet CNN architecture. Majtner et al.15 combined CNN with SVM classifier
using handcrafted RSurf features and local binary patterns to classify melanomas from other
benign skin lesions. Lee et al.16 developed the WonDerm pipeline that segments the skin cancer
dermoscopic images using neural network architectures and classifies it using an ensemble
approach. Amin et al.17 extracted features using pretrained AlexNet and VGG16 deep learning
architectures, performed feature selection using principal component analysis, and applied tradi-
tional machine learning models including SVM, kNN, and discriminant analysis. Jojoa Acosta
et al.18 utilized transfer learning with ResNet-152 architecture to classify benign and malignant
skin lesions using dermoscopic images.
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It has been widely established that autofluorescence responses of intrinsic fluorophores vary
significantly between normal and neoplastic tissues.19–23 Neoplastic progressions in the epi-
thelial tissue are associated with morphological, biochemical, and functional alterations which
can cause changes in the autofluorescence responses from the tissue.22–24 The skin has several
intrinsic fluorophores, such as nicotinamide adenine dinucleotide (NADH), flavin adenine dinu-
cleotide (FAD), collagen, elastin, keratin, melanin, and porphyrins.19,25–27 The levels of two met-
abolic cofactors and endogenous fluorophores in the epidermis, the reduced-form NADH and
FAD, can change as skin cancer develops.19,24 The optical redox ratio, typically defined as the
ratio of fluorescence intensity of NADH to FAD, is sensitive to changes in the cellular metabolic
rate. Increased cellular metabolic activity, a hallmark of neoplastic cell transformation, is usually
attributed to a decrease in the optical redox ratio. In addition, the fluorescence lifetimes of these
metabolic cofactors are sensitive to protein binding, thus to cellular metabolic pathways involv-
ing NADH and FAD. As a result, carcinogenesis process has been shown to cause changes in
both NADH and FAD fluorescence lifetimes. Finally, cancer development also leads to extrac-
ellular matrix remodeling occurring within the dermis, which together with concurring epidermis
thickening, result in a decrease in connective tissue autofluorescence that can be measured.
Therefore, interrogation of NADH, FAD, and collagen autofluorescence could provide optical
biomarkers of skin epithelial cancer.

Preferential excitation of these endogenous fluorophores in the tissue by multiple excitation
sources could shed light on the biochemical changes in the target lesion area.28 The broad emis-
sion spectral bandwidth of the fluorescence intensity signal has an intrinsic disadvantage in that
it is difficult to differentiate between the intensities of overlapping emissions from multiple flu-
orophores. Time-resolved technique such as multispectral autofluorescence lifetime imaging
(maFLIM) overcomes this challenge by quantifying the fluorescence lifetime in addition to the
emission spectrum. Alex et al.29 demonstrated fluorescence lifetime-based imaging of minipig
skin and human skin to specifically target the endogenous fluorophores: keratin, NADH, mela-
nin, elastin, and collagen under 725-nm multiphoton excitation. The capability of such optical
biopsy techniques to serve as promising tools for dermatological research to facilitate preclinical
and clinical translation is also highlighted. Huck et al.30 demonstrated the effectiveness of the
combined modality, multiphoton-based intravital tomography and fluorescence lifetime imaging
to monitor the progression of inflammatory skin diseases. The two modalities studied the bio-
chemical changes induced by the redistribution of mitochondria at different stages of inflam-
matory skin conditions.

Several animal and human tissue studies have been published on the autofluorescence prop-
erties of skin cancer lesions.31–35 Pastore et al.36 conducted experiments with mouse models to
study the autofluorescence response from melanoma skin lesions using multiphoton excitation at
740 and 900 nm and emission spectral bands at 447 and 540 nm. A significant difference in the
bound and free NADH ratio between cancerous and noncancerous sites was observed, while the
fluorescence decay obtained from targeting FAD remained almost the same between the two
regions. It was also mentioned that the presence of melanin in the deeper layers of the skin
tissue could interfere with the overall fluorescence response from the lesions. Miller et al.32

studied the autofluorescence emission properties between squamous cell carcinoma (SCC) bear-
ing and normal mice skin under 480-nm excitation, and a decrease in the short lifetime com-
ponent for SCC in comparison to normal skin was observed for 535-nm emission band. Drakaki
et al.37 studied the autofluorescence responses from mouse, chicken, and pig skins under ultra-
violet (UV) excitation, and the structural differences and the variations in tissue constituents
were investigated between the different animal species for an emission spectral band between
340 and 950 nm. De Beule et al.34 investigated the autofluorescence response from ex vivo
biopsy skin lesions under 355- and 440-nm excitations, and the average fluorescence lifetime
was found to be useful in discriminating basal cell carcinoma (BCC) from normal skin tissues at
the emission band between 390 and 600 nm. Galletly et al.31 imaged unstained human biopsy
samples using maFLIM under a 355-nm pulsed laser excitation, and significant differences in the
mean fluorescence lifetimes for the emission wavelengths 375 and 455 nm were observed
between the autofluorescence responses from BCC skin lesions and healthy skin. Lohmann and
Bodeker38 analyzed the fluorescence intensities at the emission wavelength 470 nm, from human
skin with melanoma, nevi, and dysplastic nevi lesions under 365-nm excitation, and a significant

Vasanthakumari et al.: Discrimination of cancerous from benign pigmented skin lesions. . .

Journal of Biomedical Optics 066002-6 June 2022 • Vol. 27(6)



difference in fluorescence intensities was observed for melanoma and nevi lesions, while mela-
noma and dysplastic nevi lesions did not show much difference. Fast et al.39 investigated the
autofluorescence response from human skin at 780-nm frequency doubled excitation and two
emission channels at 535 and 720 nm corresponding to red and green channels. Red channel
collects fluorescence emission from melanin, while the green channel collects emission from
keratin, NAD(P)H, FAD, and elastin.

In this work, we developed and validated a label-free and objective image-guided strategy
for the clinical evaluation of suspicious pigmented skin lesions based on maFLIM dermoscopy.
In addition, a computationally efficient frequency-domain deconvolution of maFLIM data is
explored, and three different pools of global image-level maFLIM features were evaluated for
machine-learning (ML)-based objective discrimination between malignant and benign pigmented
skin lesions.

2 Methods

A summary of the complete methodology performed in this study is shown in Fig. 1.

2.1 maFLIM Dermoscopy Imaging of Skin Lesions

A total of 30 patients (npatients ¼ 30) from the Dermatology Department of the Amaral Carvalho
Cancer Hospital (Jahu, Sao Paulo, Brazil) were recruited for this study, following a human study
protocol approved by the Internal Review Board of that institution (CAAE: 71208817.5.00005434).
Only patients presenting at least one pigmented skin lesion undergoing biopsy examination for
skin cancer diagnosis were recruited. The pigmented skin lesions considered in this work are solar
lentigo, pSK, pigmented superficial BCC, pigmented nodular BCC, and melanoma.

maFLIM images were obtained from clinically suspicious lesions using an in-house devel-
oped time-domain maFLIM dermoscope previously described.40 With this maFLIM dermo-
scope, skin tissue autofluorescence is simultaneously imaged at three emission bands (390� 20,
452� 22.5, and >496 nm, preferentially targeting collagen, NADH, and FAD autofluorescence
emission, respectively) with a temporal resolution of 0.4 ns, field-of-view (FOV) of 8.65 ⋅
8.65 mm2, and lateral resolution of 120 μm. For the rest of the paper, the emission wavelengths
at the three spectral channels will be more conveniently referred to as 390, 452, and 500 nm.
After signing the corresponding written informed consent form, each patient underwent the
following imaging protocol right before the scheduled biopsy examination procedure. First, the
lesion was gently cleaned with a gauze soaked in a saline solution. Then, the tip of the maFLIM

Fig. 1 Summary of methodology showing maFLIM image acquisition, preprocessing, feature
extraction, and classification. maFLIM, multispectral autofluorescence lifetime imaging.
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dermoscope, previously disinfected using a gauze soaked in 70% ethanol, was placed in contact
with the lesion, and an maFLIM image was acquired. The imaging site was selected so regions
within and outside the visible lesion were present within the FOVof the maFLIM dermoscope.
Right after maFLIM imaging, lesion tissue biopsy was performed following standard proce-
dures. Each maFLIM image was labeled based on the histopathological evaluation of the lesion
biopsy, which was considered the gold standard in this study. All images were acquired with a
laser excitation at 355 nm and average excitation power of 10 mWmeasured at the sample, 140 ×
140 pixels per image, and at a pixel rate of 10 kHz. These image acquisition parameters cor-
responded to an acquisition time of 1.96 s per image and an excitation energy exposure of 1.96
mJ at the sample, which is significantly lower than the maximum permissible exposure levels
for skin based on guidelines from the American National Standards Institute – ANSI.41 The total
number of lesions imaged from the 30 patients was 60 (i.e., nlesions ¼ 60). An instrument
response function (IRF) was measured by acquiring the reflection of excitation pulse by placing
a mirror at the sample end.

2.2 maFLIM Data Preprocessing

Pixel-level preprocessing: The maFLIM data measured at each image pixel ðp; qÞ are composed
of three fluorescence intensity temporal decay signals ym;λðp; q; tÞmeasured at the three targeted
emission spectral bands (λ). The preprocessing steps applied to each pixel maFLIM temporal
signal is shown in Fig. 2(a). First, offset subtraction was applied to the raw maFLIM signal,
ym;λðp; q; tÞ, followed by spatial averaging (order 5 × 5) to increase the signal-to-noise ratio
(SNR) of the time-dependent signal. The offset was estimated by fitting a straight line on the
first and last five time points in each channel. The baseline was then subtracted from the entire
time vector to obtain the corrected signal. Since the background fluorescence was significantly
lower than the sample fluorescence, the background correction of the signals was not performed.
Second, the duration of the temporal decay signals for all emission bands was adjusted to the
length of the longest signal among the three emission channels, which is 149 temporal samples
(59.6 ns) by applying zero padding to the short signals. Finally, the signals from the three
emission channels, yλðp; q; tÞ, are concatenated to form yðp; q; tÞ as shown in Eq. (1). Signal
concatenation is essential for cluster analysis in image level preprocessing, explained later in
this section, as well as for frequency-domain deconvolution explained in Sec. 2.3.2. The con-
catenated signal at each pixel location can be represented as

EQ-TARGET;temp:intralink-;e001;116;338yðp; q; tÞ ¼
X2
n¼0

yλnþ1
ðp; q; ðt −M:nÞÞ; (1)

Fig. 2 (a) Transformations in a single pixel multispectral maFLIM data during pixel-level prepro-
cessing. (b) Example maFLIM image with K -means cluster mask and the two separated regions.
The images map the total integrated intensity of the maFLIM signals at each pixel location.
maFLIM, multispectral autofluorescence lifetime imaging.
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where yðp; q; tÞ is the preprocessed concatenated maFLIM decay signal; yλ1ðp; q; tÞ, yλ2ðp; q; tÞ,
and yλ3ðp; q; tÞ are the preprocessed maFLIM decay signals from each of the three spectral chan-
nels, λ1 ¼ 390 nm, λ2 ¼ 452 nm, and λ3 ¼ 500 nm; M is the temporal spacing between the
signals from the three channels; ðp; qÞ indicates the pixel locations. The value of M is equal
to 149, which is the length of the fluorescence emission decays in each channel.

Image-level preprocessing: Pixels presenting either signal saturation or low SNR (<15 dB)
were detected and masked. The majority of the acquired maFLIM images contain pixels from
within and outside the skin lesion region; thus, cluster analysis was performed to group pixels
based on their region of origin. The concatenated signal yðp; q; tÞ is used as the feature vector
for cluster analysis at each pixel location to simultaneously include the information from the
three emission channels. The steps for cluster analysis are as follows: First, an unsupervised
K-means clustering algorithm was applied to generate two cluster masks. Then, each cluster
mask is applied to the maFLIM image to define two regions within the FOV of the maFLIM
image. It should be noted that since the K-means clustering algorithm involves random initial-
ization of cluster centroids, it is difficult to identify which cluster mask belongs to within or
outside the skin lesion region; thus, the identified regions were taken as two arbitrary regions:
region-1 and region-2. Figure 2(b) shows an example of the cluster mask and the two separated
regions generated from a representative maFLIM image.

2.3 Feature Extraction

2.3.1 Features based on time-domain deconvolution parameter estimation

In the context of time-domain maFLIM data analysis, the fluorescence decay yλðp; q; tÞ mea-
sured at each emission spectral band (λ) and spatial location ðp; qÞ can be modeled42 as the
convolution of the fluorescence impulse response (FIR) hλðp; q; tÞ of the sample and the mea-
sured IRF uλðtÞ:

EQ-TARGET;temp:intralink-;e002;116;409yλðp; q; tÞ ¼ uλðtÞ � hλðp; q; tÞ: (2)

The standard method for time-domain maFLIM data analysis proceeds by first deconvolving
the IRF of each spectral band (uλðtÞ) from the corresponding measured time-resolved fluores-
cence signal yλðp; q; tÞ to estimate the sample FIR for each image pixel, hλðp; q; t),39 which is
usually modeled as a multiexponential decay. The model order (number of exponential compo-
nents) can be selected by analyzing the model-fitting mean squares error (MSE) as a function of
the model order. For the maFLIM data of this study, a model order of two was selected, since the
addition of a third component did not reduce the MSE. The variations in error for one, two, and
three exponential components during fitting is shown in Fig. S1 in the Supplemental Material.
The FIR was modeled as

EQ-TARGET;temp:intralink-;e003;116;269hλðp; q; tÞ ¼ αfast;λe
−t

τfast;λðp;qÞ þ αslow;λe
−t

τslow;λðp;qÞ; (3)

where τfast;λ and τslow;λ represent the time-constant (lifetime) of the fast and slow decay com-
ponents, respectively; while αfast;λ and αslow;λ represent the contribution of the fast and slow
decay components, respectively. The average fluorescence lifetime for each spectral band at each
pixel location is computed as

EQ-TARGET;temp:intralink-;e004;116;185τavg;λðp; qÞ ¼
R
thλðp; q; tÞdtR
hλðp; q; tÞdt

: (4)

The parameters of the biexponential decay model are estimated for each pixel by nonlinear
least squares iterative reconvolution.42 After deconvolution, the biexponential parameters esti-
mated at each pixel can be used as features representing the temporal dynamics of the fluores-
cence decays at each emission spectral band: αfast;λðp; qÞ, αslow;λðp; qÞ, τfast;λðp; qÞ, τslow;λðp; qÞ,
and τavg;λðp; qÞ. Since the sum of αfast;λðp; qÞ and αslow;λðp; qÞ is equal to one, only one of them
is kept as a feature.
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In addition, the following spectral intensity features can be also estimated from the decon-
volved FIR, hλðp; q; tÞ. Absolute fluorescence intensities Iλðp; qÞ for each emission spectral
bands are simply computed by time integrating the FIR hλðp; q; tÞ:

EQ-TARGET;temp:intralink-;e005;116;699Iλðp; qÞ ¼
Z

hλðp; q; tÞdt: (5)

The normalized fluorescence intensities Iλ;nðp; qÞ can be also computed from the multispectral
absolute fluorescence intensities Iλðp; qÞ as follows:

EQ-TARGET;temp:intralink-;e006;116;632Iλ;nðp; qÞ ¼
Iλðp; qÞP
λ Iλðp; qÞ

: (6)

Lastly, the ratio of absolute intensities from the three spectral channels is computed at each pixel
location resulting in three additional features:

EQ-TARGET;temp:intralink-;e007;116;563I390;n∕I452;nðp; qÞ ¼
I390;nðp; qÞ
I452;nðp; qÞ

; (7)

EQ-TARGET;temp:intralink-;e008;116;506I452;n∕I500;nðp; qÞ ¼
I452;nðp; qÞ
I500;nðp; qÞ

; (8)

EQ-TARGET;temp:intralink-;e009;116;470I390;n∕I500;nðp; qÞ ¼
I390;nðp; qÞ
I500;nðp; qÞ

: (9)

In general, the features can be computed at the pixel or the image level. In this study, image-
level global features were explored, whereby one set of features, a single feature vector, is esti-
mated to represent the whole image. Each global feature was computed from the corresponding
pixel-level maFLIM feature map as follows. Based on the two regions identified per image using
the cluster analysis described in Sec. 2.2, the feature median value for each region was computed,
and the absolute value of their difference was taken as the global feature:

EQ-TARGET;temp:intralink-;e010;116;373FeatureGlobal ¼ jmedianðFeaturepixel−level;Region−1Þ −medianðFeaturepixel−level;Region−2Þj: (10)

Since FeatureGlobal is the absolute difference between the feature median values from the two
clustered regions, it is independent of labeling the regions as either lesion or healthy. This is
particularly beneficial as it is difficult to label the clustered regions due to the unavailability
of the pixel-level ground truth labels as well as the randomness in the K-means algorithm.
These defined global features have the advantage of reducing patient-to-patient variability in
the extracted features, which is particularly important as the color and texture of skin vary con-
siderably with ethnicity and age. This feature extraction approach based on time-domain decon-
volution of the maFLIM data generates a total of six intensity and 12 biexponential global
maFLIM features, as summarized in Table 2.

Table 2 Feature set showing both intensity and biexponential global
maFLIM features.

Intensity features Biexponential features

I390;n I390;n∕I452;n αfast;390 αfast;452 αfast;500

I452;n I452;n∕I500;n τslow;390 τslow;452 τslow;500

I500;n I390;n∕I500;n τfast;390 τfast;452 τfast;500

— — τavg;390 τavg;452 τavg;500
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2.3.2 Phasor-based features from frequency-domain deconvolved signals

As mentioned in Sec. 2.3.1, the parameters of the biexponential decay model are estimated for
each pixel by nonlinear least squares iterative reconvolution, which is computationally expensive
and time consuming. This brings about the need to develop a much simpler algorithm for
extracting maFLIM features with comparatively similar discriminative capability. An alternate
fitting-free strategy explored in this work is inspired by Campos-Delgado et al.,43 where a model-
free representation of maFLIM data was developed utilizing the frequency-domain properties of
the phasor representations. Here, we aim to replace the iterative time-domain deconvolution
process by a simple division operation in the frequency domain.44 The computational overload
is further reduced by processing the fluorescence decays of all the three spectral channels
together, unlike in the traditional method where the maFLIM signal for each spectral channel
must be processed separately. Subsequently, several features can be extracted from the fre-
quency-domain phasor representation of the maFLIM data.45,46 The presented method proceeds
in three steps: (1) performing frequency-domain deconvolution of the instrument response from
the concatenated pre-processed fluorescence decays from all the three spectral channels, (2) con-
structing phasor plots for the maFLIM data, and (3) extracting global features from the phasor
plots representing each maFLIM image. A detailed description of this method is presented as
follows.

In this approach, the preprocessed and concatenated maFLIM signals at each pixel location,
yðp; q; tÞ are normalized to sum one for further processing and feature extraction. Similar to the
concatenated, preprocessed signal, yðp; q; tÞ, the concatenated IRF from all the three spectral
channels can be mathematically represented as

EQ-TARGET;temp:intralink-;e011;116;465uðtÞ ¼
X2
n¼0

uλnþ1
ðt −M:nÞ; (11)

where uðtÞ is the concatenated IRF; uλ1ðtÞ, uλ2ðtÞ, and uλ3ðtÞ are the IRF signals from the three
spectral channels; M is the temporal spacing between the signals from the three channels; and
ðp; qÞ indicates the pixel positions.

The first step of the algorithm is to compute the Fourier transform (FT) of both the prepro-
cessed concatenated signal and the concatenated IRF. The FT of the signals yðp; q; tÞ and uðtÞ
can be represented as Yðp; q;ωÞ and UðωÞ, respectively, where ω is the angular frequency:

EQ-TARGET;temp:intralink-;e012;116;342Yðp; q;ωÞ ¼ FTfyðp; q; tÞg; (12)

EQ-TARGET;temp:intralink-;e013;116;299UðωÞ ¼ FTfuðtÞg: (13)

If the effective FIR from all the three fluorescence emission channels is denoted as hðp; q; tÞ, the
effective fluorescence frequency response Hðp; q;ωÞ is obtained from the FT of hðp; q; tÞ as

EQ-TARGET;temp:intralink-;e014;116;265Hðp; q;ωÞ ¼ FTfhðp; q; tÞg: (14)

Therefore, the convolution in Eq. (1) can be represented as a multiplication in the frequency
domain as

EQ-TARGET;temp:intralink-;e015;116;210Yðp; q;ωÞ ¼ Hðp; q;ωÞUðωÞ: (15)

To uniformly scale all the frequency components of Yðp; q;ωÞ, the normalization with respect to
the DC response Yðp; q; 0Þ can be applied as follows:

EQ-TARGET;temp:intralink-;e016;116;155

Yðp; q;ωÞ
Yðp; q; 0Þ ¼ Hðp; q;ωÞUðωÞ

Hðp; q; 0ÞUð0Þ : (16)

Subsequently, the normalized fluorescence frequency response Pðp; q;ωÞ can be estimated as
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EQ-TARGET;temp:intralink-;e017;116;526Pðp; q;ωÞ ¼ Hðp; q;ωÞ
Hðp; q; 0Þ ¼ Yðp; q;ωÞUð0Þ

UðωÞYðp; q; 0Þ : (17)

A phasor representation for the normalized frequency response Pðp; q;ωÞ at specific values
of the frequency ω can be generated by plotting the real Re½Pðp; q;ωÞ� versus the imaginary
Im½Pðp; q;ωÞ� components of Pðp; q;ωÞ. Therefore, each pixel of the maFLIM image is
mapped to a point in the corresponding phasor plot generated for a specific frequency. This
transformation is shown in Fig. 3, where a representative maFLIM image is mapped to its cor-
responding phasor plot for an arbitrary frequency. Region-1 and region-2 marked on the
maFLIM image represent the regions obtained after clustering. The pixels of each region are
mapped into a two-dimensional (2D)-histogram distribution on the phasor plot, as shown
in Fig. 3.

From the phasor representations of the maFLIM images at specific frequency components,
ω ¼ 2πf, the following features were computed as follows. First, a bivariate Gaussian function
was fitted to the phasor distribution of each region (region-1 and region-2) of a given maFLIM
image: f1 ¼ Nðμ1;Σ1Þ, f2 ¼ Nðμ2;Σ2Þ (Fig. 4). The “distance” between the phasor distribu-
tions of the two regions was then estimated as the magnitude of the difference of the distribution
means: d ¼ jμ1 − μ2j [Fig. 4(a)]. The determinant of the covariance matrix jΣj from the fitted
Gaussian distribution provides a measure of the “spread” of the distribution. The difference in
spread of the phasor distributions of the two regions was thus estimated as: ΔΣ ¼ jΣ1 − Σ2j
[Fig. 4(b)]. The “angle” θ between major axes of the phasor distributions of the two regions
was estimated as the acute angle between the eigenvectors of maximum variance of the multi-
variate Gaussian distributions (Fig. 4(b)). Finally, the “symmetry” of the Gaussian distribution

can be quantified as the ratio of the variances along the orthogonal directions, s ¼ σ2p
σ2q
[Fig. 4(c)].

The difference in symmetry of the phasor distributions of the two regions was thus estimated
as: Δs ¼ js1 − s2j.

The fluorescence frequency response Hðp; q;ωÞ is bandlimited with a bandwidth of
∼60 MHz. To cover the bandwidth of Hðp; q;ωÞ, only the first nine frequency components
of Hðp; q;ωÞ were selected, corresponding to the frequencies 5.6, 11.2, 16.8, 22.4, 28,
33.6, 39.2, 44.8, and 50.4 MHz. These frequency values are the first nine harmonics of the signal
Fourier spectrum, which was calculated at a frequency resolution of 5.6 MHz (sampling fre-
quency/#samples ¼ 2.5 GHz∕ð3 × 149Þ). For each of these frequency components, the four
phasor features were computed, resulting in a total of 36 phasor features.

2.4 Feature Selection

For maFLIM dermoscopy-based automated classification of benign versus malignant skin
lesions, a simple quadratic discriminant analysis (QDA) model was explored with the global

Fig. 3 Transition of a sample maFLIM image to the corresponding 2D histogram distribution on the
phasor plot. Figure also shows the transformation of pixels from both regions 1 and 2 on the
maFLIM image into corresponding points on the phasor plot computed at an arbitrary frequency
component.
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features described in Sec. 2.3. Three different pools of global features were considered: (1) inten-
sity (nfeatures ¼ 6), (2) biexponential (nfeatures ¼ 12), and (3) phasor (nfeatures ¼ 36) features,
where nfeatures is the number of features in each feature pool. In addition to these individual
feature pools, different combinations of the feature pools were also considered: phasor ∪
biexponential (nfeatures ¼ 48), phasor ∪ intensity (nfeatures ¼ 42), intensity ∪ biexponential
(nfeatures ¼ 18), and phasor ∪ biexponential ∪ intensity (nfeatures ¼ 54). Feature selection using
sequential forward search (SFS)47 was performed on each feature pool independently using a
leave-one-patient-out cross-validation (LOPO-CV) strategy, whereby the data of one patient are
left out at each fold [Fig. 5(a)]. This assures that the left-out patient data are not used for feature
selection and model training. Unlike exhaustive search where every possible combination of
features is examined, SFS is computationally simpler and provides an efficient strategy to inves-
tigate the importance of the available features. The steps involved in the SFS feature selection
process are shown in Fig. 5(b). The feature subset yielding the highest area under the curve
(AUC) value in receiver operator characteristics (ROC) analysis was selected (fSFS) at each iter-
ation of the LOPO-CV. Subsequently, the QDA classifier is retrained using fSFS at each LOPO-
CV iteration and then tested using the left-out patient data. A threshold of 0.5 on the generated
posterior probability classifies the left-out patient data into either benign or malignant. Upon
accomplishing all folds, each patient data had been used as test, and a confusion matrix was
constructed to estimate the classification model performance. The number of features selected
during SFS (nSFS) is kept constant in each fold of the LOPO-CV. Therefore, to determine the
number of features that can produce the best classifier, the experiments are repeated for different
values of nSFS, varying from 1 to 7 (1 to 6 for intensity feature pool). The maximum number of
features in the feature set is chosen based on Hua et al.,48 where the optimal number of features
for feature sets with some degree of correlation is

ffiffiffiffiffiffiffiffiffi
ndata

p
, where ndata is the number of data

points. In this case, the maximum number of features is chosen as the closest and lower integer
value to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nlesions

p ¼ ffiffiffiffiffi
60

p ¼ 7.75 ∼ 7. The value of nSFS that produced the best F-score computed
from the final confusion matrix was then chosen as the number of features in the final feature set

Fig. 4 (a) 2D histogram phasor distributions from the pixels corresponding to the two regions in an
maFLIM image. The distance between the distributions is indicated by “d .” (b) Phasor distribution
scatter plots with bivariate Gaussian fits on regions 1 and 2. The covariance matrices Σ1 and Σ2

give a measure of spread of the two regions and θ represents the angle between their major axes.
(c) Phasor distribution scatter plot showing the variances σ2p and σ2q along the major axes. The ratio
of the variances indicates the symmetry of the distribution.
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(nselected). This is because F-score gives a combined estimate of both the sensitivity and speci-
ficity. However, in cases when two values of nSFS produce the same F-score, a higher sensitivity
is given more preference. This is because it is critical to ensure that the malignant lesions are
correctly classified to provide adequate and timely treatment to the patients.

Since the LOPO-CV iterates Npatient times, where Npatient is the number of patient data, the
features fSFS selected in each iteration for a particular value of nSFS depend on the (Npatient − 1)
patient data that are not left out by that iteration. Thus, there can be some variation in the features
that are picked out in each iteration of the LOPO-CV. Therefore, the selection frequency is noted,
which is defined as the number of times each feature becomes part of the fSFS during all iter-
ations of the LOPO-CV. This allowed to identify the most frequent (thus most relevant) features
(fselected) from each feature pool. It is to be noted that the number of features in each fselected is
denoted as nselected.

2.5 Classification of Skin Cancer Lesions Using Selected Features

QDA classifiers trained on the best features, fselected, from the three feature pools as explained in
Sec. 2.4 were also combined in an ensemble fashion as shown in Fig. 6(a). Separate classifiers
are trained on “k” feature pools with an LOPO-CV loop. If all the feature pools are used, k ¼ 3,
otherwise, k ¼ 2. The left-out patient data from the LOPO-CV are tested on each of the indi-
vidual classifiers, generating a set of posterior probabilities, Ppool-1; Ppool-2; : : : ; Ppool-k, corre-
sponding to classifiers trained on each feature pool. Here, Pool-k is either phasor, intensity,
or biexponential feature pool. Subsequently, a weighted average of the posterior probabilities
is computed as

EQ-TARGET;temp:intralink-;e018;116;198P ¼ w1Ppool−1 þ w2Ppool−2: : : þ wkPpool−k; (18)

EQ-TARGET;temp:intralink-;e019;116;154w1 þ w2 þ : : : þ wk ¼ 1; (19)

where w1; w2; : : : ; wk are the weights on the posterior probabilities generated from each feature
pool, while the sum of weights equals one. A threshold of 0.5 on the weighted average of the
posterior probabilities assigns a label for the left-out patient data. Figure 6(b) shows the process
of weight optimization for the ensemble classifiers. Weight optimization is performed within
another LOPO-CV loop. The classifiers are trained on the data from ðnpatients − 2Þ patients and
the left-out patient data are predicted to generate corresponding posterior probabilities. These
posterior probabilities are combined using a weighted average. The weights are varied from 0 to

Fig. 5 Flow diagram showing (a) feature selection process using LOPO-CV along with SFS algo-
rithm, and (b) detailed steps involved in the SFS algorithm. The number of features selected, nSFS,
is varied from 1 to 7 for all feature pools and 1 to 6 for intensity feature pool. SFS, sequential
forward search; LOPO-CV, leave-one-patient-out cross-validation; AUC,– area under the curve.
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1 in steps of 0.1. The corresponding sensitivities and specificities are obtained using a threshold
of 0.5 on the weighted-average probability. An ROC curve is constructed on these weights, and
the weight closest to the ideal point ([0,1]) is selected.

3 Results

3.1 maFLIM Dermoscopy Clinical Imaging of Skin Lesions

The distribution of patients (npatients ¼ 30) and lesions (nlesions ¼ 60) imaged in this study show-
ing benign and malignant conditions is provided in Table 3. Benign lesions included solar lentigo
and pSK, while malignant lesions included pigmented superficial BCC, pigmented nodular
BCC, and melanoma.

Figure 7(a) shows a handheld maFLIM dermoscope imaging the forearm of a patient. The
clinical photograph of a sample melanoma skin lesion is shown in Fig. 7(b), and its correspond-
ing maFLIM feature maps are shown in Fig. 7(c). The scales of the feature maps across the
three spectral wavelengths are kept the same for comparison purposes. Most of the feature maps
(including αfast;390, αfast;452, τfast;452, τfast;500, τslow;390, τslow;452, τslow;500, τavg;390, τavg;452 τavg;500,

Fig. 6 (a) Schematic of classification of skin lesions. The posterior probabilities from the individual
classifiers are combined in an ensemble fashion. (b) Weight optimization for the ensemble clas-
sifier. The optimum weight is selected from the ROC curve. LOPO-CV, leave-one-patient-out
cross-validation; QDA, quadratic discriminant analysis; ROC, receiver operator characteristics.

Table 3 Distribution of imaged benign and malignant lesions.

Type No. patients No. lesions

Benign Solar lentigo 2 10

Pigmented seborrheic keratosis 15 31

Malignant Pigmented superficial BCC 2 6

Pigmented nodular BCC 5 5

Melanoma 6 8
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Fig. 7 (a) Handheld maFLIM dermoscope imaging the forearm of a patient. (b) Clinical photograph
of a melanoma lesion. (c) Time-domain maFLIM feature maps of a melanoma lesion. The columns
show the feature maps corresponding to the three emission channels. First row shows the weight
of the fast decay. Second row shows the fast lifetime maps, while the third row shows the slow
lifetime maps. Average lifetime maps are shown in the fourth row. Fifth row shows the integrated
intensity maps of each spectral emission channel, and the ratio of the intensities are shown in the
sixth row. The last row shows the cluster mask generated for the lesion and the integrated inten-
sities from all the channels for the clustered regions 1 and 2. The horizontal strip in the images is
due to the presence of hair on the skin during imaging.

Vasanthakumari et al.: Discrimination of cancerous from benign pigmented skin lesions. . .

Journal of Biomedical Optics 066002-16 June 2022 • Vol. 27(6)



In;452, In;500, I452;n∕I500;n and I390;n∕I500;n) clearly show two distinguishable regions: the center
and the surrounding regions. The cluster masks for this sample image are also shown in the last
row of Fig. 7(c). The maps showing the two clustered regions: region-1 and region-2 are plotted
using the normalized integrated intensities (IIntegrated) from the three spectral emission channels.

The relative contributions of fast lifetime (αfast) for the spectral channels 390 and 452 nm
exhibit a higher value in the central region compared with the surrounding regions. Fast lifetime
(τfast) values for the spectral channels 452 and 500 nm are lower in the central region than the
surrounding. Slow lifetime (τslow) values for all the three spectral channels are higher in the
center than the surrounding regions. The average lifetimes (τavg) of the pixels from the central
region are higher than the surrounding parts. The relative intensity (In) values for spectral chan-
nel 452 nm is lower in the center compared to the surrounding, while that for the spectral channel
500 nm is higher in the center compared with the surrounding. The ratios of the intensities,
I452;n∕I500;n and I390;n∕I500;n, are lower in the central region compared with the surrounding
regions.

3.2 Feature Selection

As explained in the feature selection process in Sec. 2.4, the multiple lesions from a single
patient constitute the left-out data in each iteration; thus, the number of lesions that are tested
in each iteration varies depending on the number of lesions that are imaged for the left-out
patient. In this way, every patient becomes part of the testing, and a confusion matrix is gen-
erated after all LOPO-CV iterations are completed. As mentioned in Sec. 2.4, the number of
features nSFS was varied from 1 to 6 for intensity feature pool, and 1 to 7 for phasor and biex-
ponential feature pools. The optimum number of features nselected is chosen based on the highest
F-score. Table 4 shows values of accuracy, sensitivity (Sn), specificity (Sp), and F-score

Table 4 Performance metrics and confusion matrices obtained during feature selection with
phasor, biexponential, and intensity feature pools.

Feature pool (total no.
of features) nSelected

Accuracy
(%)

Sn
(%)

Sp
(%)

F score
(%)

Confusion matrices

True

Predicted

Benign Malignant

Phasor (36) 6 76.67 68.42 80.49 65.00 Benign 33 8

Malignant 6 13

Bi-exponential (12) 5 75.00 84.21 70.73 68.09 Benign 29 12

Malignant 3 16

Intensity (6) 1 48.33 84.21 31.71 50.79 Benign 13 28

Malignant 3 16

Phasor ∪ biexponential (48) 4 56.67 63.17 56.10 48.98 Benign 23 18

Malignant 7 12

Phasor ∪ intensity (42) 6 53.33 63.16 48.79 46.15 Benign 20 21

Malignant 7 12

Biexponential ∪ intensity (18) 7 63.33 63.16 63.41 52.17 Benign 26 15

Malignant 7 12

Phasor ∪ biexponential ∪
intensity (54)

6 61.67 47.37 68.29 43.90 Benign 28 13

Malignant 10 9
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obtained when classifying benign and malignant skin lesions trained individually on the three
feature pools (phasor, biexponential, and intensity). The table shows the results for nselected
number of features in each feature pool. Results obtained during feature selection for all the
values of nSFS is given in Tables S1–S3 in the Supplemental Material. QDA models trained on
five biexponential features yielded the best performance with 75% accuracy, 84.21% sensitivity,
70.73% specificity, and 68.09% F-score. QDA models trained on six phasor features yielded
the next best performance with 76.67% accuracy, 68.42% sensitivity, 80.49% specificity, and
65% F-score. QDA models trained on the intensity feature pool resulted in 84.21% sensitivity,
but only 31.71% specificity.

The results from the combined feature pools show poor performance with low sensitivities
and specificities. This is because the features selected by the SFS algorithm in the earlier iter-
ations may not be the best when combined with those selected in the later iterations. From these
results, it can be inferred that the five biexponential features and the six phasor features have
potential in classifying benign and malignant skin lesions. The confusion matrices of the clas-
sifiers are also shown in Table 4.

3.3 Feature Relevance

To identify the important features in each feature pool, the number of times each feature becomes
a part of fSFS during all iterations of the LOPO-CV was recorded. If a feature is selected at least
50% times during all the iterations, it will be considered an important feature and added to the
fselected of that feature pool. Table 5 lists the important features from each feature pool and their
selection frequencies during LOPO-CV. Thus, we can summarize the selected features from each
feature pool as
EQ-TARGET;temp:intralink-;sec3.3;116;447 ðfselectedÞphasor ¼ ½symmetry16.8 MHz; symmetry33.6 MHz; symmetry39.2 MHzsymmetry50.4 MHz;

spread33.6 MHz; distance50.4 MHz�
ðfselectedÞbiexponential ¼ ½αfast;390; τslow;390; αfast;452; τfast;452; αfast;500� ðfselectedÞintensity ¼ ½I452;n�:

Table 5 Summary of important features selected from each feature
pool along with their ranks.

Feature pool f selected
Selection frequency
percentage (%)

Phasor Symmetry at 39.2 MHz 93.3

Spread at 33.6 MHz 90.0

Symmetry at 16.8 MHz 90.0

Symmetry at 50.4 MHz 86.7

Symmetry at 33.6 MHz 56.7

Distance at 50.4 MHz 50.0

Biexponential τfast;452 96.7

τslow;390 93.3

αfast;452 80.0

αfast;390 76.7

αfast;500 50.0

Intensity I452;n 96.7
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3.4 Classification of Skin Cancer Lesions Using Selected Features

The methodology of classifying skin lesions using the selected features is explained in Sec. 2.5.
As shown in Fig. 6, “k” QDA classifiers trained separately on the fselected features from “k”
feature pools are combined in an ensemble fashion. Four different combinations of feature pools
are used for constructing ensemble classifiers, as shown in Table 6. A weighted average of the
posterior probabilities generated from the “k”QDA classifiers is calculated to predict the label of
the left-out patient data. Since the weights are optimized within an LOPO-CV loop, there can be
some variation in the weights selected during the npatients iterations.

Figure 8 shows the histograms of the weights obtained during all the iterations for the ensem-
ble classifiers using the four feature pool combinations. Since the sum of weights of “k” feature
pools is one, it is sufficient to show the weights of (k − 1) feature pools. It can be seen from

Table 6 Performance metrics of ensemble classifiers trained with multiple combinations of fea-
ture pools.

Feature sets for ensemble
Accuracy

(%)
Sn
(%)

Sp
(%)

F -score
(%)

Confusion matrices

True

Predicted

Benign Malignant

ðf selectedÞbiexponential þ ðf selectedÞintensity 71.67 84.21 65.85 65.31 Benign 27 14

Malignant 3 16

ðf selectedÞphasor þ ðf selectedÞbiexponential 88.33 84.21 90.24 82.05 Benign 37 4

Malignant 3 16

ðf selectedÞphasor þ ðf selectedÞintensity 86.67 78.95 90.24 78.95 Benign 37 4

Malignant 4 15

ðf selectedÞphasor þ ðf selectedÞbiexponential þ
ðf selectedÞintensity

88.33 84.21 90.24 82.05 Benign 37 4

Malignant 3 16

Fig. 8 Histogram of weights on one of the feature pools, when combined in an ensemble fashion
for (a) phasor-intensity, (b) biexponential-intensity, (c) phasor-biexponential, and (d) phasor-
biexponential-intensity feature pools.
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Table 6 that the ensemble combination of QDA classifiers trained on phasor and biexponential
features as well as the ensemble combination of all the three feature pools, produced the best
performance with 88.33% accuracy, 84.21% sensitivity, 90.24% specificity, and F-score of
82.05%. The next best performance is obtained by the ensemble combination of phasor and
intensity feature pools with an accuracy of 86.67%, sensitivity of 78.95, specificity of 90.4%,
and an F-score of 78.95%. Ensemble combination of intensity and biexponential features pro-
duced an accuracy of 71.67%, sensitivity of 84.21%, specificity of 65.85%, and F-score of
65.31%. Table 6 also shows the confusion matrices for all the classifiers. While analyzing the
weights on the feature pools during the ensemble combination, it can be seen in Figs. 8(a) and
8(b) that intensity features have a higher weightage when combined with phasor features. When
phasor and biexponential features are combined, both the feature pools have similar weightage as
shown in Fig. 8(c). Similarly, when biexponential and intensity feature pools are combined, both
the pools have comparable weightage. When all the feature pools are combined, it can be seen
from Fig. 8(d) that the phasor and biexponential features pools have similar weight distribution
in the range [0.1, 0.5]. The weights on the intensity feature pool are widely dispersed in the range
[0, 0.8].

4 Discussion

In this study, clinical widefield autofluorescence imaging of benign and malignant pigmented
skin lesions was successfully performed in 30 patients using a recently developed maFLIM
dermoscope.40 The resulting maFLIM images from 60 pigmented lesions enabled exploring
steady-state (intensity) and time-resolved (biexponential, phasor) autofluorescence global fea-
tures. Results based on rigorous cross-validation methods demonstrate that simple ML classi-
fication models (QDA) based on selected time-resolved autofluorescence global features have
the potential to provide discrimination of malignant from benign pigmented skin lesions.

To the best of our knowledge, only one published work has reported the use of machine
learning models based on autofluorescence lifetime imaging features for the classification of
pigmented skin lesions.12 In that study, however, only skin melanoma lesions were imaged, and
the classification task was restricted to discriminate early-stage from advanced-stage skin mela-
noma. In contrast, a more comprehensive set of pigmented skin lesions were imaged in this work
(two benign and three malignant lesion categories). Moreover, the classification task focused on
discriminating malignant from benign pigmented lesions, which might be clinically more rel-
evant for early detection of skin cancer.

In multidimensional imaging data, such as in maFLIM, image features can be extracted at
the pixel or the image level. We have recently explored pixel-level maFLIM features for the
classification of oral dysplasia and early-stage cancer.49 Pixel-level features, however, require
the labeling of each pixel which is generally impractical. In this work, the maFLIM data were
labeled at the lesion level based on the histopathology diagnosis obtained from the lesion biopsy
samples; therefore, an image-level global feature extraction strategy was preferred. As shown in
Fig. 7, two regions were frequently observed in the maFLIM images, corresponding to pixels
either within or outside the lesion extension. In an attempt to reduce interpatient variability, the
explored relative features were defined in terms of difference in autofluorescence properties
between the two regions identified in each lesion maFLIM image. This strategy of using global
(image-level) and relative features can find applications in many other classification tasks based
on optical imaging data.

The performance of ML classification models needs to be carefully estimated when trained
on limited sample size. To minimize overfitting and avoid overoptimistic performance estima-
tions, a rigorous strategy was adopted for feature selection, model training, and performance
estimation. First, the maximum number of features allowed (seven) was limited based on the
sample size.48 Second, a simple nonlinear classification model (QDA) was adopted. Third, cross-
validation was applied at the patient-level (LOPO-CV) to ensure that data from the same patient
is not used for both training and validation. Fourth, feature selection was performed together
with model training to make sure that the validation data are not used during neither feature
selection nor model training. It should be noted that at each fold of the cross-validation strategy,
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a different classification model (with different selected features and model parameters) is applied
to the validation set. Thus, although a single optimal model is not necessarily defined, this
approach still enables identifying relevant features and providing unbiased classification perfor-
mance estimation.

Classification performance was dependent of the feature pool used in the model. The most
frequently selected intensity feature was I452;n which is associated to NADH fluorescence con-
tribution. Although the classification models using intensity features showed good sensitivity
(∼84%), their specificity was poor (∼31%). This means that steady state intensity features are
not sufficient to minimize false positives while discriminating benign and malignant lesions.
Classification models using biexponential features showed similar sensitivity (∼84%) than those
with intensity features, but significantly higher specificity (∼70%). These results indicate that
time-resolved properties of pigmented skin lesion autofluorescence could represent biomarkers
of skin cancer. While examining the selected features from the biexponential feature pool, it can
be seen from Table 5 that the most frequently selected features were associated to NADH
(τfast;452, αfast;452) and collagen (τslow;390, αfast;390) fluorescence temporal dynamics. The fast life-
time component of NADH (τfast;452, αfast;452) is associated with the free state of the molecule,19

suggesting that metabolic pathway changes induced by malignant transformations alter the
microenvironment of NADH molecules. Unlike NADH or FAD, the collagen is not involved
in cellular respiration and is not part of metabolic pathways. Changes in collagen autofluores-
cence response can occur in benign and malignant lesions as they mostly correspond to skin
thickening, extracellular matrix remodeling, and texture changes.23 Therefore, the selected
features corresponding to collagen autofluorescence (τslow;390, αfast;390) can provide high sensi-
tivity but may not contribute to high specificity leading to several false positives as can be seen
in Table 4.

The phasor representation of fluorescence lifetime imaging data analysis is a noniterative,
model-free, fast approach to visualize the lifetime components (and their distributions) of the
fluorescence emission of a sample.50–53 In this work, a modified version of this method was
applied to the clinical multispectral maFLIM data, and a set of global image features were
extracted from the corresponding phasor representation of the two regions present in each lesion
maFLIM image (Fig. 4). The processing times taken for computing phasor and biexponential
features from one sample lesion using a computer with an i7 Intel core processor and 48 GB
RAM were found to be 10.5 and 251.8 s, respectively. Therefore, phasor-based features are
simpler and ∼25 times faster than traditional time resolved biexponential features. Unlike biex-
ponential maFLIM features, the phasor features explored cannot be directly interpreted in terms
of the skin autofluorescent constituents. Nevertheless, the classification models using phasor
features showed superior specificity (∼80%) than those using biexponential features, suggesting
that these two different pools of time-resolved maFLIM features might be complementary.
Phasor-based features are computed from the concatenated signal and contain information from
all three emission channels. It is challenging to develop solid reasoning for the high specificity
obtained from these features; however, since every phasor-based feature contains information
from all three channels, each channel’s contribution is not quantifiable.

Feature selection starting with combinations of feature pools were also explored, although the
resulting models showed lower classification performance overall (Table 4). On the other hand,
ensemble classifiers based on models using the most frequently selected features of each pool
outperformed any other models (Table 5). In particular, the ensemble classifier combining the
models based on the most frequently selected biexponential and phasor features resulted in the
best performance overall (∼84% sensitivity and ∼90% specificity). Moreover, the optimum
weights identified for these ensemble models indicate that both the phasor and biexponential
features contribute equally to the weighted probability [Fig. 8(c)]. These results further indicate
that these two maFLIM feature pools might be complementary, as biexponential features seem to
contribute to higher sensitivity, while phasor features to higher specificity.

Some of the studies summarized in Table 1 produced superior classification performances
compared with that reported in this work. However, those studies employed complex machine
learning and deep learning algorithms, such as Adaboost,10 BoF,10 and CNN’s for classifica-
tion,18 and feature extraction.17 This work uses a simple QDAmachine learning model to analyze
the performance with different feature pools. It is plausible that more complex machine learning
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classification models, such as neural networks, might provide superior performance. Given the
limited data available for training and validation, however, a simple QDA model was selected, as
it still enables nonlinear decision boundaries while reducing the chances of overfitting. In addi-
tion, by choosing a simple classification method, it is possible to analyze other aspects of clas-
sification model, such as the feature pools, number of features, and ensemble combinations of the
feature pools.

Recent advances in artificial intelligence (AI) are allowing the development of CAD systems
for discriminating benign from malignant skin lesions based on digital dermoscopy data.
Although these CAD systems have not been translated yet to the clinic, preliminary validation
studies demonstrate their potential to discriminate typical benign from malignant lesions.
Dermoscopy data, however, provide information limited to the visual appearance of the lesions;
thus, AI-assisted digital dermoscopy is less suitable for the discrimination of visually similar
benign and malignant skin lesions. maFLIM dermoscopy data, on the other hand, can capture
autofluorescence-based biochemical and metabolic biomarkers of skin malignant transforma-
tion, which is independent of lesion visual appearance. This property is especially important
in distinguishing visually similar benign and malignant lesions, thus minimizing the number
of false positives and, in turn, reducing the number of unnecessary biopsies. In particular, the
lesion types included in this work—pSK and melanoma, are visually similar benign and malig-
nant lesions, which can be easily misdiagnosed during dermoscopic evaluation. Therefore,
maFLIM dermoscopy has the potential to complement digital dermoscopy by providing superior
performance in the discrimination of visually similar benign and malignant skin lesions.

4.1 Study Limitations

Although this preliminary clinical study demonstrates the potential of maFLIM-derived auto-
fluorescence features to discriminate malignant from benign pigmented skin lesions, a number
of limitations are recognized. First, the database of maFLIM images is limited in both the type
of benign and malignant skin conditions, and the number of samples per condition. A more
comprehensive and larger database will be needed to fully develop accurate enough classification
methods for skin lesion discrimination and to rigorously quantify their performance in prospec-
tive studies. Second, the lack of histopathology-based assessment of the maFLIM imaging data
at the pixel-level prevented to specifically quantify the capabilities of maFLIM dermoscopy as
a tool for not only detecting malignant skin lesions but also determining their true extension and
margins. Third, the current maFLIM dermoscopy system provides nonspecific excitation and
spectral detection of skin autofluorescence component emission. Finally, the current implemen-
tation of the ML classification models does not allow for real-time processing of maFLIM data.
Ongoing research efforts aiming to overcome these limitations include collecting maFLIM der-
moscopy images from a plurality of nonpigmented and pigmented skin lesions from patients
of various skin tones, performing accurate pixel-level registration between the lesion maFLIM
imaging data and histopathology tissue sections, developing improved maFLIM dermoscope
systems with multiwavelength excitation and narrow-band emission detection capabilities, and
implementing optimized CAD using field programmable gate arrays and graphics processing
units technologies for real-time maFLIM data processing, pixel-level classification, and tissue
mapping visualization.

4.2 Clinical Perspective

The incidence of skin cancer including melanoma continues to increase yet most providers is
forced to rely on their own visual recognition skills and experience to identify concerning
lesions. In addition, many patients do not have access to a trained dermatologist which can place
them in a potentially precarious situation since early detection of skin cancer leads to better
survival rates. The importance of early detection cannot be understated, as it not only saves
lives but also reduces the invasiveness of the treatment patients undergo and conserves precious
medical resources, leading to quality, cost-conscious care. A noninvasive, label-free, fast, accu-
rate, and objective tool capable of discriminating most common malignant from benign skin
lesions would improve the clinical management of patients. Currently, there is no objective
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device providers can use to independently identify cancerous skin lesions. In the hand of primary
care physicians, such a tool will enable the early identification of patients in need of referral to a
dermatologist. In addition, the dermatologists could use such tool to identify lesions in need of a
biopsy, thus reducing the rate of unnecessary biopsies and adverse events such as pain, infection,
and scarring. Such a tool would also assist with monitoring cancer recurrence without the need of
regular and frequent biopsies. This work demonstrates that maFLIM dermoscopy aided by ML
models could potentially have the capabilities of such tool, thus impacting the clinical manage-
ment of skin cancer patients for the better.

5 Conclusion

The results of this study demonstrate the capabilities of maFLIM dermoscopy to clinically image
a plurality of autofluorescence biomarkers of malignant skin pigmented lesions. Moreover, some
of these autofluorescence biomarkers were identified as promising for malignant lesion identi-
fication, particularly those quantifying the time-resolved fluorescence characteristics of skin
lesions. In addition, these relevant autofluorescence biomarkers were successfully used as fea-
tures in ML models trained to discriminate malignant from benign pigmented skin lesions with
promising accuracy (∼84% sensitivity and ∼90% specificity). Further developments in maFLIM
instrumentation and image analysis methods could result in clinical tools for noninvasive, label-
free, accurate, and objective in situ detection of malignant from benign skin lesions, with the
potential to impact the clinical management of skin cancer patients.
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