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Abstract

Significance: Open-source software packages have been extensively used in the past three
decades in medical imaging and diagnostics, aiming to study the feasibility of the application
ex vivo. Unfortunately, most of the existing open-source tools require some software engineering
background to install the prerequisite libraries, choose a suitable computational platform, and
combine several software tools to address different applications.

Aim: To facilitate the use of open-source software in medical applications, enabling computa-
tional studies of treatment outcomes prior to the complex in-vivo setting.

Approach: FullMonteWeb, an open-source, user-friendly web-based software with a graphical
user interface for interstitial photodynamic therapy (iPDT) modeling, visualization, and optimi-
zation, is introduced. The software can perform Monte Carlo simulations of light propagation in
biological tissues, along with iPDT plan optimization. FullMonteWeb installs and runs the
required software and libraries on Amazon Web Services (AWS), allowing scalable computing
without complex set up.

Results: FullMonteWeb allows simulation of large and small problems on the most appropriate
compute hardware, enabling cost improvements of 10× versus always running on a single plat-
form. Case studies in optical property estimation and diffuser placement optimization highlight
FullMonteWeb’s versatility.

Conclusion: The FullMonte open source suite enables easier and more cost-effective in-silico
studies for iPDT.
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1 Introduction

Visible and near-infrared light (400 to ∼1000 nm) has seen wide adoption in medical applica-
tions in recent years1–3 due to its ability to penetrate tissues, its low cost to produce, and the
minimal risk of unintended tissue damage at irradiances below 250 mWcm−2. These applica-
tions range from imaging techniques and diagnostics such as diffuse optical tomography (DOT),1

to observing the progression of cancerous tissues in bioluminescence imaging (BLI)2 and to
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treating tumors with light-activated therapies such as photodynamic therapy (PDT)3 and
photothermal therapy.4 With the increase in the number of applications, the need for fast
and flexible software tools that can predict and optimize outcomes based on the optical energy
delivered has increased. To this end, several open-source software packages that model the light
distribution in preclinical and clinical applications have seen the light in the past three
decades.5–9

Open-source software, applied in a wide range of engineering and scientific fields including
the medical field, generally provide a flexible and fast way to understand the feasibility of real-
izing a problem under study, decrease the development time needed to repeat work done in the
field to improve on it, and encourage widespread use of different tools among the research com-
munity. This fact holds true for biomedical translation in particular, where improvement cycles
and iterations are not only expensive but also often result in the abandonment of projects.
However, open-source software commonly has undesirable traits that can hinder users from fully
utilizing the available features. First, open-source applications usually incorporate multiple pre-
built libraries along with custom software source code; this can make them challenging to build
and set up for users who do not have a software development background. They also often lack a
user-friendly interface and are instead controlled by custom data files or scripts or even require
software code modifications. The combination of a challenging set up and a developer-focused
user interface creates a significant learning curve that is a barrier to adoption in the target medical
biophysics research community. Second, the compute requirements of these tools can be sig-
nificant and vary depending on the problem being considered—for example, some problems
require servers with a large amount of memory, whereas others are best solved with graphics
processing units (GPUs). Procuring an appropriate group of servers to solve a problem is time
consuming and expensive, and there is no guarantee the servers will be the best fit to the next set
of problems to be solved. Third, some applications require the combination of multiple software
tools, and often these tools do not have compatible inputs and outputs. For example, PDT mod-
eling—the focus of this paper—first requires the ability to accurately model light propagation in
biological tissues and second requires the ability to change the treatment parameters to optimize
and tailor the outcome for each individual patient. The final results usually then require addi-
tional visualization software for full interpretation.

In this work, we address all three of these challenges. We introduce a web-based interface for
interstitial photodynamic therapy (iPDT) modeling and optimization that is user-friendly, flex-
ible in supporting different tumor types and locations, and fast to quickly investigate the effect of
different parameters (such as tissue optical properties and intrinsic tissue responsivity) on the
treatment outcome in-silico without the need to deal with technical and logistic difficulties that
come with in-vivo direct measurements. Once a problem is entered through the web interface,
highly optimized software tools (FullMonteSW5 and PDT-SPACE10) are installed on a user-
chosen Amazon Web Server (AWS) instance, automating the server set up and ensuring that
users can choose the appropriate type and amount of compute resource for each problem.
The analysis (FullMonteSW) and optimization (PDT-SPACE) tools are integrated and combined
with in-browser visualization tools, allowing entire analysis flows to be created and run with no
software set up on the user’s machine. In addition, the tools and the web interface software are all
open source, allowing researchers to extend and build on this infrastructure.

The rest of this paper is organized as follows. First a background on PDT and the different
open-source software packages designed for in-browser PDT analysis and optimization is pre-
sented in Secs. 2 and 3. The web-based interface along with the different features supported and a
brief tutorial on how to use each one are then described in Sec. 4. Sections 4.2–4.4 discuss the
integration with AWS to efficiently choose the most suitable platform based on the problem at
hand, its volume, and the required spatial resolution. Finally, the use of the web interface is
demonstrated in Sec. 5 through two case studies related to ongoing preclinical research. One
case illustrates treatment optimization prior to engaging in actual in-vivo experiments. The other
case demonstrates the generation of look-up tables to permit real-time extraction of tissue optical
properties from experimental data based on strategically placed optical sources. In both cases,
the experimental execution is optimized, ensuring that the data extracted from these in-vitro
work are scientifically relevant. Finally, we conclude in Sec. 6.
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2 Background

2.1 Photodynamic Therapy

PDT, or the use of light activated photosensitizing drugs called photosensitizers (PS), is an
approved therapy for various indications in oncology,11 infectious diseases,12 and other condi-
tions.13 The interactions of light photons with the PS generates radicals, predominantly reactive
oxygen species, resulting in spatially confined tissue destruction. The majority of the currently
approved indications for PDT in oncology target organ surfaces, such as the skin,14 esophagus,15

or bladder,16 whereby access is provided by endoscopy and the tissue target depth is limited to 1
to 3 mm depending on the excitation wavelength. In these situations, typically individual, large
surface covering light or photon emitters are used and the fluence rate gradient ½mWcm−2 mm−1�
follows a one-dimensional distribution as a function of depth or radius from that emitter.
Treatment of larger solid malignancies, such as in the brain, prostate, or pancreas, poses addi-
tional challenges related to adequate light delivery throughout the treatment volume. For inter-
stitial PDT (iPDT), the clinical target volume often presents a complex three-dimensional (3D)
shape and size, requiring placement of multiple sources with overlapping fluence rate distribu-
tions. To date, source placement and optical power allocation follow mostly empirical treatment
plans such as the implementation of iPDT for malignancies in the central nervous system by
Stummer et al.17,18

2.1.1 iPDT planning challenges

Present clinical implementation of iPDT planning currently aims to achieve an empirically deter-
mined minimal required fluence ½J cm−2� at the target boundary commonly based on predeter-
mined light emitter spacing. For some oncological indications, such as the prostate,19 iPDT
treatment monitoring can be used to substitute partially for treatment planning for a given empiri-
cally determined light source placement. Fluorescence and diffuse reflectance measurements
representing the localized PS concentration and tissue optical properties are also taken into con-
sideration to determine the duration of optical power delivery at each location.20–22

Increasing iPDT efficacy requires replacing empirical photon source placements by an indi-
vidualized treatment planning process that considers also spatial emission properties for various
optical fiber emitters. Through this individualization of the emitter placement, PDT can enter the
age of personalized medicine. In addition, the planning process must be based on a quantitative
model, linking PDT efficacy determining parameters – 3O2, the PS concentration, and the local
fluence rate ½mWcm−2� – with a desired outcome. In oncology, the endpoint is typically tissue
necrosis; however, planning for apoptotic cell death should be possible.23

Optimizing PDT delivery requires evaluating treatment plans based on the ability to destroy
98% to 100% of the target volume while preserving the surrounding tissue, particularly those
performing critical functions, as in the brain or the cardiovascular system. Secondary optimi-
zation objectives include minimizing the number of invasive light sources to be placed into the
malignancy to reduce treatment complexity and minimizing the overall treatment time. As these
optimization goals are not necessarily compatible to generate the best clinically implementable
plan, the physician is often presented with multiple possible plans—with trade-offs between the
aforementioned conflicting objectives—to select from based on the desired outcome. The output
for each of the possible plans is the volume fraction of the tumor receiving the minimum required
photon dose, the volume of critical normal tissue at risk, as well as the number and emission
characteristics of the photon sources, their power and maximum light irradiation times. Hence,
the planning process needs to combine quantitative photon distribution simulations with param-
eter optimization.

2.2 Prior Web- and Cloud-Based Monte Carlo Tools

Some web or cloud-based Monte Carlo (MC) simulators for biomedical applications have been
published. CloudMc6 is a framework that allows an MC program to be launched on the Microsoft
Azure cloud, with a portion of the photon packets executed on several different compute nodes,
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and final statistical results aggregated across nodes. This infrastructure is not applicable to our
problem as it supports only Windows-based executables, and our simulation and optimization
tools, like most open source projects, are instead developed on Linux. Wang et al.7 modify the
ESG5 high energy electron and photon MC simulator to run a subset of the photons on each
node in an AWS cluster; the lower-energy photons in PDT cannot be accurately simulated in
this system. The most comparable work to ours is the MCX Cloud tool suite24 which (such as
our tools) simulates photon transport in biological tissues. Unlike MCX cloud, we use a
public (AWS) cloud instead of a private cluster, and our tool suite includes not only Monte
Carlo simulation of photon transport but also optimization of iPDT. Multiscattering25,26 is a
GPU-accelerated MC software with a web interface supporting quick and easy setup for users.
It uses voxels to represent the problem geometry, rather than the tetrahedral mesh representation
used by FullMonte and MMC, and has additional features for simulating spherical particles.
Simulations are run on a cluster of three computers at Lund University, each of which has four
GPUs.

3 Open-Source Tool Suite for PDT

Figure 1 shows how the data preparation, photon simulation, and PDT optimization tools in
our open source suite interact. The geometry of a case of interest must first be represented
as a tetrahedral mesh; our MeshTool facilitates creating this mesh from contoured medical
imaging data. This mesh along with tissue properties and light source information are used
by FullMonteSW to simulate light propagation, and PDT-SPACE can optimize a treatment plan
by simulating various options with FullMonteSW.

3.1 Photon Simulation: FullMonteSW

FullMonteSW5 performs Monte Carlo simulations of light propagation within 3D biomaterials
of arbitrary shapes and tissue types to evaluate PDT treatment plans as well as for other light
propagation studies in clinical16 and preclinical research.27,28 The tool simulates the light propa-
gation by tracing a user-specified number of photon packets29 and aggregating statistics on
photon absorption throughout the volume. It supports a variety of light sources, including point
sources, radially emitting fibers, cut-end fibers emitting in a cone, arbitrary surface emitters,
and combinations of these. Geometrically, it can model arbitrary 3D volumes with a tetrahedral
mesh structure, allowing for accurate modeling of smooth and irregular surfaces, which are
common in biological tissues. Finally, FullMonteSW is able to collect several user-defined out-
put values, including the energy absorbed per tetrahedral element, and the energy entering or
exiting internal or external surfaces. As shown in Fig. 1, FullMonteSW takes as input the optical
properties of each tissue region, a 3D tetrahedral mesh that indicates each tissue region, the light

Fig. 1 Process flow of the iPDT software tools.
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source positions, their emission profiles, and their powers. The output data are used to either aid
in iPDT optimization using the PDT-SPACE tool or directly visualize the fluence and the mesh
structure using open-source tools such as Paraview.30 Figure 2 shows an example of the visu-
alization of an input and output mesh of an oral tumor at the base of a tongue with a single optical
source.

FullMonteSW employs the Henyey–Greenstein scattering phase function, as the deep tissue
tumor cases targeted employ lambertien or isotropic light sources. Since the code is open source,
other scattering phase functions31–33 can be added by end users if required for other applications.
As described in Ref. 5, FullMonteSW has been cross-validated against two other tetrahedral
Monte Carlo photon simulators (TimOS34 and MMC35) on 3D geometries, as well as MCML36

on simpler layered geometries. FullMonteSW was also validated against analytic solutions using
diffusion theory for two cases: an isotropic point source in a homogeneous infinite medium and a
pencil beam in a homogeneous semi-infinite medium. FullMonteSW has internal consistency
checks that are always active to ensure that physical laws such as conservation of energy are
respected by the simulation outputs. FullMonte has a large regression suite comprising both
system tests that check the final result accuracy and unit tests that validate internal software
components. These tests are run and summarized automatically on every change to the software
code; while the tests consume over 36 h of cpu time, they are run in parallel so they complete
in ∼1.5 h.

Apart from PDT, FullMonteSW can be used to simulate light propagation for other appli-
cations, such as disinfection of N95 filter facepiece respirators (FFR) using ultraviolet light ger-
micidal irradiation,37–39 and predicting the observed light distribution in imaging applications
such as BLI imaging and trans-illumination spectroscopy for breast cancer detection.40

3.1.1 FullMonteSW runtime

FullMonteSW’s runtime is primarily affected by the number of photon packets to simulate. A
higher packet count results in a higher signal-to-noise ratio. The value varies widely and depends
on the indication and the desired spatial resolution; however, 106 to 107 photon packets are
usually sufficient. For studies requiring submillimeter resolution, as in the case of UVC inacti-
vation of filter FFRs37,38 and thin light absorbing layers in the skin or the eye’s pigment epi-
thelium, up to 109 photon packets may be needed. This makes high computational performance a
priority. FullMonteSWuses both single-instruction multiple data instructions and multithreading
(to use multiple cores) and is currently the fastest software 3D tetrahedral Monte Carlo
simulator.5 If further performance is required, both GPU (FullMonteCUDA)41 and FPGA
(FullMonteFPGACL)42 accelerated versions are available. These accelerated versions can run
5× to 10× faster than FullMonteSW for many (but not all) problems, and they are among the
highest performance accelerated tetrahedral Monte Carlo simulators.

(a) (b)

Fig. 2 Example of the paraview visualization of an oral tumor at the base of the tongue with
(a) a single point source inserted into the tongue and (b) the output fluence visualization from
a light irradiation modeled for 633 nm.
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3.2 PDT Optimization: PDT-SPACE

The PDT-SPACE tool10 automates the treatment planning process by optimizing several degrees
of freedom to achieve a desired tumor coverage while minimizing damage to the surrounding
healthy organs at risk (OARs); its inputs and outputs are shown in Fig. 3. Given a set of light
source locations and types, PDT-SPACE uses a convex optimization formulation to determine
the power input to each source43 to simultaneously maintain the tumor volume destroyed well
above 98% while minimizing the OAR damage. In addition, PDT-SPACE can optimize the emis-
sion profile of cylindrical diffusers under the same goal while respecting user-specified man-
ufacturability constraints.10 PDT-SPACE can also optimize the positions of the light sources
to further improve the quality of the treatment plan. It treats the light source positions specified
by the clinician as starting conditions and then uses a combination of simulated annealing and
reinforcement learning to iteratively propose and evaluate improved probe positions.44

In each of these usage modes, PDT-SPACE must repeatedly call FullMonteSW to determine
the light distribution throughout the tissue for the proposed plans. The program uses the result to
evaluate plan quality against predetermined outcome conditions. Usually, 106 photon packets are
simulated in FullMonteSW to achieve sufficiently accurate results to guide optimization. PDT-
SPACE also employs efficient search techniques to minimize the number of FullMonteSW calls
and effectively the overall runtime.

3.3 Open-Source Code and Docker Containers

FullMonteSW and PDT-SPACE are open-source and can be found on Gitlab repositories. Links
to the repositories can be found on Ref. 45, and the wiki pages within the repositories provide
extensive documentation on how to use and script the tools. These repositories also have exten-
sive regression tests that are automatically launched whenever a source code change is commit-
ted to the repository, making it easier and safer for developers to update the code.

Both FullMonteSW and PDT-SPACE are complex programs that have dependencies on sev-
eral software libraries and packages. Installing these dependencies can be daunting on some
operating systems, so both tools support the alternative option of installing and running within
a prebuilt docker container. Docker containers provide portable encapsulation of an environment
to be run under any operating system, greatly reducing the time and effort required to get all the
dependent software installed. The Wiki pages include instructions on docker installation and

Fig. 3 PDT-SPACE overall flow.
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execution of the tools; the docker images are rebuilt and updated automatically whenever a
source code change is committed so they are always up to date.

4 FullMonteWeb

To make it easier for researchers to use the FullMonteSW and PDT-SPACE tools, we have
developed FullMonteWeb. FullMonteWeb allows entry of a wide range of biophotonic and
PDT-related problem definitions through web forms, launch of the computation on a user-chosen
Amazon Web Services (AWS) instance, and visualization and downloading of results from
within the same web browser interface. All the FullMonte tools, including FullMonteWeb, are
available from Ref. 45. FullMonteWeb is written in Python and leverages the django
framework.46

4.1 Flow and Input Data

Figure 4 shows the usage and architecture of FullMonteWeb. User input is shown in orange,
output is green, the open-source FullMonte tools are dark blue, whereas other open-source tools
we leverage are shown in light blue. Users can upload a.vtk47 format mesh that details the geom-
etry of the tissues of interest or choose from a set of preloaded meshes. If an user is starting from
medical imaging data, they can use tools such as ITK-snap48 to segment the images then use the
MeshTool available on the FullMonte website to create a tetrahedral mesh, which can be
uploaded as input to FullMonteWeb. The FullMonteWeb web forms guide the user to enter the
other inputs defining a problem (e.g., light sources, material optical properties, packet count to
simulate, and desired outputs to compute). These forms validate that the entered data is self-
consistent and physically possible and link to embedded tutorials that give examples of how
to set up complete problems. Figure 5 shows a screenshot of one of the web forms used to set
up a simulation; please see the Appendix for a more extensive walkthrough.

Entering the parameters defining a simulation in web forms is user-friendly, but it can limit
the range of simulations possible unless a very large (possibly overwhelming) number of options
are exposed in the forms. An alternative to option entry is scripting: the core solver, input and
output routines in FullMonteSW can be directly called from scripts written in either the python
or Tcl languages. This gives tremendous flexibility in problem set up by writing a new script that
invokes the various input, output, and solver routines in different orders or even in loops.
However, it can be a more difficult flow to learn as it requires some programming experience.
To allow efficient use by both novice and power users, FullMonteWeb takes a hybrid approach.

Fig. 4 FullMonteWeb overall flow.

Wang et al.: Scalable and accessible personalized photodynamic therapy optimization with FullMonte. . .

Journal of Biomedical Optics 083006-7 August 2022 • Vol. 27(8)



The most common options to FullMonteSW and PDT-SPACE are presented in web forms. Once
all the forms have been completed, a Tcl script that implements the desired simulation or opti-
mization flow is created and displayed as shown in Fig. 4. The script can be used as-is or the user
can edit it in any way he or she desires. Editing the script allows specification of less common
options, custom simulation flows, or loops that automate sweeping of parameters such as optical
properties or other repetitive simulations required for statistical analysis. Once the Tcl script is
finalized, it is uploaded to Amazon’s S3 storage and used to drive the simulation run on the AWS
instance. Table 1 lists some of the options available directly in web forms, along with some of the
power-user options and flows that Tcl scripts enable.

Fig. 5 FullMonte simulation main page.

Table 1 Available options for simulation.

Web form options Additional scripting options

FullMonte
simulation

Mesh file (VTK format) Specify mesh in other supported
formats (Comsol, TimOS, text)

Light sources (any of point, pencil
beam, volume, ball, cylinder, surface)

Specify other supported source
types (tetra face)

Outputs to compute (fluence throughout
volume, fluence across surface,
absorbed power)

Custom outputs

Unit specification Run kernel multiple times with
different parameters (energy and
number of packets)

Material optical properties Track time/memory at any point

— Arbitrary control flow/custom
simulation

PDT-SPACE
simulation

Mesh file Scripting not supported for
PDT-SPACE simulationOptical properties

Dose thresholds

Probe types

Initial source placement
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4.2 AWS Integration

To leverage the power of cloud computing services, a user is required to launch an AWS Elastic
Compute Cloud (EC2) instance (a virtual machine that allows access to some or all of the resour-
ces in a particular computer server) and provide its DNS name and.pem permission file to
FullMonteWeb, embedded tutorials again guide the user through this operation. As shown
in Fig. 6, FullMonteWeb automatically sets up this AWS instance. It performs a remote ssh
(Secure Shell) operation to connect to the instance and scans the instance for the required envi-
ronment and software (Docker, FullMonteSW, Paraview Visualizer, PDT-SPACE, as well as
FullMonteCUDA41 and NVIDIA GPU drivers if the instance contains a GPU). FullMonteWeb
will install only missing components on the user’s behalf, allowing simple operation but min-
imizing setup time if repeated simulations are run. Users can scale compute power not only by
choosing a more powerful AWS instance but also by having multiple long-running simulations
proceed in parallel by specifying and launching simulations on multiple AWS instances.

To ensure user data and compute resources are kept private, FullMonteWeb keeps a separate
account for each user as shown in Fig. 7; sign-up is free. Recent simulation inputs and outputs are
stored in the Amazon S3 storage cloud as shown in Fig. 4 and can be accessed through a history
view in FullMonteWeb, as shown in Fig. 8.

4.3 Integrated Visualization

The outputs of a simulation are indicated in green in Fig. 4. They include report files detailing the
dose-volume histogram (DVH) of a treatment plan for both the target tissue and the organs-at-
risk; if plan optimization was performed with PDT-SPACE, the plan itself (probe locations, types
and powers) is reported. Outputs such as the light fluence at each point in the 3D treatment
volume are written into a vtk-format mesh file along with the mesh geometry itself so it can
be visualized and processed with Paraview30 or similar tools. FullMonteWeb also includes two
integrated visualization tools so the key result data can be directly examined graphically in the
web browser, without any installation of tools on the user’s computer.

4.3.1 Interactive dose-volume histograms

FullMonteWeb generates an interactive DVH by building on the matplotlib and mpld3 python
graphing libraries. The user can select which tissue regions to display on the DVH, examine
individual data values by hovering the mouse over them, and zoom in and out on portions
of the plot. The DVH data are retained in the Amazon S3 storage for independent access or
downloading to the user’s computer.

4.3.2 Interactive 3D visualization

The 3D visualization feature allows users to visualize the mesh and resulting fluence in 3D
without the need for state-of-the-art graphics cards or specialized software on the user’s device.

Fig. 6 AWS setup feature to allow scalable computing.
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FullMonteWeb leverages the third party 3D visualization browser-based ParaView Visualizer
software.49 As shown in Fig. 4, the full Paraview application is automatically installed and run
on the EC2 instance by FullMonteWeb. Paraview renders the 3D geometry and important out-
puts such as fluence in response to interactive user input, and the rendered data are sent to the
Paraview Visualizer running on the user’s web browser for display. This arrangement keeps the
more complex and computationally demanding software on the EC2 instance, with only the final
display being performed in the user’s browser. The mesh and various tissue regions can be

Fig. 8 History files download feature.

Fig. 7 (a) Registration and (b) login pages to allow per-user compute and simulation data.
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visualized before launching a simulation simply by clicking the “Open 3D Interactive
Visualizer” button in FullMonteWeb; this can help in choosing the desired initial light source
positions for a given case. After simulation completes, the resulting fluence can be visualized
along with the tissue geometry. Figure 9 shows a few of the views that can be generated from a
treatment plan output. The visualizer can also be used to review prior results stored in the S3
cloud or uploaded (in vtk format) by the user without rerunning the simulator.

4.4 Efficiency versus EC2 Instance

One of the goals of FullMonteWeb is to abstract and configure compute resources so that
researchers can choose the appropriate type and amount of CPUs, GPUs, and memory for any
particular PDT simulation or optimization. There are usually two main metrics of concern to
researchers: time to result and cost (while maintaining accuracy). We explore how the chosen
EC2 instance affects these two metrics for simulations that vary in mesh size and whether a
treatment plan is being evaluated with FullMonteSW or a plan is being created by the combi-
nation of PDT-SPACE and FullMonteSW.

Table 2 summarizes the six different EC2 instances we test. Each EC2 instance is a virtual
machine with access to a certain number of virtual CPUs (vCPUs) and physical RAM. The Intel
and AMD processors tested can run two threads on a single compute core (using a technology
called hyperthreading or simultaneous multithreading) so Amazon counts a single core as two
vCPUs. The instances we compare range in size from one vCPU to 64 vCPUs and have between
0.5 and 256 GB of physical RAM; two of the instances also include Nvidia GPUs. As Table 2
shows, the price per hour of an EC2 instance increases rapidly as its memory size and compute
capabilities increase and the platforms we compare vary by over 500× in cost per hour.

Table 3 details how the various EC2 instances perform on plan evaluation tasks using
FullMonteSW simulations. For plan evaluation, we simulate three different meshes: a bladder
mesh16 with a single point light source, the Colin27 brain atlas35 (a low-resolution human brain
mesh) with 1 point light source, and a high-resolution pig lung mesh—taken from Ramadan
et al.28—with light emitted from a complex surface source. Figure 10 shows a visualization
of the three meshes. All simulations use 107 photon packets, a typical value for accurate plan
evaluation. The run times in Table 3 include all processing in FullMonteSW or

Fig. 9 3D visualizer example views on a brain mesh and the resulting fluence.
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Table 3 Compute time and cost for a 107 photon packet simulation of a (i) bladder mesh, (ii) low-
resolution human brain mesh, and (iii) pig lung mesh. See Fig. 10 for a visualization of the three
meshes.

Mesh

Disk
usage
(MB)

Number of
tetrahedra

Instance
type

# of
vCPU

# of
GPU

Memory
consumption

FullMonte
run time

(hh:mm:ss)

Price
($USD/
100 runs)

Bladder 8.7 301,079 t2.nano 1 0 224 MB 00:10:50 0.10

t3a.xlarge 4 0 00:03:21 0.84

t3a.2xlarge 8 0 00:01:41 0.84

m6i.16xlarge 64 0 00:00:15 1.28

g4dn.xlarge 4 1 763 MB 00:00:11 0.16

p3.2xlarge 8 1 755 Mb 00:00:11 0.94

Human brain 15 423,377 t2.nano 1 0 309 MB 08:51:29 5.13

t3a.xlarge 4 0 00:23:30 5.89

t3a.2xlarge 8 0 00:11:27 5.74

m6i.16xlarge 64 0 00:01:32 7.85

g4dn.xlarge 4 1 819 MB 00:00:24 0.35

p3.2xlarge 8 1 811 MB 00:00:16 1.36

Pig lung 1310 45,913,408 t2.nano 1 0 N/A N/A N/A
t3a.xlarge 4 0

t3a.2xlarge 8 0 28.1 GB 00:17:12 8.62

m6i.16xlarge 64 0 00:08:05 41.39

g4dn.xlarge 4 1 N/A N/A N/A

p3.2xlarge 8 1 28.1 GB 00:10:44 64.4

Table 2 EC2 instance details.

Name vCPUs CPU type GPUs GPU type
CPU
RAM

GPU
RAM

Price
($USD/h)

t2.nano 1 Intel(R) Xeon(R) CPU
E5-2676 v3 @ 2.40 GHz

0 N/A 0.5 GB N/A 0.0058

t3a.xlarge 4 AMD EPYC 7571 0 N/A 16 GB N/A 0.1504

t3a.2xlarge 8 AMD EPYC 7571 0 N/A 32 GB N/A 0.3008

m6i.16xlarge 64 Intel(R) Xeon(R) Platinum
8375C CPU @ 2.90 GHz

0 N/A 256 GB N/A 3.072

g4dn.xlarge 4 Intel(R) Xeon(R) Platinum
8259CL CPU @ 2.50 GHz

1 Nvidia Tesla T4 16 GB 16 GB 0.526

p3.2xlarge 8 Intel(R) Xeon(R) CPU
E5-2686 v4 @ 2.30 GHz

1 Nvidia Tesla
V100-SXM2-16 GB

61 GB 16 GB 3.06
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FullMonteCUDA: loading of the mesh into memory, Monte Carlo simulation of 107 photon
packets, and generating output reports and an output vtk mesh for visualization. The time to
set up the docker environment on the EC2 instance is 6 to 8 min but only occurs once and then
is cached and reused, so it is not shown in Table 3. The time to upload an input mesh varies
between 5 s (for the bladder case) and 1 min (for the pig lung case); once uploaded it is kept in
persistent cloud storage so this is required only once per mesh, and hence it is not included in
Table 3.

The FullMonte runtime varies significantly across the meshes. The bladder case executes
quickly because the photons have few interactions as they cross the transparent bladder void.
The pig lung mesh executes slowly as photons frequently cross tetrahedral boundaries, requiring
lookup of optical properties in the entered tetrahedron, and frequently cross tissue regions,
requiring additional reflection and refraction calculations. Table 4 shows the relative perfor-
mance of PDT plan optimization via PDT-SPACE using the Colin27 brain atlas and two different
tumor cases, one small (32 cm3 and three light sources) and one large (104 cm3 and 19 light
sources), which are cases T7 and T2 from Yassine et al.,50 respectively. Note that PDT-SPACE
currently supports only CPU-based implementations.

While the t2.nano EC2 instance (1 vCPU) is the slowest platform, it is also the most cost-
effective platform for the FullMonteSW plan evaluations on the smallest (bladder) mesh.
However, its low memory leads to poor performance on the (larger) low-resolution human brain
mesh, and it cannot run the pig lung mesh at all, showing that larger instances are essential for
some cases. GPU-enabled EC2 instances are the fastest platform for the two smaller meshes,
with the fastest GPU (Nvidia Tesla V100) platform outperforming the fastest (64 vCPU) CPU

(a) (b)

(c)

Fig. 10 The three models used in measuring the cost-runtime trade-off of the different EC2
instances. (a) A bladder mesh, (a) a low-solution human brain mesh (Colin27), and (c) a pig lung
mesh.
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platform by nearly 6×. For the bladder and the low-resolution brain mesh, the GPU-based
instances are also more cost-effective than instances with a large number of vCPUs as their
higher cost/hour is more than compensated for by their high performance, particularly for the
less expensive Nvidia Tesla T4 platform.

On the other hand, the largest (pig lung) mesh, which contains 45.9 million tetrahedra, per-
forms best on CPU-based platforms. This case has a high memory requirement of 28.1 GB and
will not run on the two smallest CPU instances or the smaller GPU instance. The fastest platform
is the 64 vCPU platform, and a high-end GPU platform of comparable cost is 1.3× slower. This
case has both a large mesh and a complex (surface) light source, resulting in a larger preprocess-
ing time before the main Monte Carlo photon simulation begins. This time is reduced by a more
capable CPU platform, as the preprocessing code does not leverage a GPU. While the GPU
instance still outperforms even 64 vCPUs on the core Monte Carlo loop, it is not enough to
overcome the slower preprocessing time due to its lower vCPU count. The most cost effective
platform for this mesh is the 8 vCPU platform; its runtime is 2.1× longer than the 64 vCPU
instance, but due to its lower price per hour it is 4.8× more cost-effective. This is again impacted
by the higher preprocessing time in this test case. The mesh loading and preprocessing code is
less parallel than the core Monte Carlo photon simulation loop, so the higher time spent in these
operations in the pig lung case helps make the 8 vCPU instance the most cost-effective.

Table 4 shows that PDT-SPACE run time scales well as the number of vCPUs increases; on
the large brain tumor case, a 64 vCPU instance reduces compute time by 10× versus a 4 vCPU
instance. The scaling is not perfectly linear partially because there is some serial code in PDT-
SPACE and partially because the different vCPUs can compete for memory access in parallel
code. While the largest (64 vCPU) instance is the fastest, the smaller (8 vCPU) is the most cost-
effective, reducing the cost of a simulation by over 2× versus the 64 vCPU instance.

The results show that both the fastest and the most cost-effective platform vary significantly
with the problem being solved, highlighting the utility of users being able to choose from the
over 100 types of EC2 instances to match compute to the problem at hand. Renting EC2
instances on demand also allows users to scale up their compute as needed, whereas buying
and managing their own pools of servers is less flexible in adapting to demand.

5 Preclinical Case Studies

Translation of the iPDT plan based on optimized light source placement into the clinic requires
demonstration of therapeutic efficacy improvements in large animal models. These models
often include canines, pigs, and even higher phylogenetic species. Besides the ethical issues
in experimenting on phylogenetic high species, these studies are generally cost and time-
intensive. Resolving light propagation issues prior to the onset study can address Russell and
Burch’s three R’s in preclinical studies: replace, refine, and reduce.51 Replacement of animal

Table 4 Compute time and cost for PDT-SPACE optimization of two tumor cases, within the
low-resolution human brain mesh. 107 photon packets are used in the required Monte Carlo
simulations.

Case

Disk
usage
(MB)

# of
tumor
tetra

# of
nontumor

tetra
Instance
type

# of
vCPU

Memory
consumption

Run time
(mm:ss)

Price
($USD/

100 runs)

Small brain
tumor

14.7 5,889 417,487 t3a.xlarge 4 422 MB 09:12 2.31

t3a.2xlarge 8 05:12 2.61

m6i.16xlarge 64 01:15 6.4

Large brain
tumor

14.7 11,079 412,297 t3a.xlarge 4 678 MB 53:34 13.43

t3a.2xlarge 8 29:54 14.99

m6i.16xlarge 64 05:19 27.22
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experimentation can be achieved by calculating the signal of photon sensors placed noninva-
sively at the tissue necrosis or coagulation boundaries over the anticipated range of tissue optical
properties, instead of harvesting tissue samples from multiple animals to measure optical proper-
ties. Refinement and reduction can be achieved by verifying light source placement based on
clinical imaging and performing photon distribution simulation to ensure that the anticipated
biological effect can be measured in the organs of interest. Below we summarize how we lever-
aged the presented web-based suite to implement the aforementioned two experiments.

5.1 Optical Property Estimation

Using 3D CAD tissue phantoms, we leveraged FullMonteWeb to generate tissue optical proper-
ties look-up tables that correlate the anticipated light intensity at sensors or the extent of tissue
necrosis for planned experiments for a range of diffuser depths inside the liver. Figure 11(a)
shows a 6 × 12 × 6 cm cube, created using Autodesk Fusion 360 and converted into a.vtk format
mesh, representing a liver tissue with a 2-cm long light diffuser placed at an oblique angle into
the bile duct. The light diffuser is modeled as a separate region that emits photons diffusely (at a
100 mWcm−1). Figure 11(b) indicates the fluence rate ½mWcm−2� over the line shown in

Fig. 11 (a) Digital 3D liver phantom used for FullMonteWeb simulation, (b) exemplary dose
attenuation curve along the solid white line shown on the phantom, and (c) simulation output show-
ing the predicted fluence-rate at 2 mm from the center line as a function of the absorption and
scattering coefficients.
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Fig. 11(a) for a range of μa and μs 0 in liver tissue. A total of 11 μa½0.0005 − 0.0631 mm−1� and
11 μs 0 − ½6 − 11 mm−1� values were assigned to the liver tissue according to published
values.52,53 Thus, the simulation run comprises 121 optical properties executed in a single run.
To perform this custom simulation, we leveraged the ability to edit the Tcl script generated by
FullMonteWeb to add loops over optical characteristics; a simulation is performed for each pos-
sible pair of optical characteristics. FullMonteWeb executes the entire simulation, and the user
can download a zip file with the output files for all 121 cases. Figure 11(c) shows the
FullMonteWeb generated light detected at position r ¼ 2 cm on the line shown in Fig. 11(a),
as a function of μa and μs 0 . Utilizing multiple detector distances enables determination of the
average tissue optical properties in the region of interest during subsequent in-vivo experiments
in real time. It is important for the user to determine the required number of photon packets to be
launched to achieve a sufficient fluence rate signal-to-noise ratio (S∕N) for the highest μeff and
largest radial distance to be simulated.

Also, the disk storage size requested for these simulations given the number of tissue optical
property combinations to be executed must be estimated as all simulation results are kept on disk
on the EC2 instance prior to writing back to the Amazon S3 storage. Running a single test model
indicated that the sufficient disk storage for one simulation is about 200 MB. Accordingly, a disk
storage size of 64 GB was selected, to leave some room for required software installations.
Simulated using 107 photons on a m6i.16xlarge instance with 64 vCPUs, the overall run time
of the 121 cases is 5 h and 11 min. The results can be visualized immediately on the EC2 instance
and (if desired) individual result files can also be immediately downloaded to the end user
machine. All the results are also compressed and transferred to persistent cloud storage
(Amazon S3 storage) so they can be viewed from the FullMonteWeb history page (see
Fig. 8) at any later date. For this large simulation, 15 GB of output data is produced, which
requires 35 min to compress to a 5-GB.zip file, and a further 55 min to transfer to archival
storage.

5.2 Diffuser Placement Optimization

An example addressing refinement and reduction in preclinical subject usage pertains to opti-
mizing the placement of optical diffusers within the vascular network in and around the pancreas,
whereby the maximum permissible fluence needs to be determined to still permit individual
scoring of the tissue response at each optical diffusers by pathology and histology. Here,
FullMonteWeb was used to determine the location and power deliverable to all potential vessel
locations and power per diffuser as part of a dose-escalation study in a porcine pancreas model.
The fluence rates from multiple sites need to remain independent and the pancreas’ biological
response at the various doses need to be quantifiable given the proximity of pancreatic tissue to
a particular blood vessel, within a maximum amount of time permitted to occlude the vessel.
An anatomically correct pig pancreas model was generated from contrast-enhanced CT images
to execute dose-escalation simulations by constructing an in-silico 3D pancreas with the major
blood vessels in and around the pancreas shown in Fig. 12(a). The model comprises three layers
of the pancreatic tissue (shown in orange), the arterial blood vessel (in red), and the vein (in blue)
with assigned optical properties based on the literature for aortic tissues.53,54 The photon sources
were modeled as cylinders with a 1 mm radius and 10 mm length. Figure 12(b) visualizes the
resulting fluence around multiple sources placed simultaneously into the pancreas. The extent of
the tissue destruction based on the photodynamic threshold model55–57 as a function of fluence
can thus be utilized for experimental planning. Simulations also provide the maximum power
permissible to prevent thermal damage to the vessel wall, by limiting the fluence rate at the
intima to <300 mWcm−2. Figure 12(c) shows a cross-sectional line between two illumination
points. The fluence along this line shown in Fig. 12(d) illustrating that the maximum permissible
intima surface irradiation is not breached and that while there is an overlap of the fluence rate
profiles it occurs only after a fluence rate attenuation exceeding three orders of magnitude equiv-
alent to more than three effective attenuation coefficients. It is up to the experimental planning
to ensure that this fluence overlap will not result in an overlap in tissue necrosis, to enable
evaluation of each illumination spot separately.
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6 Conclusion

In this work, we introduced FullMonteWeb, an open-source user-friendly web-based software
with a graphical user interface for iPDT modeling and optimization. The tool can perform Monte
Carlo simulations of light propagation in biological tissues, along with iPDT plan optimization.
It is flexible in the source type and tumor location and size and provides in-browser visualization
of both the problem geometry and results. FullMonteWeb leverages AWS to install and run the
required libraries and software. We have shown that the best choice of AWS instance depends on
the problem type and size and have provided some insight on what instance to choose based on a
runtime-cost trade-off. Finally, we have highlighted how to leverage the software in different
applications by showing how to extract the optical properties in a liver phantom and how to
optimize the placement of light diffusers in a pig-pancreas iPDT experiment.

7 Appendix: FullMonteWeb Walkthrough

7.1 Treatment Plan Evaluation

To run FullMonteSWon FullMonteWeb, a series of input pages guide users intuitively to provide
the necessary files and parameters for simulations. As shown previously in Fig. 5, the first page

Fig. 12 (a) 3D model of pig pancreas (orange) with local arteries (red) and veins (blue), (b) pan-
creas cross section with color-coded fluence rate for two 10 mm long diffusers embedded in the
superior mesenteric artery, (c) visualization of fluence perpendicular to the light emitter, and (d) the
fluence rate intensity distribution along the center after establishing the maximum permitted power
density to the intima.
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prompts the basic information, including the input mesh file, mesh units, types of energies to
record, and more. In the back-end, FullMonteWeb takes all the selections and generates a Tcl
script that runs FullMonteSW on the provided EC2 virtual machine.

The second page prompts for the mesh’s region properties and allows users to save certain
regions as presets for future quick selections. As shown in Fig. 13, advanced users can download
the semifinished Tcl script from this page, manually complete the script, upload it back to
FullMonteWeb, and skip the rest of the setup procedures.

The third page asks for the light source types and positions. The 3D visualization feature
providing a visual model of the input mesh and its surrounding space aids users in selecting
light source locations. The confirmation page provides a chance for users to review the set-
tings and make any final changes to the Tcl script before launching the simulation. All Tcl
scripts downloaded from these steps are prepared with comments to guide the user toward
completing it.

Upon confirmation, a progress page appears providing feedback on the execution progress in
real time, as shown in Fig. 14. Upon completion, the simulation logs page is presented, providing
potential warnings and errors that occurred during the simulation. Users can visualize the results,
or download the Tcl script, input files, and output files via the simulation history page.

Fig. 13 Advanced options for FullMonte simulation.

Fig. 14 FullMonte simulation progress.

Wang et al.: Scalable and accessible personalized photodynamic therapy optimization with FullMonte. . .

Journal of Biomedical Optics 083006-18 August 2022 • Vol. 27(8)



7.2 Treatment Plan Creation

To run PDT-SPACE, the user is guided by multiple input pages to provide the necessary files and
parameters for software execution. A Mosek58 license needs to be obtained and uploaded to
PDT-SPACE to access its Fusion C++ API library for solving the convex optimization problem.
The license can be obtained by following the link provided on the upload page.

Next the user is asked to specify the input mesh, optical and issue property files, the number
of photon packets, wavelength, and the tumor weight. The tumor weight is required when opti-
mization is to be executed to maximize tumor destruction while minimizing OAR damage.
Experienced users can specify the pruning normalization factor to scale the light dose thresholds.
Subsequently, the user can select the source type, placement type, and upload an initial place-
ment file containing this information. In the back-end, FullMonteWeb takes all the settings and
generates a parameter script that contains all input parameter names and values for running PDT-
SPACE on the specified EC2 instance.

To launch PDT-SPACE optimization, FullMonteWeb executes two scripts that are created
during AWS setup. The first script is to download and open the docker image, which contains
the PDT-SPACE library on the user’s AWS account. The second script is to set the running
environment and execute the PDT-SPACE command with the auto-generated parameter file.
Once confirmed, users will be redirected to a progress page, as shown in Fig. 15.

Once the optimization completes, the website will automatically redirect users to a results
page, as shown in Fig. 16. The page contains total energy, number of packets, fluence distri-
bution across all material regions, relative power allocation for the specified light sources, and
optimization run time. Users can then visualize the PDT-SPACE output or download the log files
from the link at the bottom of the page.

7.3 Robustness and Security

To ensure that users can only access their own files, all user data are protected by their accounts.
As shown in Fig. 17, if users attempt to run FullMonteSW, PDT-SPACE, visualizers, or to access
the simulation history page without logging in, they will not be able to proceed.

Since FullMonteSW, PDT-SPACE, and visualizer computations cannot be done in the
browser, users are required to set up an AWS virtual machine. If FullMonteWeb cannot detect
a valid virtual machine setup on the account, the user will be redirected to the AWS Setup page,
as shown in Fig. 18.

To ensure the website’s reliability against invalid inputs and mismatches between mesh and
specified material properties, there are several restrictions and validation modules implemented
in the back-end. For example, the refractive index should be at least 1, so if the user specifies a
value outside of this range, they will be alerted, as shown in Fig. 19. Furthermore, mesh files are
typically specified in units of centimeters or millimeters, so users are required to specify the
mesh unit when they upload the mesh file. All inputs following the upload should be in the
same unit, so the website automatically converts all preset information to the same unit.

Fig. 15 Progress page when running PDT-SPACE.
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7.4 Visualization

7.4.1 Dose-volume histogram

When the visualization feature is launched after a successful FullMonte simulation, the user will
be prompted to upload a tissue properties file containing the threshold fluence for each region.
FullMonteWeb will then automatically generate a DVH and display it on the web page.

Fig. 17 Error when user attempts to use core functions without logging in.

Fig. 16 An example results page on FullMonteWeb after running PDT-SPACE.
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Likewise, a DVH will also be generated after a successful PDT-SPACE run but without the step
of uploading a tissue properties file (see Fig. 20). A DVH serves to show the distribution of
fluence (energy intensity) throughout each body tissue region. With this graph, the user can
understand the volume of healthy tissue and tumor after receiving a certain percentage of its
dose threshold. From the figure, the x axis represents the percentage of fluence dose with respect

Fig. 19 Error when user enters an invalid input.

Fig. 20 A dose volume histogram generated from PDT-SPACE output of an iPDT plan for a brain
tumor with a 32 cm3 volume in the frontal lobe.

Fig. 18 Error when user attempts to run simulation, optimization, or visualization without setting up
a valid EC2 virtual machine.
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to the dose threshold for each tissue in the mesh and the y axis represents the percentage of a
region that receives at least a given dose.

7.4.2 3D interactive visualizer

As shown previously in Fig. 9, the user is able to interactively zoom in and out, as well as move
and rotate the 3D model by dragging the model with the mouse. Moreover, with the paraview
visualizer, the user can also add rendering filters to the 3D model, such as clip, slice, and thresh-
old filters. With these filters, the user is able to see the inner property of meshes and have a better
understanding of the treatment plan. For example, the user could first apply a threshold filter on
the mesh and set the threshold range between regions 4 and 5, then apply a slice filter on the
mesh so all other regions are rendered as a slice along the user-specified plane except for regions
4 and 5.
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