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Abstract

Significance: Skin malformations in dermatology are mostly evaluated subjectively, based on a
doctor’s experience and visual perception; an option for objective quantitative skin assessment is
camera-based spectrally selective diagnostics. Multispectral imaging is a technique capable to
provide information about concentrations of the absorbing chromophores and their distribution
over the malformation in a noncontact way. Conversion of spectral images into distribution maps
of chromophores can be performed by means of the modified Beer–Lambert law. However, such
distribution maps represent only single specific cases, therefore, some extensive method for
data comparison is needed.

Aim: This study aims to develop a more informative approach for identification and characteri-
zation of skin malformations using three-dimensional (3D) representation of triple spectral line
imaging data.

Approach: The 3D-representation method is experimentally tested on eight different skin path-
ology types, including both benign and malignant pathologies; an imaging device ensuring
uniform three laser line (448, 532, and 659 nm) illumination is used. Three spectral line
images are extracted from a single snapshot RGB image data, with subsequent calculation of
attenuation coefficients for each working wavelength at every image pixel and represented as
3D graphs. Skin chromophore content variations in malformations are represented in a similar
way.

Results: Clinical measurement results for 99 skin pathologies, including basal cell carcinomas,
melanoma, dermal nevi, combined nevi, junctional nevi, blue nevi, seborrheic keratosis, and
hemangiomas. They are presented as 3D spectral attenuation maps exhibiting specific indi-
vidual features for each group of pathologies. Along with intensity attenuation maps, 3D maps
for content variations of three main skin chromophores (melanin, oxyhemoglobin, and deoxy-
hemoglobin), calculated in frame of a model based on modified Beer–Lambert law, are also
presented. Advantages and disadvantages of the proposed data representation method are
discussed.

Conclusions: The described 3D-representation method of triple spectral line imaging data shows
promising potential for objective quantitative noncontact diagnosis of skin pathologies.
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1 Introduction

To ensure reliable and accurate diagnostics of skin malformations, direct in-vivo measurements
of skin chromophore content variations and distributions across the lesion area are of great
clinical value, especially if the measurements are taken in a patient-friendly noninvasive way.
One possible approach is multispectral imaging of skin diffuse reflectance where the specular
reflection of skin is minimized by using two orthogonally oriented polarizers – one in front of the
image sensor (camera) and the second in front of the light source.1 To extract the chromophore
concentrations or their changes in particular skin image areas, the Beer–Lambert law (BLL) can
be used.2–5 However, BLL applied for skin diffuse reflectance may also lead to some uncertain-
ties and bottlenecks;6 therefore, attention should be paid to specific parameters used in calcu-
lation models for image processing. Applicability of a modified BLL for evaluation of skin
chromophore content changes in malformations using pixel-by-pixel analysis of diffusely
reflected light intensity at fixed wavelengths is tested in this study.

The potential of the snapshot triple spectral line imaging method for noncontact assessment
of various skin malformations has been successfully demonstrated in Refs. 1, 2, and 7. This
study continues our previous research with an extended number of clinical cases (99 in total);
a novel approach for presenting spectral line image processing results using three-dimensional
(3D) representation of the imaging data is introduced.

2 Methods

Skin can be modeled as a structure comprising a number of homogeneous layers. In simple
models only two layers are considered: epidermis and dermis,8 while in more advanced models
up to seven layers are taken into account: stratum corneum, living epidermis, papillary dermis,
papillary plexus, reticular dermis, cutaneous plexus, and subcutis.9 Each skin layer has specific
optical properties – absorption coefficient, anisotropy factor, refractive index, as well as own
thickness and chromophore composition. Besides, skin scattering properties are to be taken into
account.

2.1 Model

A modified BLL model for diffusely reflected light was tested experimentally in this work.
Reflected intensity from the surrounding healthy skin was always taken as a reference in analysis
of the malformation-reflected light intensity;1 therefore, all presented skin chromophore concen-
tration values in pathologies are relative compared with the volunteers healthy skin. Exact values
for mean path lengths of the skin-remitted photons at particular wavelengths are needed for
processing the measured data. Here, we used experimentally determined values from our pre-
vious study of the photon time-of-flight in skin.10 In this study, picosecond laser pulses at eight
narrow wavelength bands were launched into healthy forearm skin of volunteers via an optical
fiber, and the diffusely reflected signals were detected at various distances by means of the time-
correlated single-photon counting method. By comparing the shapes of input and output pulses
[aðtÞ and bðtÞ], the temporal distribution function fðtÞ of photon arrivals following infinitely
narrow δ-pulse input was found by deconvolution of the integral,

EQ-TARGET;temp:intralink-;e001;116;205bðtÞ ¼
Z

t

0

aðt − τÞfðτÞdτ: (1)

The corresponding distribution of the backscattered photon path lengths in skin was found as

EQ-TARGET;temp:intralink-;e002;116;148ϕðsÞ ¼ fðtÞ · c∕n; (2)

where c is the speed of light in vacuum, n is the averaged refraction index of superficial skin
tissues (∼1.4). Photon means path length in skin was calculated as the mean value of integrated
path length distribution function.
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It was assumed that only skin melanin, oxyhemoglobin, and deoxyhemoglobin are absorbing
the incident light in this model. Scattering was excluded because diffusely reflected light inten-
sities from the skin pathology and the healthy skin were compared, assuming that scattering
properties in the healthy skin and the pathology region are very similar. Reduced scattering
coefficient μs 0 values can change up to two times11 which does not contribute much to the back-
scattered light intensity, if compared with chromophore absorption. Modified BLL model for
diffusely reflected light:

EQ-TARGET;temp:intralink-;e003;116;651cMel · εMelðλÞ þ cOx · εOxðλÞ þ cDeox · εDeoxðλÞ ¼
ln

I0ðλÞ
IðλÞ

2.303lðλÞ ; (3)

where Mel is the melanin; Ox is the oxyhemoglobin; Deox is the deoxyhemoglobin; εðλÞ is the
extinction coefficient (cm−1∕M);12,13 c is changed chromophore concentration in the pathology
region (M); IðλÞ and I0ðλÞ are the intensities of diffusely reflected (remitted) light from the
pathology and from the surrounding skin (relative units), respectively; and lðλÞ (cm) is remitted
photon mean path length in the skin at particular wavelength λ. We use three wavelengths for
skin illumination, therefore, we can write Eq. (1) three times obtaining a system of three Eq. (1).
There are three unknown values cMel, cOx, and cDeox in this system. Accordingly, we can cal-
culate variations of all chromophore concentrations by solving this system of equations.

2.2 Measurement Setup

Our previously created device1 was used for clinical measurements; the setup scheme is pre-
sented in Fig. 1. Skin was uniformly illuminated by three narrow laser-emitted spectral lines
using a specially designed disc-shaped light diffuser. Three couples of laser modules with equal
emission wavelengths were placed at opposite sides of the light-shielding cylindrical wall of the
device, so six radial laser beams were scattered by the diffuser. Three laser lines (448, 532, and
659 nm) via the diffusive reflector simultaneously illuminated the skin region of interest com-
prising the skin malformation – e.g., nevus, hemangioma, or seborrheic keratosis. RGB camera
of a Nexus 5 smartphone was used for spectral image data collection using AZ Camera software.
Two orthogonally oriented polarizers were exploited to minimize detection of skin specular
reflection – one in front of illumination source and another in front of the camera. The single
snapshot approach with exposure time in the millisecond range excluded the motion artifacts in
three spectral line images.

Fig. 1 Illumination and image capturing scheme of the experimental device.14
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2.3 Image Processing

Image processing scheme is illustrated in Fig. 2. When transforming a single RGB image data set
(taken under three spectral line illumination) into three spectral line images – one image for
each laser line, the RGB crosstalk correction is necessary. The correction algorithm Ref. 15
exploits three spectral sensitivity curves (R, G, and B) of the image sensor. Crosstalk means
that each wavelength can be detected at two or three detection bands of the sensor, but with
different probabilities – depending on the detection band sensitivity for this wavelength. The
crosstalk correction algorithm extracts the contribution of each working wavelength in the output
signal of each detection band (R, G, and B). In our case, skin was uniformly illuminated by three
laser lines (448, 532, and 659 nm) and we used the provided manufacturer spectral sensitivity
values at the R, G, and B detection bands of the sensor for these wavelengths for crosstalk cor-
rection. Sets of R, G, and B channel values were collected from each pixel, then the crosstalk
correction was performed with further calculations of the corresponding three spectral line
images. These images were segmented to separate the pathology from healthy skin area using
k-means clustering function in MATLAB.16 The green 532-nm image was used for segmenta-
tion. After that, the mean reflected intensity values from the surrounding healthy skin area at
each of the used wavelengths (I0ðλÞ) were calculated; they represented reference values when
there were no tissue absorption changes due to skin pathologies. The reflected spectral line inten-
sities from image pixels related to the area of pathology were divided by the reference values to
obtain three attenuation coefficients kðλÞ ¼ IðλÞ∕I0ðλÞ (Fig. 2), where kB is related to 448 nm,
kG to 532 nm, and kR to 659 nm wavelength.

2.4 Clinical Measurement Conditions

Clinical in-vivomeasurements were taken under permission of the local ethics committee having
written consent of all 77 volunteers with skin photo-types I or II (Fitzpatrick classification), aged
between 20 and 68, in cooperation with certified dermatologist Anna Berzina (The Clinic of
Laser Plastics, Riga). In total, 99 skin pathologies were examined in this study: three basal cell
carcinomas, 27 dermal nevi, 12 hemangiomas, 16 combined nevi, one melanoma, 17 junctional
nevi, 22 seborrheic keratoses, and one blue nevus. Data for dermal, combined, and junctional
nevi, as well as those for hemangiomas and seborrheic keratoses, may be considered as sufficient
for primary conclusions while the few cases of skin cancers (basal cell carcinoma and mela-
noma), and blue nevus can serve only for general illustration.

3 Results

3.1 3D Graphs for Spectral Attenuation Coefficients

The measured attenuation coefficients ki (reflected intensity ratios: pathology versus healthy
skin) for the above-mentioned eight groups of pathologies are presented as 3D graphs in
Fig. 3; all ki values are calculated in percentages. Each point in the graph represents one clinical
data pixel value from a segmented pathology. Points are arranged more densely where pixels
have similar values, and more scattered where only few pixels have these values. For some

Fig. 2 Image processing scheme.
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pathology types, like dermal nevi, we had more samples (27); therefore, 3D graph cloud consists
of 400,000 nonoverlapping points. But for other pathologies, like blue nevi and melanoma, we
had only one sample each, therefore, 3D graph cloud consists just of 6000 nonoverlapping
points.

Figure 3(a) compares the k-value clouds for three different benign pathologies – dermal nevi,
seborrheic keratoses, and hemangiomas. Parts of them are nonoverlapping, e.g., the specific
volume related to hemangiomas and that related to nevi can be easily distinguished. Even better
separation between malformations can be observed in Fig. 3(b) where spectral attenuations of
two malignant pathologies – melanoma and basal cell carcinomas – are compared with those of
a benign pathology – blue nevus. All three pathologies here can easily be distinguished; the kR
values for blue nevus and melanoma are lower than those for basal cell carcinomas while mela-
noma exhibits lower kG values than the blue nevus. Spectral attenuations of three different nevi
types – dermal, combined, and junctional – are compared in Fig. 3(c); they form a compact cloud
but still, each type mainly covers a specific volume in the 3D graph. Data for malignant path-
ologies (basal cell carcinomas and melanoma) and typical benign pathology (dermal nevi) are
compared in Fig. 3(d). Again, some values of all three malformations are slightly overlapping but
the kR values for nevi are clearly higher than those for melanoma and lower than those for basal
cell carcinomas.

To summarize, the graphs in Fig. 3 exhibit specific volume-shape features for each of the
examined eight groups of skin pathologies. This kind of image data representation may find
further application in quantitative diagnostics of skin malformations, e.g., for characterizing and
identifying of specific skin pathologies by the spatial location of the kB − kG − kR data points
determined from the spectral line images.

Fig. 3 Attenuation coefficient 3D graphs in % for different groups of skin pathologies: (a) dermal
nevi, seborrheic keratoses, and hemangiomas; (b) blue nevus, melanoma, and basal cell carci-
nomas; (c) dermal, combined, and junctional nevi; (d) dermal nevi, melanoma, and basal cell
carcinomas.
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3.2 Attenuation Coefficient Cubes and Limiting Values for Skin Chromophore
Content Changes

All possible values of chromophore concentration variations for melanin, oxyhemoglobin, and
deoxyhemoglobin in moles (M) were calculated for all possible attenuation coefficient values
from 1% to 100% (full cubes) in frame of the above-regarded modified BLL model (Sec. 2.1.)
using the 3D data representation (Fig. 4). Those values can be both positive (increased chromo-
phore concentration) and negative (decreased concentration) since they represent chromophore
concentration changes in pathology compared with surrounding healthy skin (shown in the
color bars of Fig. 4). Melanin concentration increase in pathology is inversely correlated to
the kR values [Fig. 4(a)], as extinction coefficient of melanin at 659 nm is considerably lower
than that at the two other used wavelengths. The color changes (representing concentration
increase/decrease changes) in the oxyhemoglobin and deoxyhemoglobin cubes are almost
reverse: where oxyhemoglobin values are higher, deoxyhemoglobin values are lower, and vice
versa [Figs. 4(b) and 4(c)].

The model-limited chromophore content variation ranges were calculated, as well (Table 1).
Variation range for melanin was the largest, from −23.67 to 338.93 M · 10−5. Oxy- and deoxy-
hemoglobin concentration variations were model-limited in much narrower ranges.

3.3 3D Representation of the Clinical Data

Four groups of nevi were analyzed using the above-described 3D representation: blue, com-
bined, dermal, and junctional (Fig. 5). As well as four other groups of pathologies: basal cell
carcinomas, hemangiomas, melanoma, and seborrheic keratoses (Fig. 6). Only points represent-
ing the pixel values in clinical data images were left in the 3D graphs of spectral attenuation
coefficients. Green color in all graphs represents chromophore zero changes. If relative chromo-
phore content is higher in the pathology than in the adjacent healthy skin, the points in the graph
are colored yellow or red; if the chromophore content has decreased, the points are colored blue.

Fig. 4 Full 3D cubes representing possible concentration variations of three main skin chromo-
phores, calculated in frame of the used modified BLL model: (a) melanin, (b) oxyhemoglobin,
and (c) deoxyhemoglobin. Color bar, the chromophore concentration increase/decrease in the
malformation, expressed in moles · 10−5.

Table 1 Minimal, maximal values, and value ranges for melanin, oxyhemoglobin, and deoxy-
hemoglobin concentration changes in skin malformations according to the used modified BLL
model, k i ∈ ½1%; 100%�.

Melanin, M · 10−5 Oxyhemoglobin, M · 10−5 Deoxyhemoglobin, M · 10−5

Min Max Range Min Max Range Min Max Range

−23.67 338.93 362.60 −10.36 8.56 18.92 −7.15 4.20 11.35
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The melanin, oxyhemoglobin, and deoxyhemoglobin relative concentration scales are leveled
equally for all included pathologies.

Different specific spatial cloud shapes in the presented 3D graphs are related to the examined
skin pathologies, along with different k-value distributions. Nevi and melanoma exhibit the
highest melanin concentration increase values [Figs. 5(a), 5(d), 5(g), 5(j), and 6(g)] while
the oxyhemoglobin concentration increase values are highest for hemangiomas [Fig. 6(e)],
as could be expected from the lesion anatomy considerations.

4 Discussion

A novel approach for skin pathology analysis using sets of triple spectral line images has been
proposed and tested. The clinical image data were compiled in 3D intensity-attenuation coef-
ficient graphs at three fixed wavelengths 448, 532, and 659 nm (Figs. 3, 5, and 6). Although
some of the obtained 3D clouds for particular skin malformations spatially overlapped (Fig. 3),
individual features of specific pathology groups like cloud shape/volume and chromophore con-
tent distribution could be clearly distinguished. The spectral imaging data were processed in

Fig. 5 3D representation of chromophore content changes in nevi: (a)–(c) blue nevus, (d)–(f) com-
bined nevi, (g)–(i) dermal nevi, and (j)–(l) junctional nevi. Color bar, the chromophore concentration
increase/decrease in the pathologies, moles · 10−5.
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frame of a modified BLL model for diffusely reflected light where only relative concentration
changes of three main skin chromophores (melanin, oxyhemoglobin, and deoxyhemoglobin)
with respect to the surrounding healthy skin were calculated. In spite of evident limitations
of the used model, the proposed 3D representation approach demonstrated not only selectivity
concerning the type of pathology but also some advantages if compared to the previously used
approach – planar mapping of the chromophore distributions over the skin malformation.1,2,5,17–20

The planar chromophore maps are well-suited for assessment of a specific single pathology
sample, but this representation lacks sense of general trends of chromophore distributions
in the pathology groups. Qualitatively, the main criteria for the first stage study are fulfilled:
all hemangiomas have exhibited higher oxyhemoglobin concentration increase than other exam-
ined pathologies and all pigmented malformations (nevi, basaliomas, and melanoma) have
exhibited higher melanin concentration increase.

The 3D representation of spectral imaging data potentially enables objective comparison of
different pathology groups and may facilitate a general understanding of the chromophore
content variations and their distributions in skin malformations. Authors believe that further
development of this approach, e.g., by applying AI algorithms for the 3D cloud recognition,

Fig. 6 3D representation of chromophore content changes in four examined skin pathologies:
(a)–(c) basal cell carcinomas, (d)–(f) hemangiomas, (g)–(i) melanoma, and (j)–(l) seborrheic
keratoses. Color bar, the chromophore concentration increase/decrease in the pathologies,
moles · 10−5.
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could be helpful for improved quantitative diagnostics of particular pathologies, including skin
cancers, as well as for reliable follow-up of the skin healing process after therapies.

As a disadvantage, the need for specific equipment for spectral line imaging of skin can be
mentioned. However, currently, there are all technical preconditions for creation of suitable low-
cost diagnostic devices of this kind as compact and stable low-power RGB lasers are entering
the market21 and uniform triple spectral line illumination of skin can be easily performed, e.g., by
exploiting side-emitting optical fibers.22 Tools for elimination of the laser speckle artifacts in
spectral line images are developed, as well.23

Concerning further developments, some more advanced modifications of BLL-based image
processing models taking into account absorption/scattering in several skin layers have to be
tested in conjunction with the 3D representation of spectral attenuation coefficients. Besides,
the mean path lengths of skin-remitted photons from various skin malformations have to be
determined and used in model calculations, instead of the data for healthy skin exploited
in this paper. Larger groups of volunteers should be clinically inspected in future, including
those with darker skin in order to examine skin type impact on calculated chromophore
concentration values.

5 Summary

Results of a clinical study involving eight types of skin malformations (99 in total) by means of
the triple spectral line snapshot imaging method were represented as 3D plots of spectral attenu-
ations, so demonstrating specific shape/volume features of each pathology group. Concentration
variations of three main skin chromophores in the examined malformations were calculated in
frame of a modified Beer–Lambert model and 3D-represented, as well. Further development of
this technique may contribute to improved noncontact objective diagnostics of skin pathologies,
including skin cancers.
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