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ABSTRACT. Significance: Wide-field imaging Mueller polarimetry is an optical imaging tech-
nique that has great potential to become a reliable, fast, non-contact in vivo imaging
modality for the early detection of, e.g., deceases and tissue structural malforma-
tions, such as cervical intraepithelial neoplasia, in both clinical and low-resource set-
tings. On the other hand, machine learning methods have established themselves
as a superior solution in image classification and regression tasks. We combine
Mueller polarimetry and machine learning, critically assess the data/classification
pipeline, investigate the bias arising from training strategies, and demonstrate how
higher levels of detection accuracy can be achieved.

Aim: We aim to automate/assist with diagnostic segmentation of polarimetric
images of uterine cervix specimens.

Approach: A comprehensive capture-to-classification pipeline is developed in
house. Specimens are acquired andmeasured with imaging Mueller polarimeter and
undergo histopathological classification. Subsequently, a labeled dataset is created
within tagged regions of either healthy or neoplastic cervical tissues. Several
machine learning methods are trained utilizing different training-test-set-split strat-
egies, and their corresponding accuracies are compared.

Results: Our results include robust measurements of model performance with two
approaches: a 90:10 training–test-set-split and leave-one-out cross-validation. By
comparing the classifier’s accuracy directly with the ground truth obtained during
histology analysis, we demonstrate how conventionally used shuffled split leads to
an over-estimate of true classifier performance ð0.964� 0.00Þ. The leave-one-out
cross-validation, however, leads to more accurate performance ð0.812� 0.21Þ with
respect to newly obtained samples that were not used to train the models.

Conclusions: Combination of Mueller polarimetry and machine learning is a power-
ful tool for the task of screening for pre-cancerous conditions in cervical tissue sec-
tions. Nevertheless, there is a inherent bias with conventional processes that can be
addressed using more conservative classifier training approaches. This results in
overall improvements of the sensitivity and specificity of the developed techniques
for “unseen” images.
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1 Introduction
Cervical cancer is typically preceded by the growth of abnormal cells in the epithelial lining of
the uterine cervix. If these are detected early enough, treatment can prevent their progression into
malignancy. Human papillomavirus (HPV) is implicated in the majority of cervical cancer cases.1

However, despite the availability of the HPV vaccine, cervical cancer persists as a challenging
health problem worldwide.2 Late diagnosis3 and HPV vaccination status4 constitute two of the
most significant risk factors in cervical cancer mortality. This coincides with the highest inci-
dence and mortality rates occurring in developing, low-income countries,5 where screening and
vaccination resources can be greatly limited. Early detection of cervical intraepithelial neoplasia
(CIN), or pre-cancerous alterations of cervical tissue, is constrained by the fact that these changes
are difficult to visualize with the naked eye.6 In developed countries, the standard screening for
cervical pre-cancer includes cytopathological Pap test followed by the visual examination of the
cervix with a colposcope, if necessary.7 The latter is done after the application of contrast enhanc-
ing agents (acetic acid, iodine Lugol’s solution). Then, the biopsies are taken from the acetic
acid-positive and iodine-negative zones. When the presence of malignant cells is confirmed
by a pathologist, the abnormal zones are surgically removed. However, the accuracy of the col-
poscopy diagnostic step is strongly affected by the training and experience of medical doctors.
Developments in this screening process could permit earlier detection of cervical cancer world-
wide, in turn making it more accessible to developing nations.

In recent decades, considerable advancements have been made in the development of optical
techniques applicable to CIN detection. Nevertheless, high-quality optical diagnostics of the
internal structure and functional malformations within biological tissues is significantly impeded
due to multiple scattering of light. A number of theoretical and experimental techniques have
been developed to assess this unique phenomenon.8,9 Diffuse optical spectroscopy, non-linear
Raman spectroscopy, optical coherence tomography, and confocal microscopy all exhibit prom-
ising results for visualizing the precursory cell abnormalities that are characteristic of CIN. The
high spatial resolution that these methods provide, however, is limited by a small field of view
that still requires the time-consuming inspection of a sample by pathologists.7 Producing wide-
field cervical images with high-contrast CIN zones is essential for a reliable screening process.
These properties enable delineation of precise borders of the pre-cancerous tissue regions.
Greater confidence in CIN boundaries can permit a more informed excision of a high-grade
CIN3 lesion.7 It is imperative that highly precise boundaries are formed, as being too
conservative can leave pre-cancerous cells in situ, which can develop into malignancies and
metastasise, whereas excising too much can impair normal cervical tissue function.10

Polarization or spin angular momentum (SAM) is one of light’s most salient features, along
with spectral and coherence properties.11,12 It has been previously established that light polari-
zation is extremely sensitive to the micro-architecture and optical parameters of a variety of stud-
ied media. This property has been extensively explored in a range of contexts including remote
sensing,13–15 optical metrology,16–18 and biomedical diagnostics.19–21 Our previous studies clearly
demonstrated that simple (i.e., circularly) polarized light is able to distinguish different grades of
cancer.22 This motivated an investigation into the application of a promising wide-field polari-
metric technique, namely Mueller matrix (MM) polarimetry.23,24 This technique has great poten-
tial in becoming a reliable, fast (the acquisition of 16 MM images in <1 s was demonstrated in
Ref. 25), non-contact in vivo imaging modality for the early detection of CIN in both clinical and
low-resource settings.26 The wide-field imaging MM polarimeter generates a 4 × 4 matrix of
images of a sample. Each of the 16 images captures changes in the polarization of light
back-scattered by a sample, with each corresponding to a different polarization setting of an
incident light beam.27,28 The optical properties of a sample are encoded in the 16 elements
of its MM, but there is no straightforward interpretation of this matrix with regards to identifying
markers of CIN. Polarimetric properties of a sample (e.g., diattenuation, retardance, and depo-
larization) are calculated from the experimental MM by applying one of the available non-linear,
pixel-wise data compression algorithms.20,29,30 It has been demonstrated that several optical
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properties, including both depolarization and scalar retardance values, are able to distinguish
between regions corresponding to CIN and those belonging to healthy cervical tissue.31

Several statistical and machine learning (ML) algorithms have been developed and tested for
the diagnostic segmentation of polarimetric images of uterine cervix and accurate detection
of CIN zones.32–34 An investigation combining wide-field imaging MM polarimetry and ML
techniques for detection of cervical pre-cancer has yet to be undertaken.

In this work, we evaluate various ML methods to carry out CIN diagnosis using the MM
images of 23 formalin fixed cervical specimens acquired in the framework of the PAIR Gynéco
project funded by the National Institute of Cancer in France.31 Each of these specimens was
examined by pathologists and has a histologically confirmed CIN diagnosis. The diagnosis
is provided in the form of a spatial mask, one for each sample, which can be overlaid onto each
of the 16 elements of the MM. The mask indicates which regions were classified as CIN and
which were classified as healthy. Masked features were extracted and used to train classifiers for
the task of distinguishing pixels as belonging to CIN or healthy tissue. Only some regions of each
sample could be classified with confidence by the pathologists. The pixels with labels were used
exclusively in the supervised training process because the other pixels have no associated clas-
sification to learn from.

This paper is organized as follows. Section 2 details the related background for this study,
including a description of the data collection methods and the ML techniques used for classi-
fication of CIN and healthy tissue. Section 3 presents the proposed capture-to-classification pipe-
line and details of the experimental design. Section 4 describes the classification results across a
variety of ML classifiers. Finally, Sec. 5 covers the conclusions and directions for future work.

2 Background and Related Work

2.1 Multi-Spectral Wide-Field Imaging MM Polarimeter
Conization specimens were imaged using the full-field multi-spectral Mueller polarimetric im-
aging system in a backscattering configuration described in Refs. 31, 33, 34. The main compo-
nents and operational principle of the optical setup are briefly recalled in this section. Figure 1
shows the schematic layout of the multi-spectral wide-field imaging MM polarimeter used for the
data acquisition. Polarization modulation of incident light from a broad band white light source is
carried out by the polarization state generator (PSG), which includes a sequential assembly of a
linear polarizer and two voltage-driven ferroelectric liquid crystals (FLCs). The polarization state
analyzer (PSA) inserted in the detection arm of the instrument contains the same optical com-
ponents as the PSG but assembled in the reverse order. Each FLC operates in transmission as a
quarter wave plate with the orientation of the fast optical axis switching between 0 deg and 45 deg

(a) (b)

Filter wheel

Fig. 1 (a) Schematic presentation and (b) the actual photograph of the experimental setup used to
acquire MM images.
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in the laboratory reference framework depending on the applied voltage. A light-emitting diode
was used as the source of incoherent white light.

The incident light beam illuminates a sample at an incidence angle of ∼15 deg, producing a
spot size of ∼10 cm along the main ellipse axis within the imaging plane. Back-scattered light
from a sample passes through the PSA and rotating wheel that contains 40 nm band-pass inter-
ference filters enabling the measurements from 450 to 700 nm in 50 nm increments. The image is
recorded with a 600 × 800 pixels CCD camera (Stingray F080B, Allied Vision, Germany)
placed normal to the imaging plane. To measure all 16 elements of MM, one needs to perform
at least 16 intensity measurements. In our polarimetric imaging system, four different polariza-
tion states of incident light beam are produced sequentially by the PSG and projected onto four
different polarization configurations of the PSA, thus resulting in 4 × 4 ¼ 16 intensity images
detected by the camera. The Eigenvalue Calibration Method by E. Compain35 was used to cal-
ibrate the instrument, with the reference samples (two crossed polarizers and a wave plate at
30 deg) placed in a rotating wheel in front of the PSA.

The choice of the optimal polarization states for both PSG and PSA was governed by the
minimization of measurement error propagation.36 It was shown that it requires the points rep-
resenting the polarization states of PSG and PSA on the Poincaré sphere to be the vertices of the
platonic solids (a regular tetrahedral in our case).37

2.2 Histopathological Labels and Mapping
The specimens of uterine cervix from 23 patients with histologically confirmed high grade cer-
vical intraepithelial neoplasia (CIN3 or precancer) were collected in the Kremlin-Bicetre (KB)
University Hospital, France. An original method was developed to produce detailed histological
mapping superimposed on Mueller polarimetric images.31 This method consists of the following
steps: (i) all samples are formalin-fixed (according to standard protocol); (ii) shallow parallel
incisions at ∼3 mm separation distance from each other are made by a pathologist for each speci-
men before polarimetric imaging; (iii) the MM images of cervical specimens are recorded with
the wide-field imaging Mueller polarimeter described in previous section; (iv) all cervical spec-
imens are cut by a pathologist into the thick slices along the pre-cut lines as shown in Fig. 2(a);
(v) thin histological sections (∼10 μm) are prepared from each slide using a microtome; (vi) the
histological sections are annotated by a pathologist as shown in Fig. 2(b); and (vii) the diagnosis
obtained on each histological section is repositioned along the pre-cuts on the polarimetric
images.

An example of the recorded MM images of a cervical specimen is shown in Fig. 3, (i). The
experimental MM images were post-processed using the Lu-Chipman decomposition
algorithm.29 The corresponding map of scalar retardance with the histology analysis placed along
the cut lines is shown in Fig. 3, (ii). It was found that the projection of histologically labeled lines
onto the polarimetric images tended to result in small vertical and horizontal displacement errors

(a) (b)

Fig. 2 Illustration of the histological labeling of a cervical specimen; (a) color photo of a sample
with the positions of cuts shown by the white dashed lines (see text). The sample was placed on a
glass support graded with a step of 5 mm; (b) thin hematoxylin-eosin stained histological section
with the color-coded annotated segments of cervical tissue epithelium (healthy, green; CIN3, red;
glandular epithelium, cyan; not annotated, black).
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that may affect the accuracy of polarimetric diagnosis.31 To mitigate this effect and to increase the
number of labeled polarimetric data, we manually selected the zones that are located between the
segments of two adjacent cut lines tagged with the same histology diagnosis [e.g., white-dashed
zones between the adjacent gray-colored segments of cut lines in Fig. 3, (ii)] and labeled all
pixels of these zones with the same histology diagnosis. This approach was used to create binary
masks for both healthy and CIN3 zones for all cervical specimens (shown in Fig. 3, bottom row).
Due to the lack of histologically confirmed information for low grade lesions CIN1 and CIN2, we
focused our efforts on a binary classification problem (CIN3 versus healthy tissue) using a set of
labeled data.

Previous research has investigated the utility of Mueller polarimetry in the context of
detecting pre-cancer in cervical tissue specimens. Rehbinder et al.31 obtained an average value
of 83% for both sensitivity and specificity. Their work involved using the scalar retardance values
calculated from the MM images of 17 formalin-fixed cervical specimens as a decision variable.
The work undertaken by Kupinski et al.33 found that using the scalar retardance values or three
smallest eigenvalues of the coherency matrix (4 × 4 complex-valued Hermitian semi-definite
matrix23) permitted high performance, achieving AUC scores of 0.93 and 0.94, respectively.
The high performance of depolarization metrics based on three smallest eigenvalues of the coher-
ency matrix in discriminating between healthy and pre-cancerous regions was a novel finding
because the detection performance of total depolarization from Lu-Chipman was close to that of
a random classifier (AUC = 0.5). Using both the scalar retardance and the three smallest eigen-
values enabled an average AUC of 0.95. Interestingly, it was also established that only 6 of the 16

Fig. 3 Example of experimental data with histological labeling with the actual size of each image
being 3 × 3 cm; (I) 16 MM images of a sample. All MM images except M00 are normalized by M00

pixel-wise. With respect to the color bar, images on the diagonal range between 0 and 1, and the
off-diagonal images range between −0.1 to 0.1; (II) the cut lines labeled with color-coded histo-
logical diagnosis (healthy, green; low grade CIN, yellow; high grade CIN3, red; glandular epi-
thelium, cyan; metaplastic squamous epithelium, blue; not annotated, black) are superimposed
on the scalar linear retardance image (in degrees). The semi-transparent white shapes overlaying
the image illustrate how masked regions are selected between the adjacent cut lines labeled with
the same histological diagnosis (see text). With respect to the color bar, this image ranges from
0 deg to 50 deg. The bottom row depicts examples of the intensity images for three specimens with
the superimposed masks of histological diagnosis: (a) specimen with the healthy zones only,
(b) specimen with the CIN3 zones only, and (c) specimen with both healthy and CIN3 zones.
Pre-cancerous (CIN3) zones are rendered in red, and healthy zones are in green (scheme adapted
from Ref. 33).
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MM elements were needed to achieve such a performance. This indicates that not all MM ele-
ments are equally relevant to the pre-cancerous classification task. For instance, Heinrich et al.34

developed a general framework for the use of machine learning approaches in the classification of
Mueller polarimetric data. This approach introduces a general metric, called empirical risk,
allowing for training the different classifiers, choosing the polarimetric variables of interest,
defining the hyperparameters of the classifiers, and comparing the performance of the classifiers.
Nevertheless, it is now possible to extend beyond assessing the diagnostic performance of the
scalar retardance and depolarization parameters. In particular, machine learning models can be
trained directly on the labeled pixels of all images of the MM. The quality of these models’
predictions can be assessed by examining the overlap of the histologically labeled lines and the
predicted classification zones.

In this paper, we utilize machine learning methods that require less overhead in their imple-
mentation. The first key difference is the manner in which model parameters, such as tree depth
or number of neural network layers, are selected. The cross-validation scheme for model param-
eters implemented in Ref. 34 was not used due to the ability of our classifiers to achieve high
performance regardless of changes to default parameter settings in this pre-screening task. Such
an exhaustive search through the parameter space for optimal parameters incurs significantly
greater computational cost and becomes a case of diminishing returns. In addition, we focus
on the raw Mueller data instead of decomposed optical properties. This challenge is motivated
by the desire to avoid pre-processing to reduce the computational effort. The approach by
Heinrich et al. also used feature selection, reducing the raw data to “superpixels” to mitigate
redundancy in the training process. The models that we chose to include in this work are less
susceptible to data redundancy; thus this step could be omitted while retaining high performance,
thereby optimizing the overall process based on the previously obtained insights.

2.3 Artificial Intelligence and Machine Learning Techniques
The underlying idea of ML is one of automating the process of building analytical models.
Without explicit instruction, systems are required to learn from patterns in data to classify them
or predict other information about them. In a biomedical context, this could be learning to predict
whether a region of tissue is malignant or not. Supervised ML is a sub-category of ML that uses
labeled data to train models.38 This means that a subset of data, or instances, is available that was
labeled for the system to learn from, e.g., tissue regions labeled as malignant or not by a patholo-
gist. After training, the resultant model is able to predict these labels when provided with unla-
beled data. ML techniques can be used to solve a variety of tasks, one of which is classification
wherein the system learns to map a vector into one of multiple classes.39 These classes are dis-
crete labels, such as whether a tissue region is malignant or not in a binary task. There can also be
more than two classes, e.g., grades of cancer. Another common task is regression, in which the
model typically predicts continuous, numerical values instead of discrete labels.40 An example of
this is quantifying biomarkers for disease states in tissues.41–43

In the aforementioned diagnostics context, each of the masked pixels taken from the 4 × 4

MM is treated as an instance in our dataset. Each instance has 16 features, with each feature
corresponding to one of the 16 channels of the MM. Each channel contains different optical
information about the pixel. Labels show the class to which a given pixel belongs: to the
CIN3 class or the healthy class. In this work, a total of three ML classification techniques are
used to carry out the task of predicting healthy and CIN3 masks in the cervical tissue section
samples. Below, we provide the necessary background for these techniques including a decision
tree (DT), multi-layer perceptron (MLP), and one-dimensional (1D) convolutional neural net-
work (CNN).

DTs date back to the 1960s, when Morgan and Sonquist published their work on the first
regression tree algorithm, AID.44 Following this, in 1972 Messenger and Mandell published the
first classification tree algorithm, THAID.45 Breiman et al. combined the strengths of AID and
THAID along with several extensions in their 1984 publication on classification and regression
trees (CART), one of the most widely recognized DT algorithms to date.46 They are typically
visualized as trees, with a simple example shown in Fig. 4(a). DTs split the dataset containing the
pixels, through a series of choices, into the CIN3 and healthy classes.
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The trees consist of nodes and branches, such that the root node and internal nodes represent
the decisions, the branches (denoted by black arrows) are the outcomes of these decisions, and
the leaf nodes contain the class labels.47 A decision could be whether a given pixel in a particular
channel exceeds a threshold value, e.g., 0.5. Instances that have a value below 0.5 are sent down
the left branch to one sub-node, and those above 0.5 will be sent down the right branch to the
other sub-node. It is also possible to have non-binary decisions, such that a node maps into more
than two sub-nodes. The algorithm chooses to include decisions in the tree that split the feature
subspace such that instances with the same class labels are grouped together.48 In the context of
this paper, this means that the pixels are recursively partitioned into increasingly homogeneous
sub-nodes, by grouping CIN3 instances together and healthy instances together as much as
possible.

To measure the homogeneity of the class labels, this typically involves minimizing entropy
or the Gini index.49 These measures essentially state how impure or heterogeneous a collection of
instances is with respect to each class label j in a given node i. For entropy this involves comput-
ing the Shannon entropy of the n classes:

EQ-TARGET;temp:intralink-;e001;117;380Entropyi ¼ −
Xn

j¼1

pij log2 pij: (1)

In this work, n ¼ 2, which are the two class labels, CIN and healthy. Shannon entropy treats
the class frequencies of the instances in each partition as a probability pj. Computing the Gini
index involves subtracting the sum of the squared probabilities (or proportions) of each class
from 1:

EQ-TARGET;temp:intralink-;e002;117;288Ginii ¼ 1 −
Xn

j¼1

p2
ij: (2)

MLP is another technique explored in this work. Perceptrons were initially developed as
hardware by Frank Rosenblatt50 before their algorithmic implementation. They are linear clas-
sifiers, meaning they classify inputs by forming a weighted, linear combination yielding an out-
put value or label. Perceptrons are the very basis of MLPs, which are comprised of many
perceptrons. Further still, MLPs can be considered the precursor to larger neural networks and
fall within an area of AI that aims to solve complex computational tasks by imitating human brain
function. The perceptron (otherwise often referred to as a neuron) is the fundamental unit of an
MLP or neural network and is shown as a circle in Fig. 4(b). In essence, neurons are computa-
tional units that manipulate a weighted input signal to produce an output signal using an acti-
vation function. The weights are analogous to the coefficients in a regression model. Each neuron
also has a bias, which is similar to the intercept in regression. Activation functions are a function
of the weighted inputs and the bias. In a binary classification task, a very simple implementation
of this can be a step function in which, if the weighted input exceeds a threshold such as 0.5, the
neuron will output a value of 1.0 and otherwise 0.0, with each corresponding to one of the two
possible classes. Various other non-linear activation functions can represent more complex

(c)(a) (b)

Fig. 4 Schematic presentation of the three classification models used in this study: (a) DT,
(b) MLP, and (c) 1D CNN.
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relationships between the inputs and output,51 e.g., “ReLU” or “LeakyRelu.” In terms of their
overall architecture, MLPs are made up of an input layer, one or more hidden layers, and an
output layer, each containing neurons. The key algorithm underpinning the success of MLPs
is back-propagation, which comprises a forward pass and a backward pass.52 In the forward
pass, the inputs are fed into the MLP with weights initialized to some set of starting values.
Each hidden and output neuron operates on its inputs by multiplying them by the initial weights,
summing the result, and passing this through a non-linear activation function to produce the pre-
dicted outputs. The difference between the true output and the predicted output of the output layer
is used when calculating a loss function. During the backward pass, the resultant loss is used to
adjust the weights such that the predicted output of the MLP is closer to the true output. When the
activation function is differentiable, this update is typically carried out using an optimization algo-
rithm such as gradient descent or “Adam,” which changes the weights in proportion to the negative
of the derivative of the error term.53 In simple terms, the purpose of this optimization algorithm is to
find the values for the weights that make the loss function as small as possible.

CNNs are a type of artificial neural network that use convolutional layers to extract local
features from the data. Similarly to MLPs, CNNs draw their inspiration from the human brain.
The structure or connectivity of a CNN is akin to that of the visual cortex.54 Each neuron
responds to stimuli in one portion of the visual field at a time, known as the receptive
field.55 A filter, equal in size to this receptive field, is element-wise multiplied with the pixels
that it overlaps. This operation is known as a convolution.

Convolutional layers containing this type of processing are able to capture spatial and tem-
poral dependencies between features through the use of filters. As shown in Fig. 4(c), a con-
volution layer typically uses a plurality of filters and produces multiple feature maps, each
with a reduced number of features. With increasing depth, the CNN refines the number of fea-
tures to those that are highly relevant to the classification task. Typically, early layers in a CNN
are dedicated to extracting low-level features such as colors and edges, whereas later layers are
responsible for learning higher level, holistic features of an image. Reduction of the size of the
feature maps (down-sampling) is obtained either by a suitable stride of the convolution or by
means of a pooling layer. Unlike convolutional layers, which contain learnable weights, pooling
layers simply apply a given function. At the output of the CNN, a flattening layer can be used to
transform a feature map into a 1D vector. This vector can then be classified using a linear weight-
ing and an activation function, similar to that described in MLPs.

3 Capture-to-Classification Pipeline
Recent progress and wide adaptation of artificial intelligence and machine learning (AIML) tech-
niques capable of solving complex, real-world problems make them a highly desirable tool in the
field of biomedical optical imaging and biophotonics. Success has been demonstrated with inte-
grating ML techniques with hyperspectral imaging (I) of human skin, resulting in pioneering
applications in 3D computer graphics, optical sensing, and imaging.56–59

One context of particular interest involves finding features that are characteristic of diseased
tissue, i.e., cancer, as these are not always evident when pathologists examine a tissue sample.
In this work, we developed a specialized capture-to-classification pipeline (shown in Fig. 5)

Fig. 5 Schematic presentation of the capture-to-classification pipeline developed in house.
Acquired specimens are measured with imaging Mueller polarimeter and undergo histopatholog-
ical classification. Subsequently a labeled dataset is created within tagged regions of healthy and
CIN3 tissues. Several ML methods are trained, and their corresponding accuracies are compared.
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that utilizes the expertise of pathologists and aims to assist with automated, real-time, in situ
classification of cervical tissue samples.

3.1 Data Collection, Pre-Processing, and Quality Tests
MM images of the cervical specimens were acquired at several wavelengths (450, 550, and
600 nm, image resolution 600 × 800 pixels). Each of the 16 channels contains different polari-
zation information. We did not apply any algorithms of the non-linear data compression (i. e., the
decomposition algorithms) and used the recorded MM data to construct two broad datasets. The
first one uses the four diagonal elements of MM, and another one uses all 16 values. It is known
that, in general, bulk biological tissues demonstrate strong depolarization, moderate linear bire-
fringence, and negligible linear diattenuation.20 In the absence of the anisotropy of the optical
refractive index, the depolarization properties of tissue can be estimated using the values of the
last three diagonal elements of its MM.60 Otherwise, these values can be considered to be a fused
metric for both effects, namely, depolarization and linear retardance with the element M00 rep-
resenting the total reflectivity of tissue. The decision to use two different formats of the dataset is
dictated by the necessity to ascertain whether the contribution to performance of the off-diagonal
elements is sufficient to justify their inclusion. It is speculated that any additional accuracy that
they can provide does not offset the computational cost. This is a method of feature selection,
wherein features that are not relevant to the classification task or are redundant in that they do not
add additional predictive performance from other features are discarded. Therefore, it improves
the computation time by minimizing the model complexity.61

Using the histopathology masks described in Sec. 2.2, we extracted the pixels from the
MM images that are known to belong to either CIN3 or healthy zones and labeled these
pixels accordingly. We did not consider the low grade CIN, glandular epithelium, and metaplastic
squamous epithelium because there was an insufficient number of pixels labeled with
each of these histology conditions across the images. As a first step, we restrict ourselves to
binary classification, focusing on the correct detection of CIN3 zones, because such lesions
require surgical intervention, whereas for other pathological conditions, watchful waiting is
recommended.7

The unlabeled pixels were not included in the training process. This extraction yielded
57,925 samples of CIN3 pixels and 133,910 healthy pixels, across all cervical tissue samples.
Each instance has either four features or 16 features depending on which of the broader afore-
mentioned datasets is used. The ratio between CIN3 and healthy instances translates to roughly
30% of the data belonging to CIN3 (class 1) and 70% belonging to healthy (class 2). Because
there are high numbers of instances in both classes, the class imbalance problem is avoided, and
there is minimal risk of model bias.

3.2 Data Quality Assessment
The extracted pixels belonging to each of the two classes then underwent a series of tests.
The first test explores whether the samples belonging to each of the two classes can reliably
be considered to come from the same distributions. This can provide assurance that there is
minimal variability in the samples that is unrelated to the classification task itself, i.e.,
confounding factors. To determine whether the samples came from the same distribution,
a Kruskal–Willis test is applied to the pixels labeled “CIN3” and the pixels labeled “healthy”
independently. The Kruskal–Willis test reveals that the instances belonging to each class do
indeed follow the same distributions as each other, respectively. Their distributions in terms
of mean and standard deviation are plotted in Fig. 6. It is worth noting the scale of the individual
elements differences as the diagonal elements vary across a larger range than the non-diagonal
elements.

We do not expect the MM elements to have normal distributions; to validate this and build
highly tailored classifiers, normality tests were undertaken. Due to the large size of the dataset
used in this work, the Kolmogorov–Smirnov test is used in favor of the more conventional,
Shapiro–Wilk test for normality, as the latter is not well-suited for sample sizes containing more
than 2000 instances.62 It was established that all samples are not normally distributed according
to the Kolmogorov–Smirnov test, which concurs with our expectations.
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3.3 Testing and Training Sets
Two approaches for dividing the instances between training and test sets were considered in this
work. The first approach involves a uniform, stratified, shuffled split in which 10% of instances
are assigned to the test set and the remaining 90% form the training set. This approach is conven-
tional; however, it is limited when entire samples are predicted. For instance, when the model
learns from pixels belonging to all samples by nature of a shuffled split, the measured perfor-
mance becomes an over-estimate of true performance. To address this, a second, less commonly
used splitting approach is considered. This is known as leave-one-out cross-validation, wherein
the model is trained a total of 24 times, with each sample taking a turn as the test set and the
remainder constituting the training set. This will lead to a poorer but more accurate performance
than the previous approach as it does not predict on samples that were used to train the
model.

3.4 Implementation and Evaluation of AIML Methods
The purpose of this work is to obtain an ML classifier with high sensitivity and specificity in
distinguishing pre-cancerous and healthy regions of cervical tissue sections. To accomplish
this task, three different ML models were trained and their performance evaluated. These ML
approaches include a DT, multilayer perceptron (MLP), and 1D CNN. The implementation
of these approaches involved the use of Python libraries, such as Scikit-learn, Keras, and
Tensorflow. The optimal parameter settings for each ML method were obtained through
empirical search and are described below.

Fig. 6 Mean value and standard deviation of the distributions of labeled pixels in the images of 16
elements of MM for all 23 specimens measured at 550 nm. Standard deviations are denoted by
black bars, and the horizontal axis corresponds to the sample ID number.
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Our DT implementation uses CART and splitting occurs according to the Gini index [see
Eq. (1)], as opposed to Shannon entropy. Although both have comparable performance,63 the
former method is less computationally expensive than the latter due to the logarithm calculation
[Eq. (2)]. A maximum tree depth of 10 is used to limit the tree depth. There are various moti-
vations for this. One includes that it reduces model complexity, such that the computational time
is reasonable. Allowing a model to contain many layers, such that it is highly complex, can result
in diminishing returns whereby the performance does not increase significantly but the training
time is very high. Furthermore, a phenomenon known as over-fitting can occur. This arises when
the model becomes too specific to the training data, such that it achieves very high performance
on training data, but cannot generalize well to test data and consequently cannot achieve high
test performance. Finally, models that have limited depth are more comprehensible than those
without restrictions, by nature of there being many fewer nodes or decisions.

The architecture of our MLP consists of three hidden layers, each with 32 hidden nodes.
Following a similar tangent that motivated the design of the DT used in this work, the choice of
this architecture for the MLP primarily stems from a desire to balance performance and complex-
ity. If the number of hidden nodes and layers is insufficient, the MLP will risk under-fitting the
data due to its lack of complexity, such that it is unable to map the relationships between the
features, or channels, and the class labels. If this number is instead too high, the increase in
complexity will not necessarily correspond to a proportionate increase in performance and may
instead be deleterious, resulting in a worse performance due to over-fitting behavior. Thus, it is a
matter of determining the best balance of hidden layers and nodes. We used the rectified linear
unit (ReLU) as the activation function,64 for it is widely recognized that non-linear functions are
able to capture complex relationships that linear activation functions can fail to describe. The
Adam optimization algorithm is used for changing the weights according to the cross entropy
loss function. It has been demonstrated that Adam optimization is able to outperform conven-
tional optimization methods, e.g., gradient descent,65 and cross-entropy is used as the loss func-
tion due to its known utility in classification tasks. The training process is allowed to run for up to
100 iterations or weight updates. Early stopping is implemented, however, such that if the per-
formance does not improve by 0.1% between iterations, the training process is terminated to
help minimize the risk of over-fitting.

Our architecture of the 1D CNN encompasses one hidden layer containing 16 filters (cor-
responding to the number of channels), a kernel size of 4, and similar padding. In addition to
this, an ReLU activation function, an Adam Optimizer, and a cross-entropy loss function were
employed. The training process was allowed to run for 100 epochs, with no early stopping cri-
teria. The application of a CNN in this manner is recognized as somewhat unconventional as
typically a CNN operates on a region of pixels instead of one pixel at a time. This means of using
a CNN was motivated by the need to make fair comparisons between the different machine
learning models and examine whether the 16 channels for a given pixel contain enough infor-
mation independent of other pixels to be able to classify it.

To evaluate each of the three ML models in their ability to predict pre-cancerous and healthy
masks, several evaluation metrics were recorded and analyzed. These metrics include area under
the curve (AUC) or accuracy, sensitivity, specificity, and training time. AUC is used for 90:10
train–test split, and accuracy is used for leave-one-out cross-validation. AUC is not applicable for
the latter due to the nature of the splitting approach, wherein only three samples have both pos-
itive and negative labels, upon which the metric relies. Such an evaluation process pertains to the
difference between the true mask values for each pixel and those mask values predicted by the
ML models. Two averaging approaches are used. In one, 90% of the data is used for training with
the remaining 10% withheld for testing or evaluation purposes. The second approach involves
using 23 samples for training, with one being withheld for evaluation, in a leave-one-out cross-
validation process. In both approaches, the results were averaged over many runs, with the former
using the average of 30 different random seeds and the latter corresponding to the average of a
different sample being withheld as the test set each time. An additional evaluation procedure was
also explored, whereupon entire samples are predicted. All models were trained using a 2.8 GHz
quad-core Intel Core i7 processor.
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4 Results and Discussion
The performances of the two splitting approaches across three ML models are given in Table 1.
The results were averaged for each approach, such that each cell contains the mean ± standard
deviation. The overall results from the 90:10 training:test split approach are better than those
obtained using leave-one-out cross-validation. This is as anticipated, as the former approach
trains on pixels across all samples. This means that the composition of the training and test sets,
after splitting the original dataset, will likely be very similar. Conversely, in the latter approach, in
which one sample is withheld as the test set, it is plausible that the remaining samples used for
training may fail to contain all information necessary to obtain a high performance on the with-
held test set as this test set may contain some unique information. This more accurately reflects a
clinical setting, in which the model will be used to classify a completely unseen sample, not used
in training. Therefore, it can be argued that the 90:10 training:test split approach over-estimates
the performance of a model, and the leave-one-out cross-validation approach or similar should be
applied to obtain a more realistic model evaluation. It was postulated that the reduced perfor-
mance of the leave-one-out cross-validation approach may be offset by there being relatively
more data available for training, with 22 out of 23 samples being used to train as opposed
to just 90% of the data for any given training iteration. Furthermore, exploratory data analysis
revealed that the 23 samples were found to follow similar distributions to each other. As a result,
the leave-one-out cross-validation approach still manages to achieve an accuracy of 0.812� 0.21

for the best model, the 1D CNN.
In the 90:10 splitting approach, the MLP has the best AUC value of 0.986� 0.00. The 1D

CNNmodel is the next best with an AUC score of 0.964� 0.00. The baseline method, DT, has an
AUC score of 0.962� 0.00. The DT is limited in that it can only separate the instances in a linear
fashion. It is likely that the 1D CNN is unable to surpass the performance of the MLP as it was
implemented in a per-pixel classification task; thus it cannot take full advantage of the convolu-
tional layers. The specificity of the best performing model, the MLP, is better than the sensitivity.
Interestingly, this pattern is also observed in the other two ML models. This suggests that it is an
easier task to classify healthy pixels than it is to classify CIN3 pixels. This finding is not sur-
prising as the majority of the pixels, ∼70%, in the dataset used for this work correspond to
healthy cervical tissue. Because there are more healthy instances to learn from, it is therefore
expected that an ML model will achieve a better performance predicting healthy pixels than
CIN3 pixels.

The DT has the fastest training time of ∼3.5 s in both approaches. The MLP models then
take about around 13 and 16 s to train in the leave-one-out and 90:10 splitting approaches,
respectively. The 1D CNNs take around four to five min in each approach. Therefore, the

Table 1 Comparison of average performance across the three ML models (DT, MLP, and 1D
CNN) using two different approaches for train–test split strategies. The results reported are the
mean value of the corresponding column header ± standard deviation value.

AUC/accuracy Specificity Sensitivity Training time (s)

90:10 train–test split with shuffled stratified sampling

DT 0.962 ± 0.00 0.977 ± 0.00 0.946 ± 0.00 3.585 ± 0.06

MLP 0.986 ± 0.00 0.991 ± 0.00 0.981 ± 0.01 13.132 ± 2.29

D CNN 0.964 ± 0.00 0.978 ± 0.00 0.952 ± 0.01 268.777 ± 116.3

Leave-one-out cross-validation

DT 0.762 ± 0.20 0.822 ± 0.16 0.697 ± 0.23 3.729 ± 0.27

MLP 0.803 ± 0.23 0.846 ± 0.22 0.756 ± 0.25 16.594 ± 9.6

D CNN 0.812 ± 0.21 0.851 ± 0.20 0.763 ± 0.25 329.939 ± 171.03
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MLP could be considered the best in terms of performance and computational time, in this per-
pixel classification task. Although, because training only needs to take place once, it is more
relevant that the inference time be lower than that of training. At inference time, the three models
all take on the order of seconds to classify a given sample. The training times are presented to
highlight the trade-off between marginal improvements in performance and substantial increases
in computational time. The standard deviations of the 90:10 splitting approach are very small for
the performance metrics, indicating that the ML models were able to consistently converge on
high performing solutions, likely due to the fact that approach permits a similar composition for
the training and test sets. The same cannot be said for the leave-one-out approach in which the
standard deviations are relatively large. This again highlights the need for more data as it is
evident that not all information necessary to gain a high predictive performance on a withheld
sample can be obtained from the other samples used for training.

The distribution of AUC performance across the seeds is relatively narrow for the 90:10
training:test split approach. This is a reasonable result as the approach involves taking data from
all samples, randomly shuffling, and using 90% of this shuffled data for training (see Fig. 7).
Thus, both the training and test sets are expected to have a similar composition. The variation in
the results is much smaller than that in the leave-one-out cross-validation approach because of
this similarity in composition. Examining the performance on a per-sample basis for leave-one-
out cross-validation reveals that some of the models for some samples perform very well as the
maximum AUC score is ∼1.0 in each case. The model of the sample with the worst performance,
however, has an AUC score of <0.2. This indicates that, when the data are split on a per sample
basis, there are trends in the data that are not captured by other samples. This suggests that, to
train a model that is capable of diagnosing a completely unseen tissue section, it would be nec-
essary to learn from many more than 23 samples to confidently capture all of the unique features.

It is worth noting that sensitivity and specificity are on average quite low for the leave-one-
out cross-validation approach, particularly the latter. These metrics are based on true positive and
true negative rates, thus suggesting that for a given sample the rate of calling negatives correctly
or positives correctly is limited. Therefore this again demonstrates that not all of the data neces-
sary for predicting a given sample are available in other samples, highlighting the need for a large
dataset for training. Due to the significant variation in the diagonal elements relative to the off-
diagonal elements, as shown in Fig. 6, we initially hypothesized that it might be sufficient to only
retain the former for model training. However, during our preliminary work, we discovered that
such an alternative design led to a notable decrease in performance (up to 10% to 20%) when we
excluded the off-diagonal elements, necessitating a more complex ML structure. Consequently,
we decided to use the full information, which is pertinent to the task of predicting CIN3 in cer-
vical tissue sections and is contained in both the diagonal and off-diagonal elements of the MM.
We also performed qualitative testing by carrying out whole sample prediction. Figure 8 shows
that there is a consensus across the three techniques for where the healthy regions lie (bright

(a) (b)

Fig. 7 Distributions for leave-one-out cross-validation accuracy values, over the 23 samples for
(a) all models and 90:10 train:test split AUC values, (b) over the 30 random seeds.
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green) and where the CIN3 regions are (bright red). It seems that the DT model, unlike the two
neural network techniques, has a noisier classification. This is evident from the less defined
boundaries where there is a mixture of CIN3 and healthy pixels in large regions beside the central
CIN3 region. In general, the histopathology lines do overlap with the whole sample predictions
across the techniques. It does, however, appear that the further from the mask the predictions are,
the poorer the histopathology lines overlap with these regions. Regions that are difficult for a
pathologist to assign a mask likely have some tissue properties in common. With this line of
reasoning that masked pixels are potentially more similar to each other than those unable to
be assigned a mask, this could consequently make it a harder task for a model to classify areas
further away from the masked regions. This further supports the incentive for capturing more data
to yield high performing predictive models. High performance is shown to be achievable with
more data from the fact that the closer the whole sample predictions are to the masks, the better
the overlap with the histopathological lines is. Particularly in the last sample (bottom row of
Fig. 8), the whole sample prediction appears more accurate in terms of overlap of the histopa-
thology lines.

5 Conclusions and Future Work
This work showcases the synergy of combining Mueller polarimetry and ML techniques to
undertake the task of screening for pre-cancerous conditions in cervical tissue sections. We have
undertaken an initial investigation into applying ML methods in this particular context as a
perspective application. We demonstrated the ability of both simpler and more advanced ML
methods to achieve high performance in the per-pixel classification task in a matter of seconds.
The evaluation also encompassed whole sample prediction in which prediction was no longer
limited to masks with known labels to compare against. Instead, histopathological mapping was
used to qualitatively infer and assess whole sample prediction. Furthermore, to robustly measure
model performance, we averaged results through two approaches: a 90:10 training:test set split-
ting approach and a leave-one-out cross-validation approach, with the former being a more

Fig. 8 Whole specimen prediction across three samples (columns) and the three techniques
(rows). From left to right, the sample IDs are 19, 20, and 23. From top to bottom, the techniques
are DT, MLP, and 1D CNN. In each image, the whole specimen predictions are shown, indicated
by CIN3-P and HEA-P. In addition, the zone masks described in Sec. 2 are shown by CIN3-M and
HEA-M. Finally, the overlap of cut lines annotated by histopathology analysis with CIN3-H and
HEA-H is used as a metric for accuracy in whole sample prediction.
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conventional process and the latter serving as a more conservative approach in that the whole
model prediction was subject to less bias, as none of these pixels were used for training. Our
future work directions include developing a more sophisticated approach for inferring the accu-
racy of whole sample predictions than a qualitative or visual assessment using the superimposed
histopathological lines and polarimetric maps of a specimen and testing new design of polari-
metric instruments including partial Mueller polarimetry66 and utilization of the light’s orbital
angular momentum.67 In addition, an assessment of the pathologists’ uncertainty relative to these
histopathological lines using Bayesian statistics methods is also of particular research interest.
This will involve generating probability distributions of classifications, as opposed to point
estimates, so information on model confidence is available alongside the predictions.
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