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ABSTRACT. Significance: The accurate large-scale mapping of cerebral microvascular blood
flow velocity is crucial for a better understanding of cerebral blood flow (CBF) regu-
lation. Although optical imaging techniques enable both high-resolution microvascu-
lar angiography and fast absolute CBF velocity measurements in the mouse cortex,
they usually require different imaging techniques with independent system configu-
rations to maximize their performances. Consequently, it is still a challenge to accu-
rately combine functional and morphological measurements to co-register CBF
speed distribution from hundreds of microvessels with high-resolution microvascular
angiograms.

Aim: We propose a data acquisition and processing framework to co-register a
large set of microvascular blood flow velocity measurements from dynamic light
scattering optical coherence tomography (DLS-OCT) with the corresponding micro-
vascular angiogram obtained using two-photon microscopy (2PM).

Approach: We used DLS-OCT to first rapidly acquire a large set of microvascular
velocities through a sealed cranial window in mice and then to acquire high-
resolution microvascular angiograms using 2PM. The acquired data were processed
in three steps: (i) 2PM angiogram coregistration with the DLS-OCT angiogram,
(ii) 2PM angiogram segmentation and graphing, and (iii) mapping of the CBF veloc-
ities to the graph representation of the 2PM angiogram.

Results: We implemented the developed framework on the three datasets acquired
from the mice cortices to facilitate the coregistration of the large sets of DLS-OCT
flow velocity measurements with 2PM angiograms. We retrieved the distributions of
red blood cell velocities in arterioles, venules, and capillaries as a function of the
branching order from precapillary arterioles and postcapillary venules from more
than 1000 microvascular segments.
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Conclusions: The proposed framework may serve as a useful tool for quantitative
analysis of large microvascular datasets obtained by OCT and 2PM in studies
involving normal brain functioning, progression of various diseases, and numerical
modeling of the oxygen advection and diffusion in the realistic microvascular
networks.
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1 Introduction
Cerebral blood flow (CBF) performs an essential role in satisfying the metabolic needs of the
brain by transporting glucose and oxygen to the brain tissue and clearing metabolic waste, such
as CO2, from it via a dense microvascular network. The crucial mechanism that accounts for
continuously adjusting CBF to the local metabolic needs is defined as neurovascular coupling
(NVC),1,2 and its status correlates with brain cognitive function.3–5 The NVC also plays a vital
role in interpreting brain functioning using imaging techniques, such as functional magnetic
resonance imaging and positron emission tomography.6,7 The NVC relies on the coordination
of multiple signaling pathways involving various cell types in the brain, such as neurons, astro-
cytes, pericytes, as well as vascular smooth muscle cells and endothelial cells.8,9 On the other
hand, NVC can be impaired under various pathological conditions, such as Alzheimer’s dis-
ease,10–13 hypertension,14 atherosclerosis,15 and seizures.16 Therefore, the accurate mapping
of CBF velocities from a dense microvascular network could be a key step toward a better under-
standing of NVC in both normal and pathological brain conditions. In addition, it could also
contribute to the development of more accurate numerical models of oxygen delivery and con-
sumption in realistic microvascular networks.17,18

A suitable method to achieve this task should be capable of (i) obtaining accurate cerebro-
vascular angiograms with microscopic resolution that will include a majority of or all arterioles,
venules, and capillaries over a large field of view (FOV) and (ii) acquiring volumetric blood flow
velocity data from the majority of the microvascular segments over the same FOV. Several im-
aging modalities, such as multiphoton microscopy (MPM)19–21 [e.g., two-photon microscopy
(2PM) and three-photon microscopy (3PM)], optical coherence tomography (OCT),22–25 photo-
acoustic microscopy (PAM),26–29 and 3D ultrasound localization microscopy (ULM)30–33 are
capable of acquiring both microvascular angiograms and blood flow in most cortical microvas-
cular segments. Among these imaging methods, MPM is unique in its ability to provide more
accurate morphological parameterization of the microvascular networks in vivo. It is the preferred
method to acquire accurate capillary morphology in vivo, across the mouse cortical layers
(∼1 mm-thick) and over a large FOV (up to 1 × 1 mm2). On the other hand, MPM, OCT,
PAM, and ULM are all capable of acquiring large microvascular velocity maps in a short time,
which is very important for in vivo imaging studies. MPM typically employs a line scan method
to measure the blood flow velocity that is perpendicular to the optical axis direction for arteries,
veins, and capillaries. For each vessel segment, the line scan is performed repeatedly at a 1 to
2 kHz rate along its longitudinal direction until it is sufficient to determine the flow velocity, and
∼40 ms is a reasonable target for measurement temporal resolution,19 which renders it only suit-
able for retrieving cerebral flow velocity values from a limited number of vessel segments. Faster
volumetric scanning MPM has been enabled by raster-scanning a Bessel beam34 and blood flow
velocities can be rapidly acquired with this method over a limited FOV.35 Recently, an ultrafast
free-space angular chirp enhanced delay scanning protocol has increased the temporal resolution
for two-photon cortical blood flow imaging by orders of magnitude to ∼1 kHz 2D frame rate.36

PAM is a label-free method for wide-FOV (e.g., several mm2) and relatively deep (e.g., ∼1 mm

imaging depth) mapping of total hemoglobin concentration (CHb), oxygen saturation of hemo-
globin (sO2), and blood flow speed by making use of the absorption contrast, weak acoustic
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scattering in soft tissue, and high optical resolution (lateral: 2 to 3 μm and axial: ∼15 μm).37 Fast
3D volumetric imaging at ∼1 Hz is achievable with PAM over a 4 to 6 mm2 FOV.26,28 ULM
achieves super-resolution microvascular imaging by tracking microbubbles (diameter: 1 to
3 μm) administered into the bloodstream of the subjects and utilizing the super-resolution con-
cept from optical microscopy. ULM is able to map the microvasculature from the entire mouse
brain with data acquisition time of several tens of seconds, spatial resolution of ∼20 μm, and
sensitivity to flow velocities between 2 and 100 mm∕s.33 However, ULM requires the localiza-
tion of individual microbubbles in the bloodstream. For imaging the small vessels, this is a time-
consuming procedure and it may take tens of minutes to resolve the capillaries.32 OCT has been
widely used for mapping absolute axial blood flow based on the Doppler effect that results from
the motion of RBCs. The common Doppler OCT method usually acquires dense A-scans within
a B-scan to resolve the phase change, and typical imaging time for such a B-scan is ∼40 ms.22,23

Capillary blood flow velocities can also be obtained by analyzing the dynamic scattering com-
ponent of the OCT signals using the power spectrum bandwidth of the autocorrelation function38

or laser speckle decorrelation time.39 Recently, dynamic light scattering optical coherence
tomography (DLS-OCT)40–42 was proposed to measure absolute blood flow velocity and the
RBC diffusion coefficient. DLS-OCT can provide volumetric imaging over a FOV of
600 × 600 μm2 and ∼1 mm imaging depth, with ∼3.5 μm isotropic spatial resolution and with
∼6.5-min-long data acquisition time for a single volume. This is achieved by utilizing the DLS
approach for estimating RBC velocities and diffusion coefficients and has proved to be less sus-
ceptible to noise and more sensitive to RBC motion than Doppler OCT,43 leading to reliable
blood flow velocity measurements in the capillaries. OCT is also capable of obtaining the micro-
vascular angiograms44 but, similar to PAM and ULM, with inferior quality to the MPM
angiograms, which renders it less optimal for accurate image segmentation and quantitative
analysis of microvascular morphology. While multiple imaging modalities may be used to mea-
sure the microvascular CBF velocities, OCT has been among the most common tools applied for
this task and it is optically highly compatible with MPM. Therefore, we selected a combination of
DLS-OCT and 2PM to acquire both the CBF velocities from a large number of microvascular
segments and high-resolution microvascular angiograms, respectively. It is worth noting that the
framework developed based on the combination of DLS-OCT and 2PM can be extended to
accommodate other possible multimodal imaging strategies, such as OCT and 3PM, which has
gained traction over the past several years for acquiring angiograms with an increased imaging
depth compared to 2PM. However, it is very difficult to integrate OCT and MPM together for
simultaneous multimodal imaging without sacrificing their optimal performance. For example,
objective lenses with high numerical aperture (NA) (NA > 0.8) and properly filled back aperture
by the laser beam are typically used in 2PM to achieve ∼1 μm lateral resolution and sufficient
fluorescence emission signal collection efficiency, whereas using the same objective lens with a
filled back aperture in an OCT system will create a de facto optical coherence microscope with
extremely small depth of focus, which will prevent efficient acquisition of volumetric cerebral
angiograms and blood flow velocity in mouse brain. In addition, MPM and OCT require sig-
nificantly different scanning protocols, which are difficult to achieve if the excitation beams are
scanned simultaneously by the same scanning mirrors. Although various attempts could be made
to overcome these problems, such as drastically underfilling of the objective back aperture with
the OCT beam to increase the depth of focus of OCT or using a Bessel beam to extend the OCT
imaging range in the axial direction when using high-NA objective lenses, they will significantly
complicate the imaging setup and make it much less practical. On the other hand, utilizing sep-
arate scanning mirrors for 2PM and OCT removes the constraints on scanning protocols, but it
introduces different optical distortions to two imaging modalities and, therefore, requires
advanced 3D coregistration.

In this work, we developed a computational framework to co-register large-scale microvas-
cular blood flow velocity measurements from DLS-OCTwith the high-resolution microvascular
angiograms obtained using 2PM over the same FOV. We first performed a global 3D coregis-
tration and a multilayer 2D coregistration to transform the 2PM angiogram onto the DLS-OCT
angiogram. Then we segmented the original 2PM microvascular angiogram, obtained its math-
ematical graph representation, and transformed the vectorized angiogram onto the DLS-OCT
image space based on the transformation matrices computed in the first step. Finally, the
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DLS-OCT flow velocity measurements were mapped onto the 2PM angiogram and mean micro-
vascular segment velocities were extracted. The developed framework was implemented to proc-
ess the datasets acquired from the three mice cortices. The distributions of mean CBF velocities
in arterioles, venules, and capillaries as a function of vessel type and the branching order from
precapillary arterioles and postcapillary venules have been retrieved. The framework proposed
here will facilitate the numerical modeling of CBF and oxygen transport within cerebral micro-
vascular networks and help us improve our understanding of the microvascular blood flow regu-
lation in normal brain and in various brain conditions.

2 Methods

2.1 Animal Preparation
Three healthy, young-adult female C57BL/6 mice (∼3 months old; The Jackson Laboratory,
Maine, United States) were used in this study. A sealed 3-mm-diameter cranial window was
installed over the whisker barrel cortex area (on the left hemisphere; ∼2.0 mm posterior to
bregma and ∼3.0 mm lateral from the midline). Tracheotomy was performed to enable controlled
ventilation and maintain proper physiological status in subjects by providing a mixture of
medical air (∼60 mL∕min) and isoflurane (1.2% to 1.5%). A femoral artery catheter was
installed to facilitate the administration of a contrast agent in 2PM imaging and to monitor
physiological parameters, such as blood pressure, heart rate, and blood gases. Mice were kept
under isoflurane anesthesia during the subsequent imaging sessions.

2.2 DLS-OCT Imaging
DLS-OCT was performed using a spectral domain OCT setup42 (Thorlabs Inc., New Jersey,
United States) [Fig. 1(a)]. The setup utilizes an extended broadband superluminescent diode
(SLD) source (LS2000B, Thorlabs Inc., New Jersey, United States) that implements two
matched-pair SLDs to offer >170 nm bandwidth at ∼1300 nm center wavelength. A 10× objec-
tive (MPlanApoNIR,NA ¼ 0.26, Mitutoyo, Japan) was used in the experiments. An InGaAs line
scan camera with 1024 pixels was used to record the interference signal at 46,000 A-scans/s. The
system can achieve ∼3.5 μm spatial resolution in all three dimensions within the brain tissue and
∼1 mm maximum imaging depth. OCT en face images of the pial surface were obtained for
selecting a 600 μm × 600 μm FOV (400 pixels × 400 pixels). In this study, we only imaged
down to ∼250 μm beneath the brain surface of each subject considering the ∼150 μm confocal
parameter of the system since it provided a sufficient number of arterioles, venules, and capil-
laries to demonstrate the proposed framework. We first performed OCT angiography and
repeated B-scan acquisition protocol was employed. The final 3D angiogram was obtained with
10 times averaging, which took 88 s for data acquisition. For the blood flow speed measurements

Fig. 1 The diagrams of the OCT and 2PM imaging setups. (a) Diagram of the spectral domain
OCT system. SLDs, superluminescent diodes; FC, fiber coupler; CLs, collimating lenses; DC,
dispersion compensation; RM, reference mirror; M, mirror; GM, galvo mirrors; SL, scan lens;
TL, tube lens; DM, dichroic mirror; OL, objective lens; DG, diffraction grating; SOL, spectrometer
objective lens; LCCD, line-scan CCD; DAQ, data acquisition card; and PC, computer. (b) Diagram
of the 2PM system. M1 and M2: mirrors; EOM, electro-optic modulator; SH, shutter; GM, galva-
nometer mirrors; SL, scan lens; TL, tube lens; DM, dichroic mirror; OL, objective lens; FFs, fluo-
rescence filters; PMTs, photomultiplier tubes; DAQ, data acquisition card; and PC, computer.
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using DLS-OCT, an M-mode data acquisition protocol with 100 A-scan repeats at each trans-
verse location was employed and the data acquisition time for a 600 μm × 600 μm × 250 μm
(voxel size: 1.5 × 1.5 × 2.9 μm3) volume was ∼387 s. Since the measurement of a component of
flow velocity that is parallel with the optical axis (Vz) has the largest SNR of all DLS-OCT
velocity estimates, we relied on it to calculate the microvascular flow velocity based on the angle
between vessel direction and the optical axis of the system.

2.3 2PM Angiography
The 2PM angiograms were acquired after DLS-OCT measurements using a custom-built 2PM
setup45 [Fig. 1(b)]. A mode-locked laser (Insight DeepSee, ∼120 fs pulse width, 80 MHz pulse
repetition rate, Spectra-Physics, California, Unites States) tunable between 680 and 1300 nm was
used for the 2P excitation. The output power of the laser was controlled by an electro-optic
modulator (EOM) (Model 350-160, ConOptics Inc., Connecticut, United States). Beam scanning
in the XY plane was achieved by a set of galvanometer mirrors (6215H, Cambridge Technology
Inc., Massachusetts, United States) with laser beam relayed by a scan lens (f ¼ 30 mm, AC254-
030-B, Thorlabs Inc., New Jersey, United States) and a tube lens (f ¼ 180 mm, Olympus, Japan)
to the back aperture of the objective. A water immersion objective lens (XLUMPLFLN20XW,
NA = 1.00, Olympus, Japan) was used to focus the beam on the sample. The far-red fluorescent
dye Alexa Fluor 680 conjugated to 70 kDa dextran was used to label blood plasma as the contrast
agent for 2PM (400 μM, 0.1 mL). The emission signal of Alexa Fluor 680 was detected
using a photomultiplier tube (PMT) (H10770PA-50, Hamamatsu, Japan), a dichroic mirror
(FF875-Di01-25 × 36, Semrock, New York, United States), and two fluorescence filters
(FF01-890/SP-50 and FF01-709/167-25, Semrock, New York, United States). In this study,
2PM survey images of the pial surface were first acquired and, with help of previously acquired
OCT en face images, used to define an ROI (689 μm × 689 μm) for 2PM that contained the ROI of
DLS-OCT. The 2PM angiogram was subsequently acquired down to an ∼800 μm imaging depth
(voxel size: 1.35 × 1.35 × 2.0 μm3). The use of animals in this study was approved by the
Institutional Animal Care and Use Committee atMassachusetts General Hospital. Typical examples
of the volumetric datasets acquired from the two imaging sessions are visualized in Figs. 2(a)–2(c).

2.4 Angiogram Segmentation and Graphing
For quantitative modeling and analysis of cerebral microvascular networks, graph-based repre-
sentations of the structure are needed.46,47 The 2PM angiograms were analyzed using Amira
software (Thermo Fisher Scientific, Massachusetts, United States) combined with custom soft-
ware written in C++, running on a graphical processor unit equipped computer, in the following
steps. (i) Adaptive contrast enhancement. For each pixel in each image, the distribution of inten-
sities in a surrounding 201 × 201 window were sampled to create a histogram and the intensities
at the 50th and 99th percentiles (I50 and I99) were calculated. A linear mapping of intensities was
performed, with I50 mapped to zero and I99 mapped to maximum intensity. This technique coun-
teracts the effect of systematic intensity variations through the depth of the stack. (ii) Vesselness

Fig. 2 Top views of OCT and 2PM volumetric datasets acquired in onemouse. (a) Maximum inten-
sity projection (MIP) of the OCT angiogram stack (FOV: 600 μm × 600 μm). (b) Maximum projec-
tion of the DLS-OCT axial blood flow velocity Vz stack (FOV: 600 μm × 600 μm). (c) MIP of the
2PM angiogram stack (FOV: 689 μm × 689 μm). Scale bars: 200 μm.
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filtering. A novel 3D vesselness filter was developed. A set of 28 directions in space was defined,
giving approximately uniform coverage of a hemisphere. For each direction, a test function of
position was defined as f ¼ exp½−1∕2ðxi∕σxÞ2 − 1∕2ðyi∕σyÞ2�, where xi is the distance from the
origin parallel to direction i, and yi is the distance perpendicular to direction i, and σx ¼ 3 and
σy ¼ 0.5 pixels. For a given voxel, this function was convoluted with the image stack for each of
the 28 directions, and the maximum result of these was used to construct the processed image at
that voxel. This test function has an elongated prolate ellipsoidal distribution, and the procedure
preferentially enhances narrow filamentous structures. Because of the small size of the test func-
tion, larger structures in the image are not significantly affected by this filter. Larger vessels
generally show continuous intensity in the axial direction and do not need enhancement by ves-
selness filtering. (iii) Fill-in filtering. Some larger vessels show low intensity in their interior,
with intensely labeled walls. To fill in such structures, the following method is used. From a
given voxel, a set of six lines of 25 voxels extending in each (positive and negative) coordinate
direction is defined, and the maximal intensity on each line is identified. If the mean of the six
maxima exceeds the intensity at the given voxel, the intensity of the given voxel is increased, by
an amount that decreases exponentially with the coefficient of variation of the six maxima. This
method ensures that a voxel that is surrounded in multiple directions by voxels of higher intensity
receives a maximal boost in intensity. (iv) Segmentation. Using Amira, the stack was thresholded
to obtain a 3D solid representing the network. (v) Skeletonization. Using Amira, the solid was
skeletonized, to yield a graph consisting of nodes and edges with defined diameters.
(vi) Refinement. The skeleton was further processed to combine short, connected edges and
to remove tight loops, which occur as artifacts of the skeletonization. The result is a represen-
tation of the network as a set of nodes and edges, with several edges forming a segment between
vessel branching points. Segment diameters were estimated as the median of edge diameters in
the segment. In this study, the graphs that represent the 2PM angiograms of three animal subjects
were able to enclose in a connected network more than 99.9%, 99.3%, and 99.5% of the total
vessel segments, respectively. A version of the custom software used is available online (https://
github.com/secomb/StackEnhanceV1).

The vessel type (e.g., arteriole, venule, or capillary) was associated with each segment by a
combination of manual and automated vessel labeling.48,49 First, all pial arterioles and venules, as
well as the initial segments of diving arterioles and ascending venules close to the pial surface
were identified manually based on their morphology and flow direction in their branches that
dive in and surface out of the cortex (e.g., penetrating arterioles and surfacing venules, respec-
tively). Then the labeling of the remaining network was performed automatically starting from
the labeled pial vascular segments and propagating the same label (e.g., arteriole or venule) down
the vascular tree, excluding the microvascular segments that branch to a transverse plane. The
remaining microvascular segments were labeled as capillaries. Finally, a color-coded mask of
vessel types was generated based on the automatic labeling and overlaid on the angiogram stack
for manual inspection and correction [Fig. 3(a)].

Fig. 3 Angiogram segmentation and graphing results. (a) Overlay of vessel types on angiogram.
Overlay of vessel branching order on angiogram from the (b) arteriolar side and (c) venular side.
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The capillary branching order starting from precapillary arterioles was computed by first
assigning branching order zero to all pial and diving arterioles and subsequently assigning
branching orders to the rest of the graph network starting from zero-order segments
[Fig. 3(b)].49 The same procedure was then repeated for assigning the capillary branching order
starting from the postcapillary venules [Fig. 3(c)].

2.5 Coregistration of the 2PM and OCT Angiograms
Angiogram coregistration was performed by transforming the volumetric intensity images
obtained by 2PM to the DLS-OCT space. To account for the non-linearity of image spaces caused
by distortions, such as field curvature across those two imaging modalities due to the implemen-
tation of different optics, an initial global 3D coregistration was combined with multiple regional
2D coregistrations. The global 3D coregistration was implemented over the whole 3D 2PM and
OCT stacks with an affine transformation matrix computed based on >20 manually selected
fiducial marker voxels representing the same locations in two stacks. Since 2PM and OCT image
distortions change differently along the axial direction, they are difficult to address using global
coregistration only. Therefore, coarse coregistration was followed by dividing the stacks along
the depth dimension (Z) into a set of 40-μm-thick sub-stacks and conducting 2D coregistration of
each pair of sub-stacks. The transformation matrices for 2D local coregistrations were computed
from additional fiducial marker voxels manually selected in the sub-stacks after global coregis-
tration. The results of angiogram coregistration for two example sub-stacks selected at different
depths are shown in Figs. 4(a)–4(c) and Figs. 4(e)–4(g). Clear improvements are observed from
applying combined two-step coregistration compared to using global 3D coregistration only
[see Figs. 4(d) and 4(h)]. Herein, we applied a quick and intuitive coregistration method that
can better account for the non-linear optical distortions of those two imaging modalities than
the methods mainly based on affine coregistration. We also conducted a brief comparison of
our method with other coregistration methods, such as the ones based on FreeSurfer,50

Fig. 4 Angiogram coregistration results. Transformed 2PM pial stack (a) (depth range: 41 to
82 μm) in DLS-OCT space and corresponding coregistration results with DLS-OCT angiogram
layers (gray) overlaid by the 2PM angiogram (green) using (b) global 3D coregistration only and
(c) combined global 3D coregistration and 2D regional coregistration. (d) Zoomed views of two sub-
areas in stack (a) that highlights the improvements with combined 3D and 2D coregistration.
Transformed 2PM in-depth stack (e) (depth range: 157 to 197 μm) in DLS-OCT space and cor-
responding coregistration results with (f) global 3D coregistration only and (g) combined global 3D
coregistration and 2D regional coregistration. (h) Zoomed views of two sub-areas in stack (e) that
highlights the improvements with combined 3D and 2D coregistration. White arrows highlight the
improvements by the regional 2D coregistration. All scale bars are 200 μm in length.
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NiftyReg,51,52 and ANTs53,54 packages. Our method has shown improved coregistration results
compared to the MRI_Robust_Register Function from the FreeSurfer package, which is mainly
based on affine coregistration and comparable results to the state-of-the-art methods based on
NiftyReg and ANTs, which both utilize non-linear deformable coregistration in addition to the
affine coregistration (see the Supplementary Material for detailed results of the comparisons). In
addition, our method enables a considerable degree of manual, user control over the coregistra-
tion process, which may be helpful to deal with sometimes significant deficiencies in acquired
datasets, such as large shadows below the vessels or missing data in large sub-ROIs.

2.6 Blood Flow Velocity Mapping
Based on transformation matrices, all nodes from the graph-based network obtained from the
2PM angiogram were co-registered with the DLS-OCT volumes at different depths [Figs. 5(a)
and 5(c)]. This enabled mapping of the blood flow velocities obtained by the DLS-OCT to the
microvascular segments obtained by the 2PM angiography [Figs. 5(b) and 5(d)]. To assign the
blood flow velocities to the microvascular segments represented by the vascular graph, a small
cylindrical volume was defined in DLS-OCT space along each graph edge according to the diam-
eter of the corresponding microvascular segment. A mean value of Vz component of the blood
flow speed was subsequently extracted from each cylinder. A custom-written software was writ-
ten in MATLAB (MathWorks, Massachusetts, United States) to enable manual adjustments of
cylinder position, orientation, and diameter to correct for the remaining imperfections of core-
gistration and better match with the DLS-OCT signal from the vessel. In the case of larger vessels
(>8 μm diameter) that exhibit parabolic-like flow profile, we extracted the Vz component of the
maximum axial velocity in the vessel. The maximum axial velocity in larger vessels typically
corresponds to the central region of the vessel. Therefore, the region from which velocities were

Fig. 5 2PM vascular network graphing and coregistration with the DLS-OCT blood flow velocity
measurements. The transformed graph of (a) pial and (c) in-depth 2PM stacks superimposed with
top MIPs from the corresponding angiogram layers. Co-registered vascular graph and correspond-
ing DLS-OCT axial flow velocity measurements for (b) pial and (d) in-depth stacks. All scale bars
are 200 μm in length.
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extracted in such vessels was constrained to an ∼8-μm-diameter cylinder around the center of the
vessel. The absolute RBC flow velocities in such vessels were computed using the extracted flow
velocities from the cylinder and cosine of the axial tilt angle between the corresponding graph
edges and the optical Z axis and defined as mean center-line flow velocities. In the case of capil-
laries and small arterioles and venules, the extraction region was adjusted to encapsulate most of
the vessel cross section since the difference between the RBC velocities from the vessel axis and
periphery, if any, could not be resolved in our measurements. Absolute RBC velocities along
such vessels were computed similarly using the above method, and the mean center-line flow
velocities and mean flow velocities are equivalent for such vessels.

DLS-OCT measurements of the Vz component of the RBC velocity exhibit the largest and
the smallest SNR when RBCs are travelling parallel and perpendicular to the optical axis (Z),
respectively. Consequently, in the capillary network, Vz velocities were typically too noisy when
vessel center-line formed a large axial tilt angle (approximately larger than 50 deg, see the
Supplementary Material for details) and led to a pronounced decrease in the goodness of
DLS-OCT flow velocity fitting. Therefore, we chose 35 deg as a conservative threshold for the
axial tilt angle of capillary edges in data analysis to maintain a high-accuracy standard in DLS-
OCT measurements while still enabling the measurements of velocities in a large number of
capillary segments. Only the vascular edges with strong DLS-OCT signals were included in the
data processing. However, vascular segments typically contain tens of graph edges and mean
segment velocities could be obtained even if some edges within these segments needed to
be removed from analysis. Examples of mapping the blood flow velocities onto a graph-based
network are shown in Fig. 6.

Although most data analysis steps have been performed automatically by the custom-written
software, a certain amount of manual corrections and adjustments are still needed in the graphing
and coregistration procedures for refined blood flow speed mapping, which is time consuming.
In the future, machine learning-based methods may be developed to assist with the manual-
correction steps.

3 Results of In Vivo Measurements and Discussion
The mean center-line flow velocity distributions in cortical arterioles, capillaries, and venules
based on measurements in three mice are shown in Fig. 7(a) and summarized in Table 1.
The total numbers of graph edges and segments whose flow velocities were accounted for are
1554 edges/454 segments, 925 edges/316 segments, and 1613 edges/549 segments for mouse #1,
#2, and #3, respectively. Herein, using the proposed method, we were able to combine micro-
vascular flow velocities with vascular morphological information on a significantly larger scale
than previously reported.55 Compared to arterioles, capillaries and venules exhibited 82.1% and
57.1% lower average center-line flow velocities. This is in agreement with previously published
measurements55 and expected in the mouse cortex as there is larger collective cross-sectional area
of venules than arterioles, and even larger collective cross-sectional area of capillaries than
venules.

The mean flow velocity distributions in capillaries of the first four branching orders from
precapillary arterioles and postcapillary venules are shown in Figs. 7(b) and 7(c) and summarized
in Table 2, respectively. Due to truncation of the microvascular networks at the boundaries of the
imaged volumes, the assignment of the capillary branching order was reliable only for the first 3
to 4 branching orders from either precapillary arterioles or postcapillary venules. A decreasing
trend of capillary flow velocity was observed at the first four branching orders following
precapillary arterioles (from 4.3 to 1.1 mm∕s), whereas mean flow velocity was similar across
the capillaries of the first four branching orders counted from the postcapillary venules
(∼0.8 mm∕s). A similar trend was previously observed in mice, where average RBC speed
in capillaries decreased from ∼3.5 to ∼2.2 mm∕s for the first four branching orders following
precapillary arterioles while it remained ∼1.0 mm∕s for capillaries in the vicinity of postcapillary
venules.55 This trend of rapid capillary flow speed decrease within the first several branching
orders following the feeding penetrating arteriole can be explained by successive vessel bifur-
cation leading to fast increase of collective cross-sectional area. However, this trend gradually
fades away toward the postcapillary venules due to a highly interconnected capillary bed.56
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Fig. 7 Quantitative analysis of the microvascular velocities obtained from 3 mice. (a) Mean center-
line flow velocity distribution in arterioles, capillaries, and venules as labeled with the proposed
strategy (454, 316, and 549 vessel segments from mouse #1, #2, and #3, respectively, were used
for calculation). Mean flow velocity distributions in capillaries of the first four branching orders from
(b) precapillary arterioles and (c) postcapillary venules.

Fig. 6 Visualization of axial blood flow velocity (Vz) mapping. The top and side projections of a
graph-based vascular segment and its corresponding flow velocity distribution from (a) an artery,
(b) a capillary, and (c) a vein. Green lines indicate edges along the segment with a white line seg-
ment highlighting the current selected edge. The white shadow areas show projections of the blood
flow velocity extraction region after manual corrections. All scale bars are 20 μm in length.

Pian et al.: Cortical microvascular velocity mapping by combining dynamic light. . .

Journal of Biomedical Optics 076003-10 July 2023 • Vol. 28(7)



4 Conclusion
We have proposed a method to combine the high-resolution cerebral microvascular angiograms
obtained by 2PM and large-scale microvascular blood flow velocity measurements based on
DLS-OCT for a comprehensive analysis of cerebral microvascular blood flow network down
to capillary level in mice. The developed methodology was applied in proof-of-principle experi-
ments to retrieve the distributions of mean blood flow velocities from several hundred arterioles,
capillaries, and venules in vivo. We anticipate that this technique will be helpful for quantifying
the microvascular blood flow velocity distributions in a broad range of studies involving normal
brain functioning, progression of various microvascular diseases, and numerical modeling of the
oxygen advection and diffusion in the realistic microvascular networks.57
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Table 2 Mean flow velocities in capillaries of the first four branching orders from precapillary arte-
rioles and postcapillary venules.

Mean blood flow velocity (mm/s)

Capillary branching order from
precapillary arterioles

Capillary branching order from
postcapillary venules

1 2 3 4 1 2 3 4

Mouse #1 4.9 ± 2.1 2.2 ± 2.2 1.7 ± 1.5 1.3 ± 1.1 0.7 ± 0.5 0.9 ± 0.6 0.8 ± 0.5 1.1 ± 0.8

Mouse #2 3.5 ± 4.2 4.7 ± 2.5 1.8 ± 1.4 1.3 ± 1.0 1.2 ± 1.1 0.7 ± 0.3 0.8 ± 0.4 0.8 ± 0.5

Mouse #3 4.6 ± 0.6 1.6 ± 1.0 1.3 ± 0.8 0.8 ± 0.6 0.8 ± 0.5 0.6 ± 0.3 0.7 ± 0.4 0.7 ± 0.4

Average across mice 4.3 ± 0.8 2.8 ± 1.6 1.6 ± 0.3 1.1 ± 0.3 0.9 ± 0.3 0.7 ± 0.1 0.8 ± 0.1 0.9 ± 0.2

Table 1 Mean center-line blood flow velocities in arterioles, capillaries, and venules.

Mean center-line blood flow velocity (mm/s)

Arterioles Capillaries Venules

Mouse #1 4.4 ± 1.8 1.1 ± 1.0 2.5 ± 1.3

Mouse #2 7.8 ± 3.1 1.0 ± 1.0 2.8 ± 0.9

Mouse #3 4.7 ± 3.7 0.8 ± 0.7 1.9 ± 1.1

Average across mice 5.6 ± 1.9 1.0 ± 0.2 2.4 ± 0.5
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