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ABSTRACT. Significance: In recent years, we and others have developed non-destructive meth-
ods to obtain three-dimensional (3D) pathology datasets of clinical biopsies and sur-
gical specimens. For prostate cancer risk stratification (prognostication), standard-
of-care Gleason grading is based on examining the morphology of prostate glands in
thin 2D sections. This motivates us to perform 3D segmentation of prostate glands in
our 3D pathology datasets for the purposes of computational analysis of 3D glan-
dular features that could offer improved prognostic performance.

Aim: To facilitate prostate cancer risk assessment, we developed a computationally
efficient and accurate deep learning model for 3D gland segmentation based on
open-top light-sheet microscopy datasets of human prostate biopsies stained with
a fluorescent analog of hematoxylin and eosin (H&E).

Approach: For 3D gland segmentation based on our H&E-analog 3D pathology
datasets, we previously developed a hybrid deep learning and computer vision-
based pipeline, called image translation-assisted segmentation in 3D (ITAS3D),
which required a complex two-stage procedure and tedious manual optimization
of parameters. To simplify this procedure, we use the 3D gland-segmentation masks
previously generated by ITAS3D as training datasets for a direct end-to-end deep
learning-based segmentation model, nnU-Net. The inputs to this model are 3D path-
ology datasets of prostate biopsies rapidly stained with an inexpensive fluorescent
analog of H&E and the outputs are 3D semantic segmentation masks of the gland
epithelium, gland lumen, and surrounding stromal compartments within the tissue.

Results: nnU-Net demonstrates remarkable accuracy in 3D gland segmentations
even with limited training data. Moreover, compared with the previous ITAS3D pipe-
line, nnU-Net operation is simpler and faster, and it can maintain good accuracy
even with lower-resolution inputs.

Conclusions: Our trained DL-based 3D segmentation model will facilitate future
studies to demonstrate the value of computational 3D pathology for guiding critical
treatment decisions for patients with prostate cancer.
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1 Introduction
Prostate cancer is the most prevalent form of cancer and is the second leading cause of cancer-
related deaths among men in the United States.1 Every year, nearly 250,000 men are diagnosed
with this disease in the United States. Morbidity and mortality rates are low, but there is a fraction
of prostate cancer cases that are potentially lethal and for whom aggressive treatments are war-
ranted. To determine whether a patient requires aggressive treatment, urologists rely heavily upon
the Gleason score reported by pathologists. Gleason scoring is based solely on the visual inter-
pretation of prostate gland morphology, as seen on a few 2D histology slides. Unfortunately,
there is a high level of interobserver variability associated with Gleason grading of prostate
cancer2,3 and the Gleason scores are only moderately correlated with outcomes, particularly for
patients with intermediate-grade prostate cancer.4 This can lead to the undertreatment of some
patients,5 resulting in preventable metastasis and death,6 and overtreatment of other patients,7

which can lead to financial burdens and avoidable side effects, such as incontinence and
impotence.8

A contributing factor to the limited predictive power of Gleason grading is that with conven-
tional slide-based histopathology, only ∼1% of each prostate biopsy is viewed in the form of thin
physically sectioned tissue sections mounted on glass slides. In addition to severely undersam-
pling the biopsy specimens, by which key structures can be missed, the interpretation of complex
branching-tree glandular morphologies can be misleading and ambiguous based on 2D tissue
sections. Tissue destruction is a further disadvantage of conventional histology, in which valuable
tissue material is no longer available for downstream assays. Nondestructive three-dimensional
(3D) pathology can enable complete imaging and analysis of biopsy specimens, providing volu-
metric visualization and quantification of diagnostically significant microstructures while main-
taining entire tissue specimens for downstream assays.9 We and others have shown that 3D
pathology datasets can improve the characterization of the convoluted glandular structures that
pathologists presently rely on for prostate cancer risk stratification.10–17 For instance, a gland that
seems poorly formed in two dimensions (Gleason pattern 4) might actually be a tangential sec-
tion of a well-formed gland (Gleason pattern 3). As a result, the cancer’s grade determined in 2D
(Gleason score 3þ 4 ¼ 7) could be downgraded (Gleason score 3þ 3 ¼ 6) when observed in
3D, which could lead to significantly different treatment recommendations.13,14 However, due to
the vast amount of information contained in a 3D pathology dataset of a biopsy, which is >100-
fold more than a 2D whole-slide image representation, there would be great value in computa-
tional tools for efficient and consistent prognostic analyses.

In recent years, we have developed computational methods to analyze 3D pathology datasets
of prostate cancer for risk stratification (i.e., prediction of biochemical recurrence outcomes).
Although weakly supervised deep-learning methods are gaining popularity and are extremely
powerful,16 there is also value in developing traditional classifiers based on intuitive “hand-
crafted” features. For example, the physical insights and 3D spatial biomarkers identified through
such hand-crafted machine classifiers could be of value for hypothesis generation and for
explaining why 3D information can help with diagnostic determinations. We have shown that
3D glandular features, such as volume ratios, gland tortuosity, and gland curvature, can outper-
form analogous 2D features for prostate cancer risk stratification.15 We have similarly shown that
3D nuclear features are of prognostic value.17 These intuitive feature-based classification
approaches first require accurate segmentations of diagnostically important histological struc-
tures, such as prostate glands in our case.18,19 This is typically achieved in one of two ways:
(i) direct deep learning (DL)-based segmentation methods20–23 that require manually annotated
training datasets, which are especially tedious and difficult to obtain in 3D,24 or (ii) traditional
computer vision (CV) approaches based on intensity and morphology, provided that tissue struc-
tures of interest can be stained/labeled with high specificity.11,25,26 Although immunolabeling can
provide a high degree of specificity for conventional CV-based segmentation, it is not a practical
approach for clinical 3D pathology assays due to the high cost of antibodies required to stain
large tissue volumes and the slow diffusion times of antibodies in thick tissues.27,28

As an alternative 3D segmentation approach, Xie et al. proposed a method called image
translation-assisted segmentation in 3D (ITAS3D).15 Here, an image-sequence translation model
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was trained to convert 3D datasets of prostate tissue, stained with a fluorescent small-molecule
analog of hematoxylin and eosin (H&E) to look like 3D immunofluorescence datasets of cyto-
keratin 8 (CK8), which labels the luminal epithelial cells that define all prostate glands.
Subsequently, a CV-based 3D segmentation routine was used to segment out the epithelium and
lumen compartments within the gland, as well as the surrounding stromal regions. This multi-
stage ITAS3D pipeline offered several initial advantages, including the ability to leverage a cheap
and rapid small-molecule stain while obviating the need for tedious and subjective manual anno-
tations to train a 3D gland segmentation model. However, a shortcoming of ITAS3D is that it was
a relatively complex two-step procedure involving deep learning image-sequence translation fol-
lowed by CV-based segmentation of the resulting “synthetic immunofluorescence” datasets.
Furthermore, the CV step often still required manual parameter tweaking that was time consum-
ing and tedious. To overcome these limitations, we sought to train a deep learning model for
direct 3D segmentation based on our H&E-analog raw datasets, in which we used our previously
generated 3D segmentation masks (generated by ITAS3D) as labels for training.

To train a model for direct 3D segmentation of prostate glands based on our raw H&E-
analog datasets, we explored the use of nnU-Net,29 a 3D segmentation method designed to handle
diverse biomedical imaging datasets. nnU-Net automates the key decisions for designing a suc-
cessful segmentation pipeline for any given dataset and is available as an out-of-the-box seg-
mentation model for those with limited deep learning experience. The pipeline comparison
between ITAS3D and nnU-Net is shown in Fig. 1. Here we quantified the accuracy of nnU-
Net as well as its execution speed in comparison with our previous ITAS3D pipeline. We also
explored the flexibility of nnU-Net to operate on downsampled datasets that are volumetrically
8X smaller (2X smaller in each dimension) than the original inputs to our ITAS3D method.

2 Methods

2.1 nnU-Net Model
As mentioned in the Introduction, we trained an nnU-Net model to generate 3D segmentation
masks directly from H&E-analog input images (3D pathology datasets). nnU-Net’s network
backbone is based on the classical U-Net,30 but the great value of nnU-Net is that it provides
a comprehensive and automated mechanism to perform preprocessing and postprocessing such
that little to no user intervention is required from training to inference. nnU-Net extracts key
information directly from the input datasets and determines how to optimize various hyperpara-
meters and other model parameters through internal heuristic rules. The loss functions used in the
network are Dice loss and cross-entropy loss. The optimizer is fixed to the Stochastic Gradient
Descent with Nesterov momentum. A poly learning rate schedule is utilized to minimize the

Fig. 1 General pipeline comparison between ITAS3D (the upper route) and nnU-Net (the lower
route) for 3D prostate gland segmentation.
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potential for gradient explosion and to ensure an optimal learning curve. The model architecture
that nnU-Net optimized for our datasets is summarized in Fig. S1 in the Supplementary Material,
with information regarding convolutional layers, filter sizes, input/output size for each layer, etc.

2.2 Training Details
Training datasets were collected with a custom-developed second-generation open-top light-
sheet (OTLS) microscope,31 which had a lateral resolution of 0.9 μm and a raw pixel spacing
of 0.45 μm (Nyquist sampling). For prior studies with ITAS3D, 2X-downsampled datasets were
used (0.9-μm pixel spacing) as inputs for the initial image-translation stage of ITAS3D. Then, for
the CV-based gland-segmentation stage, the image-translated datasets were downsampled by
another 2X (1.8-μm pixel spacing). These levels of downsampling were deemed acceptable for
the segmentation of large tissue structures such as prostate glands while minimizing computa-
tional times and resources (i.e., each factor of 2X in downsampling reduced the 3D dataset sizes
by 8X). The final segmentation masks generated by ITAS3D were also 4X downsampled
(1.8-μm pixel spacing) compared with the original images obtained by the OTLS microscope.

For model training, we first sub-divided the 3D biopsy datasets (∼1 mm × 0.7 mm ×
20 mm) into ∼1 × 0.7 × 1 mm blocks (∼512 × 350 × 512 pixels at 1.8-μm pixel spacing) to fit
within the RAM of our GPUs (Fig. 2). Then, all sub-blocks as well as corresponding segmen-
tation labels were arranged into a folder structure that was appropriate for nnU-Net training.32

Note that, during training, nnU-Net internally divides the training dataset in an 80/20 split for
training and internal validation, respectively. The actual training session was conducted
on a Linux workstation with one NVIDIA RTX 4090 GPU, an AMD Threadripper PRO
5965WX CPU, and 256 GB of RAM.

2.3 Inference and External Validation
After training the model, a set of two validation biopsies (sourced from different patients and held
out from the training process) were also divided into blocks using the same method as the training
biopsies. The trained nnU-Net model was used to infer segmentation masks based on the H&E-
analog channels (To-PRO-3 and eosin fluorescence)15 of the biopsy datasets, and the inference
results were compared against the ITAS3D generated segmentation masks. In addition to the
qualitative inspection of the gland segmentation results using nnU-Net, the segmentation masks
were quantitatively assessed based on manually annotated 3D segmentation masks (not gener-
ated by ITAS3D). A total of 10 tissue volumes from different patients (∼512 × 512 × 100 pixels

each, representing ∼0.2-mm3 of tissue) were generated, and 3D manual annotations (slice by
slice) were obtained of the glands (the interface between the epithelium and surrounding stroma)
under the guidance of board-certified genitourinary pathologists. These ground-truth manual seg-
mentations enabled us to compare the performance of our model with the original ITAS3D seg-
mentation results and two other baseline segmentation methods, a 2D U-Net30 and a 3D
watershed33 algorithm. The 2D U-Net model was trained on patches derived from 15 regions

Fig. 2 Inputs for training an nnU-Net model from 3D H&E images and paired segmentation masks
generated by ITAS3D.
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of interest obtained from five distinct biopsies. The 3D watershed approach begins with a 3D
extension of the watershed method, which was applied on the eosin channel to identify candidate
lumen regions only. Here, the 3D-watershed algorithm was initiated at marker points that were
identified with an Otsu thresholding routine applied on the same eosin-channel images.
Likewise, epithelium regions were detected by applying another watershed-based segmentation
method on the hematoxylin channels. Candidate lumen regions in which the majority of the
boundary pixels were not adjacent to segmented epithelium were eliminated due to the fact that
true lumen regions are always enclosed by epithelial cells.

Quantitative evaluation and benchmarking were done by calculating Dice coefficients34 and
3D Hausdorff distances35 based on the ground truth manual-segmentation masks using a Python
package named “seg-metrics.” The Dice coefficient, also known as the Sørensen-Dice coefficient
or F1 score, is a similarity metric used to evaluate the agreement between two sets. It is com-
monly used in the context of image segmentation. The Dice coefficient is defined by the follow-
ing equation:

EQ-TARGET;temp:intralink-;e001;117;568DiceðA; BÞ ¼ 2 × jA ∩ Bj
jAj þ jBj ; (1)

where A is the first set, B is the second set, jA ∩ Bj is the size of the intersection of sets A and B,
jAj is the size of set A, and jBj is the size of set B. The 3D Hausdorff distance is a mathematical
measure used to quantify the dissimilarity between two sets of 3D points or shapes. In the context
of 3D data, such as point clouds or volumetric representations, the Hausdorff distance measures
how far one set of points is from the other, taking into account both the maximum distance of a
point in one set to the nearest point in the other set, and vice versa. It provides a way to assess the
similarity or dissimilarity between two 3D shapes or structures. Mathematically, the 3D
Hausdorff distance is defined as

EQ-TARGET;temp:intralink-;e002;117;436HðA; BÞ ¼ maxðsupa∈Ainfb∈Bdða; bÞ; supb∈Binfa∈Adðb; aÞÞ; (2)

where A and B are the two sets of points or shapes in 3D space; a and b represent individual
points in sets A and B; respectively; dða; bÞ is the distance metric between points a and b; sup
denotes the supremum (least upper bound); and inf denotes the infimum (greatest lower bound).

Subsequently, pairwise comparisons were done based on the quantitative measurement
results [Figs. 4(c) and 4(d), sample size n ¼ 10]. Two-sample t tests were performed to calculate
p values for nnU-Net against each benchmarked method (ITAS3D, 2D U-Net, and 3D watershed,
respectively) without correction for multiple comparisons.

2.4 Speed Comparisons
For speed benchmarking, we recorded the ITAS3D pipeline execution time as well as nnU-Net
inference time for three randomly selected biopsies. The average size of the three biopsies was
∼1 × 0.7 × 20 mm, which corresponded to ∼1000 × 700 × 20000 pixels for 0.9-μm pixel spac-
ing and ∼500 × 350 × 10000 pixels for 1.8-μm pixel spacing (after 2X downsampling). For
nnU-Net, 3D segmentation masks were generated in a single step. By contrast, the ITAS3D pipe-
line involved four steps from H&E inputs to 3D segmentation masks: data preprocessing, image
translation to CK8, image mosaicking, and CV-based segmentation. For ITAS3D, we excluded
any time required for manual parameter tweaking for the CV-based segmentation step. We only
recorded the terminal and code execution time for the four steps. All tests were conducted on the
same computer to ensure consistent hardware and software/environment configurations.

3 Results

3.1 Model Training
To train an nnU-Net model, we randomly selected 16 prostate biopsies from the 118 biopsies
previously processed by ITAS3D.15 The original H&E images taken from our second-generation
OTLS microscope31 were used as input data (0.9-μm pixel spacing), and the segmentation masks
generated by ITAS3D (1.8-μm pixel spacing, verified by board-certified pathologists) were used
as corresponding training labels for the gland epithelium, lumen, and stromal compartments.
Compared with the input datasets used in our prior ITAS3D gland-segmentation pipeline, the
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datasets used here were downsampled by 2X in all three dimensions to match the segmentation
masks generated by ITAS3D (1.8-μm pixel spacing), resulting in an 8X reduction in dataset sizes
and computational resources. For the default 1000 epochs, training took approximately 3 days
with the workstation described in the Methods section. The detailed training curves are shown in
Fig. S2 in the Supplementary Material.

3.2 Qualitative Visual Evaluation
Two prostate biopsies, sourced from distinct patients and not utilized in the training process, were
chosen at random for qualitative assessment (visual inspection). These biopsies are a subset of
the 118 biopsies previously processed by ITAS3D to generate 3D gland segmentation masks.
These masks were used to compare the performance of the nnU-Net model versus the prior
ITAS3D pipeline. Although all inputs and outputs are 3D datasets (Videos 1 and 2), we selected
example 2D frames for demonstration purposes. Two sets of comparisons are shown in Fig. 3.
For each panel, the input H&E image is shown on the top (note that the false-colored36 H&E
images shown are for demonstration purposes; all computations are performed on our original
grayscale 2-channel fluorescence datasets). The nnU-Net inference result is shown on the
bottom-left and the ITAS3D segmentation result is shown on the bottom-right. The nnU-Net
model exhibits smoother edges compared with the traditional CV-generated masks [white arrow
in Fig. 3(a)], but it occasionally misinterprets certain lumen regions as stroma. Figure 3(b) shows
how the nnU-Net inference results can occasionally outperform the ITAS3D segmentation
masks. For example, as shown by the white arrow in Fig. 3(b), ITAS3D incorrectly labels a
stromal region as a lumen region, whereas nnU-Net is more accurate.

3.3 Quantitative Evaluation
In addition to the above qualitative examination of the model’s performance, we also conducted a
quantitative measurement based on manually annotated gland masks (epithelium plus lumen) of
the 3D prostate images. Unlike the segmentation masks generated by ITAS3D, which were
employed as training labels for nnU-Net, the manual annotations are a more-authentic ground
truth. However, they only delineate the boundaries between the gland epithelium and surround-
ing stroma (two compartments) rather than delineating all three segmented tissue compartments
(epithelium, lumen, and stroma). See Fig. 4(a) for an example visualization of a nnU-Net
generated result versus a manually annotated gland-segmentation mask.

Fig. 3 Qualitative evaluation of the trained model’s performance. (a), (b) 2D frames showing side-
by-side comparisons between nnU-Net-generated segmentation masks and ITAS3D-generated
segmentation masks, (Videos 1 and 2 show 3D datasets of the masks) both from the same
H&E image input. The examples shown in panels (a) and (b) are from different tissue samples.
Bold white arrows point to regions where nnU-Net outperforms ITAS3D. Scale bars ¼ 100 μm
(Video 1, MP4, 10.9 MB [URL: https://doi.org/10.1117/1.JBO.29.3.036001.s1]; Video 2, MP4,
10.9 MB [URL: https://doi.org/10.1117/1.JBO.29.3.036001.s2]).
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Fig. 4 Quantitative measurements of the nnU-Net model’s performance in terms of Dice coeffi-
cient and 3D Hausdorff distance as calculated from 10 manually annotated test regions (3D volu-
metric depth stacks each containing hundreds of manually annotated 2D images) that were not
used for training. Asterisk (*) denotes a p value < 0.05. (a) Example of a nnU-Net generated seg-
mentation mask versus the manually annotated segmentation mask (Video 3, MP4, 11 MB [URL:
https://doi.org/10.1117/1.JBO.29.3.036001.s3]). (b) Benchmark of the model when trained for 100,
200, 300, 500, and 1000 epochs, respectively. (c) Benchmark of nnU-Net method against ITAS3D
and other baseline segmentation methods. (d) Benchmark of the original nnU-Net model against a
new nnU-Net model trained on datasets with 2X-higher resolution (8X larger size for a 3D dataset).
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3.3.1 Ablation study of training process

During the training process, we did an ablation study to determine the optimal number of epochs
for maximizing model performance while adhering to a reasonable training timeframe. In addi-
tion to using the nnU-Net’s default trainer, which trains a model for 1000 epochs, we customized
four other trainers to run for 100, 200, 300, and 500 epochs, respectively. All trainers employed
the same linear-descent technique for learning-rate reduction, transitioning linearly (as a function
of epochs) from a rate of 0.01 to 0. Subsequently, all five trained models underwent quantitative
benchmarking using the above-mentioned manually annotated validation set. The results shown
in Fig. 4(b) demonstrate that the model already provides a good performance when trained for
only a few hundred epochs, but the overall performance (both for the Dice coefficient and 3D
Hausdorff distance metrics) of the model improves slightly as it is trained for more epochs. We
used the 1000-epoch model to perform any related validation tasks.

3.3.2 Benchmarking with ITAS3D and other methods

We used our manual ground-truth annotations to quantitatively compare the nnU-Net model with
ITAS3D as well as two other baseline 3D segmentation strategies [Fig. 4(c)]. The Dice coef-
ficient for the nnU-Net masks was calculated across all 10 test cases and ranged from 0.7 to
0.95, with an average of 0.855. The 3D Hausdorff distance across all test cases ranged from
50 to 250 μm, with an average of 119.1 μm. The nnU-Net model is slightly inferior to
ITAS3D, as expected, because the nnU-Net model was trained on the segmentation masks pro-
vided by ITAS3D. However, their performance is quite comparable, with both of these methods
clearly outperforming baseline segmentation methods such as 3D watershed and 2D U-Net.

Pairwise comparisons show that there is a significant performance difference between nnU-
Net and both the 2D U-Net and 3D watershed methods, whereas there is no significant difference
between nnU-Net and ITAS3D in terms of Dice coefficient. On the other hand, 3D Hausdorff
distance measurements demonstrated insignificant pairwise differences between all methods.
The 3D Hausdorff distance considers the maximum distance from a point in one set to the closest
point in the other set. Therefore, even a single outlier can dramatically increase the Hausdorff
distance, masking more subtle differences between segmentation masks. This effect is com-
pounded by the complexity of the shapes and structures in our 3D pathology datasets, which
can lead to high variability in Hausdorff distance measurements.

3.3.3 Sensitivity to sampling pitch (image resolution)

As mentioned previously, this study was performed with 3D datasets that were 2X downsampled
(8X smaller in size for a 3D image) in comparison with the 3D datasets used as inputs in the
original ITAS3D pipeline. To show that this does not cause a significant deterioration in nnU-Net
performance, we also trained another model based on the original-resolution (0.9-μm pixel spac-
ing) H&E-analog input datasets that ITAS3D used. Training the model with original-resolution
datasets (0.9-μm pixel spacing) took approximately 14 days with the workstation described in the
Methods section.

Interestingly, the model trained on the dataset with a larger image size/resolution exhibited a
marginal dip in performance compared with the previous model that we worked on [Fig. 4(d)]. In
any case, the ability to achieve good segmentation performance with downsampled H&E-analog
input datasets (compared with ITAS3D inputs) is beneficial for computational resources and
training/inference times.

3.4 Speed Benchmarking
The execution time for ITAS3D can be divided into four parts: data chunking, image translation,
image mosaicking, and segmentation. In addition, the manual tweaking of parameters is often
needed for ITAS3D but is omitted in these calculations as it varies from case to case.
Nevertheless, it is worth noting that, in some cases, ITAS3D may require hours of manual effort
to achieve satisfying results. The results show that the execution speed of nnU-Net is signifi-
cantly faster than the original ITAS3D pipeline when performed on identical computing
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resources (Fig. 5). This is facilitated by the fact that nnU-Net can start with 2X downsampled
inputs compared with ITAS3D and is a one-step process. The elimination of manual parameter
adjustments further improves the efficiency of the nnU-Net pipeline.

4 Discussion
The advent of non-destructive 3D pathology technologies coupled with advances in artificial
intelligence have ushered in an era of diagnostic possibilities. AI and machine learning tech-
niques have an important role in the analysis of these large datasets, so pathologists and other
investigators can gain insights and gain trust in 3D pathology. Prostate cancer diagnosis and risk
assessment have historically relied upon the Gleason grading system, which relies on the inter-
pretation of glandular morphologies seen in 2D histology sections. This approach, however, is
hampered by interobserver variability and limitations in correlating Gleason scores with patient
outcomes. We are motivated to investigate the ability of 3D pathology datasets to offer a more
comprehensive and accurate view of glandular morphologies across much-larger volumes of
tissue than are typically assessed via 2D histopathology. Here, we harnessed the power of deep
learning to address the task of 3D gland segmentation within prostate biopsies, which is a critical
component toward developing machine classifiers of patient risk based on 3D glandular features.

In prior work, we developed an annotation-free pipeline, ITAS3D, for 3D gland segmenta-
tion based on tissues stained with a cheap and fast fluorescent analog of H&E staining. With
ITAS3D, a deep-learning image-translation method was first used to create synthetic immuno-
labeled datasets based on H&E-analog input datasets. With synthetic immunolabeling of a CK8
biomarker, which is expressed by the luminal epithelial cells that define all prostate glands, it was
then possible to use standard CV methods such as intensity thresholding and hole-filing algo-
rithms to create 3D segmentation masks of the prostate gland lumen regions, epithelial regions,
and stromal regions. Having generated hundreds of 3D segmentation masks in an annotation-free
manner using ITAS3D, we had the opportunity to train an end-to-end deep-learning model for
single-step gland segmentation based on our H&E-analog input datasets.

Our qualitative and quantitative results demonstrate the efficacy of the open-source nnU-Net
package, which produces smoother and comparably accurate segmentation results when com-
pared with our prior ITAS3D masks. The Dice coefficient and Hausdorff distance metrics, cal-
culated based on withheld “ground truth” datasets that were manually annotated, were
comparable between nnU-Net and ITAS3D. However, it is worth noting that certain imperfec-
tions, such as mistaking lumen fields for stromal compartments, were noticed. To address this
issue, one potential path is to fine-tune and/or augment the ITAS3D-generated segmentation
masks used to train the nnU-Net model. Alternatively, simple and robust CV methods may
be useful to post-process and improve the segmentation masks generated by nnU-Net.

One of the most valuable outcomes of our study was the substantial improvement in exe-
cution speed offered by nnU-Net compared with the multi-stage ITAS3D pipeline. The efficiency
gains achieved by nnU-Net are significant, not only in terms of computational time but also in
terms of simplicity and automation compared with the ITAS3D pipeline that can require
some manual tuning of segmentation parameters. Because nnU-Net can operate well on 2X-
downsampled datasets compared with ITAS3D, this results in a ∼8X reduction in dataset sizes
and computational resources. Interestingly, it was found that the model trained on datasets with a

Image translation Mosaic

Segmentation
nn

U
-N

et
IT

AS
3D

49 min 1049 min 163 min 35 min

164 min

1296 min
Data chunking

Segmentation

Fig. 5 Speed benchmark between nnU-Net and ITAS3D execution with the same PC workstation
(see Sec. 2). The ITAS3D timeline excludes the time taken for manual parameter adjustments,
which often makes ITAS3D much more time consuming than plotted here. The average physical
size of the biopsies used for these benchmarking tests was approximately 1 × 0.7 × 20 mm.
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larger image size/resolution exhibited a marginal dip in performance (though insignificant
through pairwise statistical comparisons). A potential explanation for this is that, because we
needed to upsample the ITAS3D segmentation masks as training labels for the higher-resolution
nnU-Net model, these up-sampled training labels were not as accurate as true high-resolution
segmentation masks. In addition, it is possible that lower-resolution datasets can encourage mod-
els to utilize new features that may be more robust.

In conclusion, our study applied nnU-Net as a powerful tool for accurate and efficient 3D
gland segmentation within prostate biopsies. With these gland segmentation masks, we and
others may be able to extract a diversity of quantitative 3D glandular features (histomorphometric
features) to train machine classifiers with the ultimate goal of enhancing prostate cancer risk
stratification and treatment decisions. The model’s speed and accuracy will simplify and accel-
erate future research toward optimizing treatment decisions for individual patients.
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