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ABSTRACT. Significance: Current treatment for stage III colorectal cancer (CRC) patients
involves surgery that may not be sufficient in many cases, requiring additional
adjuvant systemic therapy. Identification of this latter cohort that is likely to recur
following surgery is key to better personalized therapy selection, but there is a lack
of proper quantitative assessment tools for potential clinical adoption.

Aim: The purpose of this study is to employ Mueller matrix (MM) polarized light
microscopy in combination with supervised machine learning (ML) to quantitatively
analyze the prognostic value of peri-tumoral collagen in CRC in relation to 5-year
local recurrence (LR).

Approach: A simple MM microscope setup was used to image surgical resection
samples acquired from stage III CRC patients. Various potential biomarkers of LR
were derived from MM elements via decomposition and transformation operations.
These were used as features by different supervised ML models to distinguish
samples from patients that locally recurred 5 years later from those that did not.

Results: Using the top five most prognostic polarimetric biomarkers ranked by their
relevant feature importances, the best-performing XGBoost model achieved a
patient-level accuracy of 86%. When the patient pool was further stratified, 96%
accuracy was achieved within a tumor-stage-III sub-cohort.

Conclusions: ML-aided polarimetric analysis of collagenous stroma may provide
prognostic value toward improving the clinical management of CRC patients.
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1 Introduction
Colorectal cancer (CRC) remains both the third leading cause of cancer-related deaths and the
third most commonly diagnosed cancer globally.1,2 With an estimated 1 million cases per year,3

the associated burden is expected to increase by 60%, approaching 2.2 million new cases and
1.1 million annual deaths by 2030.2 The primary curative treatment for localized tumors is
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surgical resection.3 However, it is shown to be less effective in patients with more advanced
disease, where adjuvant therapy is shown to improve survival.1–3 In more advanced tumor-
node-metastasis (TNM) stages (e.g., TNM stage III), recurrence and more specifically, local
recurrence (LR) plays an important role in determining unfavorable patient outcomes.4 The
ability to identify stage III CRC patients at risk of LR following standard therapy presents an
opportunity for creating more personalized care and helping to avoid the over- or under-treatment
of patients.

To accomplish this, prognostic biomarker curation has largely focused on molecular and
genetic indicators.5–9 In recent years, various commercial testing kits have emerged for predicting
risk of distant recurrence in stage II and III CRC patients (e.g., OncotypeDx, ColoPrint,
ColoGuideEx, and ColoGuidePro). However, their suboptimal accuracy and/or high costs
continue to drive the search for alternative prognostic markers.8,9 For example, there is increased
evidence suggesting valuable prognostic information exists within the growth patterns of peri-
tumoral collagen, a crucial component of the tumor microenvironment (TME).10–13 Known as
the desmoplastic response (DR), this growth and structural remodeling of connective tissue has
been shown to correlate with 5-year relapse-free survival and LR.14–17 DR utilizes a three-class
categorization of stromal maturity (immature, intermediate, and mature). However, given the
qualitative and subjective nature of its assessment, DR has not witnessed widespread clinical
adoption primarily due to inter-observer variability.

Optical techniques allow for quantification of DR and collagen assessment via various
modalities for applications in fields, such as oncology, cardiology, and dentistry.18 The current
gold standard, second-harmonic generation, is specific to collagen, but its high cost, lengthy
imaging times, modest fields of view, and overall complexity restrict its use to research
applications.19,20 Analogous considerations limit techniques, such as scanning electron micros-
copy and optical coherence tomography (excluding ophthalmology).18–21 More practical, stain-
ing techniques such as Mason’s trichrome and picrosirius red that preferentially bind to collagen
can easily be implemented with current pathology microscopes.22 However, concerns about addi-
tional staining, expense, (in)compatibility with current histology workflows, reproducibility,
quantification, and information content of scoring systems prevent these staining approaches
from being regular additions to histology departments.22,23 Alternatively, polarized light micros-
copy (PLM) offers a simpler approach with an ability to obtain high contrast images suitable for
quantification from unstained tissue samples.24 PLM addresses many of the above-mentioned
concerns, and consequently has been applied in breast, cervical, prostate, brain, and colon can-
cers.25 More specifically, a PLM technique known as Mueller matrix (MM) polarimetry has been
increasingly combined with machine learning (ML) algorithms to directly correlate the under-
lying biological phenomena with their polarization properties to identify prognostically relevant
parameters.26–31

Our recent studies utilized rotating crossed linear polarization microscopy,32–36 combined
with an unsupervised ML clustering pipeline,32 the latter demonstrating appreciable correlations
with 5-year patient survival outcome.32 However, in that study no associations were investigated
with another important clinical endpoint (5-year LR), and the unsupervised learning algorithm
used was not easily scalable. Our more recent study using full MM polarimetry demonstrated
the presence of statistically significant correlations between certain MM parameters and 5-year
LR status.37 However, no predictive analyses were made to further investigate the prognostic
value of the MM polarimetric approach. Building on these prior works, the present study
thus aims to assess whether MM parameters hold any prognostic value in relation to 5-year
LR status by integrating supervised ML to enable robust feature extraction and outcomes pre-
diction on the same acquired dataset. In this paper, we thus describe the (1) acquisition and
extraction of various MM parameters of potential interest; (2) process of identifying the most
relevant ones as determined by the supervised learning algorithm; and (3) conduct performance
analyses (sensitivity, specificity, total accuracy, and area under receiver operating characteristic
curve) to assess the overall performance of this refined approach. The findings suggest the
prognostic value of MM polarimetric parameters in combination with supervised learning
as a low-cost, quantitative, and stromal-based predictive tool for LR stratification in stage III
CRC patients.
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2 Methods

2.1 Ethics
University Health Network (Toronto, Ontario, Canada) provided ethics approval. Given the retro-
spective nature of the study along with patient anonymization, patient consent was waived by
the ethics board. All procedures and handling of patient data were conducted in accordance with
the University Health Network Research Ethics Board guidelines/approvals.

2.2 Patient Tissue Samples
This study employed a total of 38 archival surgical resection samples acquired from stage III left-
sided CRC (sigmoid-rectal) patients prior to receiving adjuvant chemotherapy. Relevant patient
clinical outcome data (i.e., 5-year LR status) were used to assess correlations. For 5-year
LR-status, 29 patients exhibited no-LR whereas 9 patients showed signs of LR at this time-point.
Each patient sample comprised a pair of 4.5 μm thick unstained sections extracted from
formalin-fixed and paraffin-embedded tissue blocks. For polarimetric analysis, sample prepara-
tion involved chemical dewaxing to avoid possible polarization artifacts.32–37 No further process-
ing was required for polarimetric imaging. Adjacent slides were hematoxylin and eosin (H&E)
stained and imaged at 20×magnification on an Aperio ScanScope CS (Leica Biosystems, United
States) for the pathologists’ region-of-interest (ROI) selection.

2.3 ROI Selection and Histology
A total of 356 ROIs (∼200 μm × 200 μm) were selected on the 38 adjacent H&E-stained sam-
ples by an experienced gastrointestinal pathologist. To avoid selection bias, the pathologist was
blinded to the polarimetry images and clinical outcome data. Along the tumor invasive front,
number per patient slide ranged from 3 to 14 ROIs depending on tumor size and stroma mor-
phology. Furthermore, ROI selection at this interface was made to comprise of relevant collagen
structures while excluding other components (e.g., cancer cells and surrounding smooth muscle
tissue) as they are not part of the analysis (Fig. 1). ROI size was determined by balancing the need
for robust statistics, capturing stromal spatial heterogeneity, and maintaining adequate spatial
resolution.33,34 Visual tissue landmarks were used to guide imaging and transfer these ROIs from
the H&E images to the polarimetric images for analysis. Image processing and analysis were then
performed using Python.

Fig. 1 Whole-slide and ROI-based histologic and polarimetric imaging of a stage III CRC sample
for qualitative ROI-based analysis with respective tissue labels. (a) H&E-stained slide acquired at
20× magnification (b) H&E and (c) zoomed-in images at 80× magnification of MM element M43
showing the region around the right-most ROI in panel (a). The brighter areas in panel (c) represent
birefringent tissues that contain more collagenous stroma. Green squares represent pathologist-
identified ROIs chosen along the invasive tumor front.
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2.4 Polarimetric Image Acquisition
Imaging was done using a multiscale Mueller polarimetry methodology previously developed by
our group (Fig. 2).38 It involves incorporating a pair of linear polarizers (LPVISE100-A,
Thorlabs) and quarter-wave plates (QWPs) (AQWP05M-600, Thorlabs) on computer controlled
motorized rotation mounts (PRM1.MZ8, Thorlabs) into the beam path of an AxioZoom V16
stereomicroscope (Zeiss, Germany) [Fig. 2(a)]. These polarizer-QWP pairings rotate in both
directions and are known as polarization state generator (PSG, incident beam) and polarization
state analyzer (PSA, transmitted beam) [Fig. 2(b)]. Illumination is achieved with 310 W uncolli-
mated white light source [Illuminator HXP 200C (D), Zeiss] passing through a collimator and a
630 nm filter (ET630/75 or ZET630/10, Chroma); the filter helps reduce unwanted scattering and
hemoglobin absorption.39 Signal is captured by a digital CMOS camera (ORCA-Flash4.0 V3,
Hamamatsu) with 2048 × 2048 pixel array. Images were obtained at 80× magnification with
a field-of-view/lateral resolution of 1.66 × 1.66 mm2∕2.2 μm.

To capture all available polarization information and improve signal-to-noise, a total of
24 images per sample at specific angular orientations of PSG and PSAwere acquired to directly
calculate the Stokes vectors and MM elements (discussed briefly in subsequent section).38

The MM elements were calculated for each individual pixel within a given ROI (∼60;000) to
capture more detailed information of the peri-tumoral collagen fiber; note that the system’s
optical resolution is within the typical thickness range of these fibers (1 to 20 μm).40 Calibration
was performed by calculating MMs for air and retarders to account for artifacts that may arise
due to off-axis light reaching the objective as result of the widefield beam.38 Slight image shifts
and loss of focus may also occur as the polarizers and waveplates rotate to generate the various
polarization states. The Python library pyStackReg, which performs image co-registration, was
used to account for such minor artifacts.41

2.5 Polarimetric Feature Extraction
Unlike the prior rotating-crossed-linear-polarizers methodology,32–36 which yield a limited
(but nevertheless telling) set of polarization signals, the MM approach yields more polarization
information and may provide biophysical insight into the polarized light-tissue interactions based
on the Stokes–Mueller formalism. As the name suggests, full MM analysis requires both Stokes
vectors and the MM transfer function to express properties of the polarized light states upon
interaction with the medium.24 This is described by a linear relationship

Fig. 2 (a) Schematic of the widefield inverted microscope and (b) MM polarization optics.
Polarization state generation and analysis modules (PSG and PSA, respectively) are both
comprised of a counter-rotating polarizer (P) and QWP pair. Upon interacting with birefringent
components of tissue (e.g., collagen fibers), the polarization state of transmitted light is altered
[illustrated diagrammatically in panel (b)] and detected via the PSA, providing a source of useful
tissue contrast.
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where Si and So is the Stokes vectors of the incoming and the outgoing polarized light [Eq. (1)].
In Eq. (2), I is the total detected light intensity, Q is the difference between the horizontal and
vertical linear polarization states, U is the difference between the 45 deg and 135 deg linear
polarization states, and V is the difference between right and left circularly polarized light.
M represents the Muller matrix, which contains 16 elements encapsulating tissue polarization
properties (for example, depolarization, diattenuation, retardance, etc.). To extract such biophysi-
cally relevant properties and others, various linear algebra techniques are required. Promising
approaches based on their relative simplicity and biophysical value24 include Lu–Chipman polar
decomposition,42 MM transformation,43 and MM rotation transformation (rotation invariant
properties).44 With their 9 resultant features plus the 16 MM elements summarized in Fig. 3,
the dataset contains a total of 25 features across the 356 acquired ROIs from 38 different patient
samples.

Important to note that a major consequence of this ROI-sample imbalance is the existence of
a single binary outcome label (i.e., LR versus non-LR patient). Consequently, this necessitates
aggregating all data to a single patient-level output. Hence, there are two data-aggregation
checkpoints along the path to making the polarimetric data and sample labels equivalent,
with the first being discussed here and the second in the following section. The first checkpoint
is at the pixel-ROI level. With ∼60;000 MM results acquired in a single ROI, this presents
the opportunity for robust and simple summary statistics in the form of median values.
For each ROI, a median MM is produced comprised of 16 median-MM elements, which
then undergo the various feature extraction methods. The advantage of the median over
alternative methods (e.g., distribution-asymmetry analysis) is its simplicity in interpretability
and resistance to influence from outliers,45 which is key to developing sound ML models;
however, the possible loss of detailed information inherent in this averaging must also be
borne in mind.

Fig. 3 The 25 features extracted from polarimetric images for analysis. These arise from four
primary categories based on their origin: original 16 MM elements, Lu–Chipman MM polar
decomposition, MM transformation, and MM rotation invariant properties.
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2.6 Machine Learning Methods
Prior published polarimetric findings utilized unsupervised clustering methods to assess overall
survival.32 Although appropriate given the sample size constraints, it is a platform that is not
easily scalable to larger and more complex multivariate datasets. The natural progression with
increasing sample numbers is toward supervised ML methods as these can perform predictive
analyses, elucidate the most valuable features, and easily scale to operate on larger datasets.
Supervised learning (and ML overall) forms two primary groups: classifiers and regressors.
The former involves problems that are discrete or categorical in nature, whereas the latter deals
with continuous (e.g., time-series) datasets.

The current problem requires a classifier, given its categorical nature (i.e., LR versus no-LR).
There exist several suitable algorithmic approaches; in this study, we considered logistic
regression, linear discriminant analysis (LDA), support vector machine (SVM), random forest,
and extreme gradient boosting (XGBoost), each with its unique advantages and drawbacks.
Briefly, logistic regression maps the probability of a binary outcome (i.e., 0 or 1) in the form
of logarithmic odds.46 LDA separates two or more classes by determining the linear combination
of features that best achieve the task.46 SVM attempts to linearly separate data into a two-class
problem via hyperplanes, finding the most optimal margin (or distance) from the plane to the
nearest data point from either side.46 Random forest is an amalgamation of multiple decision trees
[essentially a flow chart where one attempts to find the optimal nodes that represent the target leaf
nodes (outcomes)] where the mode serves as its output.46 XGBoost is an optimized library of
gradient boosted decision tree algorithms – an ensemble technique whereby new decision trees
are sequentially introduced to minimize error (gradient descent) and make the final prediction.47

Compared to the alternatives, XGBoost offers many advantages including better handling of
(1) class imbalances and overlapping classes; (2) presence of outliers; (3) correlated inputs; and
(4) directly extracting relative feature weights. In fact, it is consistently one of the most employed
and successful algorithms during competitions.47 However, it is not without some key caveats,
notably that XGBoost is difficult to interpret given its complexity and its performance is highly
dependent on the tuning of hyperparameters (parameters that influence model performance but
are external to the model and data). If not done correctly, this risks overfitting XGBoost to
the dataset.48

To enhance the effectiveness and performance of the ML model, outlier assessment was
implemented. This involved iteratively training the model with all possible subsets of the samples
and eliminating ones that negatively affect model performance. This approach allowed the
algorithms to focus on the more representative patterns and relationships within the dataset,
ultimately enhancing its predictive capabilities (XGBoost results before vs. after elimination
of outliers: total accuracy 73% versus 78%, area under the receiver operating characteristic
curve (AUROC) 72% versus 77%, sensitivity 31% versus 50%). Consequently, three samples
were removed from the study cohort (i.e., leaving 35 out of 38 patients and 333 out of 356 ROIs).
Eliminating these outliers reduces the potential to introduce noise and unnecessary bias in the
training process.

Given the relatively small(er) dataset after accounting for outliers [333 ROIs from 35
patients—no-LR = 263 ROIs (27 patients); LR = 70 ROIs (8 patients)], a standard 80:20
train-test split ratio [train: ∼267 ROIs (28 patients); test: ∼66 ROIs (7 patients)] was used to
provide an adequate learning opportunity for the model. Feature selection through identifying
relative feature importance was also undertaken during the training phase to improve perfor-
mance. Reported results are in the form of averages calculated over five different training-test
set combinations (fivefold cross-validation) to avoid selection bias and test model performance
on all parts of the dataset. There is no intra-ROI contamination between the training and testing
sets (i.e., within-same-patient ROIs are kept together). This is all conducted at the ROI-level
where the recurrence status is assigned to each region, and it is treated as an individual data
point. The second checkpoint, at the ROI-patient level, is now introduced upon reaching the
final patient-level evaluation in the form of a simple majority-vote scheme. In this instance,
a 50% threshold is applied: if 50% or more of the ROIs for a patient in the test set are predicted
as one class (i.e., locally recurring or not locally recurring), then the patient is considered to
belong to that class by majority-vote. This classification then serves as the model’s predicted
outcome and is compared to the ground truth patient labels in the test set for analysis.
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2.7 Performance Assessment
As a result of the binary categorical nature of the LR-outcome data, a 2 × 2 confusion matrix
(true outcome versus predicted outcome) was formed to determine model performance for
each cross-validation run. From this, the means of total accuracy, sensitivity, and specificity were
calculated given the true/false positive/negative rates in each matrix. The culmination of all
cross-validation results is then summarized into an ROC curve where the mean AUROC is used
to characterize overall model output.

3 Results and Discussion
This study improves upon previous efforts32–37 to create a polarimetric ML workflow adept at
providing valuable prognostic insights, by (1) utilizing a wider set of more robust optical polari-
metric features and (2) using scalable supervised learning techniques. Specifically, the recent
publication of Tumanova et al.37 used Matt–Whitney U-test inferential statistics to demonstrate
that certain MM parameters do offer some separation between LR and no-LR groups; however,
no predictive analyses were performed. Here, implementing supervised learning allows polari-
metric features to be selected and assessed for their prognostic value, yielding differences in
methodology, analysis, and final results. Ultimately, different conclusions are drawn with respect
to LR-relevant MM parameters, and some overlap between the two studies point to suggest inter-
esting insights as briefly highlighted later in this section.

Preliminary efforts involved incorporating all 25 MM features as model inputs, which pro-
vided only adequate results (Table 1). At the ROI-level for XGBoost, sensitivity and specificity
were 50%� 24% and 85.6%� 4%, respectively, with a total accuracy of 78.1%� 4% and a
mean AUROC of 77%� 13%. When applying the majority-vote scheme to assess performance
at the patient level, these metrics essentially remained the same (e.g., total accuracy of
77.9%� 11%). The remaining models all demonstrated higher specificities but with signifi-
cantly lower sensitivities; for instance, logistic regression, which failed to correctly identify
a single true LR patient. At this stage, random forest presented the best mean AUROC
(80%� 11%) but only slightly better than XGBoost, which had a 20% higher sensitivity. In
Fig. 6(a), this difference in sensitivities between each model is more clearly depicted; it is evident
that this is the distinguishing factor as the remaining performance metrics are rather similar
throughout. For our purposes, the preferred model would be balanced in correctly identifying
both LR and no-LR patients and here XGBoost appears the marginal “winner”; however, its
sensitivity values are modest. It was therefore suspected that not all features were beneficial for
the learning algorithm, with some potentially contributing towards noise as opposed to useful
unique signal information. One can then utilize feature selection, a process that can optimize ML
performance as not all features have equal impact. Indeed, a common practice upon completion
of a model’s training phase is the extraction of relative feature importance (typically in the form
of coefficients or weights). When applied to this dataset (Fig. 4), the top five most important
features across all learning models were (in order of importance): (1) MM elementM32; (2) linear
polarizance; (3) diattenuation; (4) MM element M30; and (5) linear retardance.

Feeding only these five features into each model does indeed provide a noticeable improve-
ment in results (Table 1). Focusing on XGBoost, as evident from the mean ROC curve in Fig. 5(a),
at the ROI-level the model is more capable in distinguishing between the no-LR and LR groups
with a mean AUROC of 82%� 10%, a 5% improvement compared to when all features are used.
This translates to correctly identifying 47 no-LR ROIs (top red square) and 7.4 LR ROIs (bottom
red square) on average across the 5-cross validation runs [Fig. 5(b)]. Consequently, there are
a higher number of true positives (correctly identified LR ROIs) and true negatives (correctly iden-
tified no-LR ROIs) compared to our first attempt utilizing all 25 features, whereby the sensitivity
and specificity improve by ∼2% (52.9%� 24%) and ∼5% (90.2%� 6%), respectively. The
total accuracy is 82.3%� 10% (∼4% increase). However, unlike the first attempt where
the patient-level accuracy was comparable to the ROI-level results, here an almost 10% improve-
ment is observed (i.e., total accuracy of 86.1%� 13%). The same cannot be said for the other
approaches. Models, such as logistic regression, LDA, and SVM, demonstrated no real benefits
from feature importance selection. In fact, contrary to expectation, logistic regression actually
experienced a 27% decrease in its mean AUROC performance compared to no-feature-selection
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approach. It is of note that random forest is the only other model to exhibit some noticeable
improvement, for example its sensitivity increasing by 12% (Table 1). From these results, it is
evident that XGBoost and random forest are the best candidates for the task at hand. Despite
the use of feature importance selection, these improvements in their respective performance metrics

Fig. 4 Relative feature importance plot for XGBoost as determined during the training phase. MM
features are listed on the y -axis with respective weightings on the x-axis achieved using minimum-
maximum normalization. Red bars indicate the top five most relevant features according to their
weights.

Fig. 5 Illustration of XGBoost prediction performance for 5-year LR using the top 5 features:
(a) Receiver operating curve. Thick blue line is the mean ROC curve; other thinner lightly shaded
lines are the individual ROC curves corresponding to each of the fivefold cross validation runs.
The red dashed line represents an AUROC value of 0.5 (∼random chance of predicting the correct
class). (b) Confusion matrix. Red squares = correct predictions, white squares = incorrect predic-
tions. Decimal values are due to averaging the five confusion matrices generated from the fivefold
cross validation.
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are somewhat offset by the relatively large uncertainties, specifically for the sensitivity [Fig. 6(b)],
such that the overall performance of these two models is essentially indistinguishable.

Since the current clinical prognostic insights rely in part on TNM staging, it was also of
interest to see whether this workflow would benefit any sub-group and thereby also improving
model performance, for example as stratified by T-stage. There has been research demonstrating
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Fig. 6 Comparison of all model performances via sensitivity, specificity, total accuracy (ROI), total
accuracy (patient) and mean AUROC for when (a) all features and T-stages are assessed, (b) top 5
features and all T-stages are assessed, and (c) top five features in patients with T-stage III are
assessed. Error bars are the percent uncertainties for each metric (from variability/spread across
the cross-validation runs).
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a potential correlation between the local size and spread of the tumor (T-stage) and LR,
with patients at higher-risk having more advanced T-stages (3 or 4).49–51 Our N ¼ 35 cohort
has patients with T-stages ranging from 1 to 4, with 24 assessed having a T-stage of 3
[no-LR = 21 (203 ROIs); LR = 3 (23 ROIs)]. Re-running the models on this redacted
N ¼ 24 patients data set, performance metrics improved further only for XGBoost (Table 1):
specificity ¼ 99.0%� 1%, sensitivity ¼ 70.0%� 0%, AUROC ¼ 99%� 0%, ROI-level
accuracy ¼ 96.1%� 5%, and patient-level accuracy ¼ 95.8%� 7%. Thus, prediction of LR
is the most accurate for this sub-group of T-stage III CRC patients using the developed polari-
metric imaging + ML analysis methodology, evidenced by the improved sensitivity and mean
AUROC values and reduced uncertainties [Fig. 6(c)]. Unlike these significant XGBoost improve-
ments, the remaining models all performed poorly on their respective metrics (e.g., random forest
sensitivity ¼ 4.3%� 3.1% and AUROC ¼ 52.9%� 1.4%). The consistent solid performance
of XGBoost for all evaluated feature and patient-group combinations demonstrates its robustness
and promise for correctly prognosticating which patients will exhibit LR and which will not
5 years into the future. Overall, these results are encouraging, as predicting and mitigating recur-
rence is of primary concern for effective treatment of stage III CRC patients; with no current
commercial toolkit capable of such a task, our technique offers promise towards a low-cost
alternative with further development.

With the recent shift in MM research from direct feature engineering and statistics to
incorporating more ML prediction,26–31 this study further demonstrates the benefit of ML
implementation for gleaning key prognostic MM features toward expanding its application
of MM in medicine, particularly for cancer. Prior efforts in this space have largely focused
on elucidating certain purportedly biologically relevant MM biomarkers (e.g., polar decompo-
sition and transformation parameters linked with collagen alignment and density50 and tumor
characteristics26–30,52–54). For example, MM features, such as total and linear depolarization,
total and linear retardance, diattenuation, etc., have been suggested as relevant for cancer
identification.53,54 Although the task of predicting 5-year-distant LR is rather different, it is inter-
esting and reassuring to observe that some of those same features prove useful here as well (e.g.,
diattenuation and linear retardance, as per Fig. 4). Furthermore, our recent study37 also suggested
that, for example, diattenuation is a relevant feature for 5-year LR versus no-LR stratification,
which is supported by the prognostication results of this analysis. It was thus interesting to note
some overlap in the significant polarimetric features revealed by the two approaches but also to
note that there were differences. This likely stems from differences in the methodologies and in
what the two approaches deliver (correlation versus prediction), and thus which features are most
suitable for these two tasks. Overall this line of research demonstrates the value of MM analysis
to quantitatively identify and use task-specific (e.g., tumor delineation, 5-year outcome predic-
tion, etc.) biological image features. Nonetheless, more substantive MM imaging + ML analysis
studies focusing on treatment outcome prognosis – larger numbers of patients, streamlined and
objectivized ROI selection process, improved pixel/ROI /patient level results averaging, opti-
mized ML model prognostication performance, etc.,—will be required to better understand,
refine, and potentially deploy this promising technology in the clinic.

The reported findings (Table 1) show promise, but they are not without limitations, chiefly
the limited dataset size and class imbalances. With only 35 patient samples assessed and the
respective 333 ROIs treated as individual data points, the size is still not well suited for devel-
oping truly robust ML models, hence the large uncertainties and overlap. Overfitting may still be
of concern with datasets in the low hundreds, despite mitigation efforts through cross-validation.
Furthermore, given the prognostic aim of the analysis, it is eventually the patient-level outcome
that is of concern, which significantly bottlenecks the workflow by ultimately reducing the num-
ber of available data points. There is also the risk of learned bias by having ∼3∕4 of the cohort
with no LR. Thus, it is unsurprising that the specificity was consistently higher and demonstrated
the most improvements across all models and attempts, whereas the sensitivity was severely
lacking, in some instances no better than random chance. For the T-stage analysis, with majority
of T stage-3 samples not displaying LR (∼86% no-LR and ∼14% LR), it allowed for XGBoost to
make the greatest number of correct predictions, evidenced by the high AUROC. On a positive
note, XGBoost has learned according to and is consistent with the sample population, evidenced
by the consistent higher specificity.
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Above considerations notwithstanding, these initial attempts with a supervised learning
approach do provide avenues for methodological improvement. These include: (1) larger and
more balanced datasets—samples continue to be collected to provide more opportunities for the
model to learn; however, emphasis will have to be placed on trying to approach a balanced data-
set; (2) distribution-based metrics—statistical features obtained from probability distributions,
such as skewness (measure of asymmetry) or kurtosis (measure of “tailedness”) may provide
additional insights at the ROI-level that can improve predictive power;55 (3) multiple-instance
learning—a weakly supervised learning algorithm that deals with data of similar form to this
study (i.e., numerous data examples from a set with one associated label)56 that may be better
suited for this application; and (4) automated ROI selection—a crucial step towards objectivity
with this approach and digital histopathology at large, as inconsistent/subjective pathologist ROI
selection can negatively affect results. For example, with an ROI selection range of 3 to 14 in this
study, patient samples that have far fewer ROIs provide less data when using the majority-vote
scheme to inform final patient predictions. Furthermore, manual ROI selection inter-observer
variabilities have been reported of upwards of 20% in some studies, not to mention the time-
consuming nature of this approach.57 Individually or in combination, these avenues will serve
as important next steps towards developing a low-cost, alternative PLM-based prognostication
tool capable of predicting clinical outcomes in CRC patients and perhaps beyond.

4 Conclusion
The value of collagenous stroma within the TNE has been demonstrated across a variety of solid
tumors, including CRC. Despite its promise, the lack of a quantitative standardized assessment,
among other obstacles, has thwarted its widespread clinical adoption with no clear objective
alternatives on the horizon. Findings from this study illustrate the potential value of a polarized
light MM imaging + supervised ML platform for predicting 5-year LR status in stage III CRC
patients. More specifically, the learning model XGBoost was able to achieve an overall patient-
level accuracy of 86% and specificity of 90% when utilizing the most relevant MM features (MM
elementsM30 andM32, linear polarization, diattenuation, and linear retardance). The results were
further improved to a patient-level accuracy of 96% and specificity of 99% when performing the
analysis on the T-stage 3 subset. This demonstrates that useful prognostic information is deriv-
able through polarimetric ML analysis of collagenous stroma, for example in identifying patients
with low risk of experiencing LR. These initial promising results need considerable refinement
for potential use in clinical settings. Suggested opportunities for improvement include larger and
more balanced datasets, distribution-based metrics, automatic ROI segmentation, and multiple-
instance learning.
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