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Abstract. The effectiveness and limitations of medical image process-
ing using analog and digital methods are studied. Several types of
errors introduced during the image processing are analyzed. For the
analog optical Fourier transform, errors are introduced by the vignett-
ing effect and lens aberration. For the digital Fourier transform, errors
are introduced by the aliasing effect and the band limit. To compare
the results obtained by the two techniques, a set of x-ray images was
processed both optically and digitally. The former was achieved by an
optical system containing a large Fourier telephoto lens and the latter
by a personal computer using a Fourier transform algorithm. The ve-
racity of both the optical and digital Fourier spectra is analyzed. Our
results indicate that the optical method has high speed due to parallel
processing. High veracity can be achieved in high frequency regions
by using an optimal optical system. In comparison, the digital method
has the advantages of high processing precision and programmability,
but has low processing speed. The comparison of the two different
techniques presented in this article can provide a basis for selection of
the processing method in different clinical settings. Even with today’s
fast computers, the optical method is still suitable for many clinical
applications. The best choice lies in an analog–digital combination.
© 2002 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1462035]
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1 Introduction
Digital processing of medical images and computer-aided di
agnosis~CAD! have been studied extensively in order to im-
prove the sensitivity and specificity of radiography for clinical
diagnosis.1–3 However, radiographic images contain large
amounts of information. A state-of-the-art film digitizer may
create digital images with dimensions of4K35K312 bit ~40
megabytes!; a prototype system for full-field digital mam-
mography acquires digital mammograms in the4K36K
312 bit format.4–7 Digital computers process image data in
series, therefore requiring either fast computers or long pro
cessing times. Without future development that would dra-
matically increase the speed and reduce the cost, use of th
current digital processing techniques can only be applied t
certain select cases in academic institutions; it may only b
suitable for images with a small number of pixels or for pro-
cedures that do not require real-time processing. On the othe
hand, optical processing manipulates image data in paralle
thus the processing speed is not a limiting factor. Of course
lens aberrations and vignetting affect the accuracy of optica
processing. Therefore, it is important to understand the advan
tages and disadvantages of both techniques for two
dimensional image processing in order to select the righ
method for medical image analysis and clinical diagnosis.
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Two-dimensional~2D! image processing has been show
to be a powerful technology in many fields, such as in patt
recognition, climate reconnaissance, ocean monitoring,
medical diagnoses.8–10 In general, there are two ways to pro
cess a 2D image. The first is to process the 2D images dire
in the spatial domain. Image processing in the spatial dom
can be performed using a variety of methods, such as
mathematical morphological image processing, statistical
age processing, differential image processing, and fuzzy lo
image processing.11–13The second is to process the images
the frequency domain. Mathematical operations are use
transform an image into a frequency distribution and proce
ing is performed in the frequency domain. Next, the proces
data is transformed into the spatial domain again through
inverse mathematical transform. The mathematical trans
mation and frequency domain processing can also be
formed using different methods, such as Fourier transfo
Hadamard transform, Walsh transform, hoteling transfo
and wavelet transform image processing.14

Image processing in the spatial domain is straightforw
and simpler than in the frequency domain, because no m
ematical transformations between the spatial domain and
quency domain are needed.15 Spatial-domain processing usu
ally involves operations such as scale and intens
refinements of the input images. Certain applications such
pseudocolor density encoding and phase-only filtering for
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images cannot be processed in the spatial domain; such app
cations require processing in the frequency domain. Imag
processing in the frequency domain corresponds to manipula
tion of the frequency information of images.

Among the mathematical transformations used in 2D im-
age processing, the Fourier transform is one of the most im
portant techniques. Optical Fourier transformation can be di
vided into two diffraction processes during image processing
according to Abbe theory.16 First, the light falls normally upon
a diffraction grating~the object!, and several orders of diffrac-
tion are produced and converged to a series of points in th
frequency domain. Second, since the diffraction orders ar
continuous, the intensities of their inverse Fourier transforms
will overlap in the spatial domain. Therefore, the relationship
between the object and image can in general be formulated a

Fig. 1 (a) Schematic of an optical Fourier transform. The function
f(x,y) is the complex light field on object plane P1 and GL(a,b) is the
light field on the back focal plane of lens P2 [see Eq. (1) for the
definition of GL(a,b)]. (p,q) is a typical point on the principal plane of
thin Fourier transform lens P3. The lens has a focal length of f and an
aperture of D. The separation between the object plane and the lens is
L and the separation between the back focal plane and the lens is f. (b)
Schematic of the optical point spread function. The function f(x,y) is
the complex light field on object plane P1 and g(a,b) is the light field
on image plane P2 [see Eq. (5) for the definition of g(a,b)]. The
principal plane of thin Fourier transform lens P3 is between the two
conjugate planes. The lens has a focal length of f and an aperture of
D. The separation between the object plane and the lens is L and the
separation between the image plane and the lens is di .
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a double-Fourier transform. The exact image can be obta
only if the Fourier transform lenses are aberration free an
all the diffraction orders of the input object can be recove
during Fourier transform. The veracity of the 2D Fouri
transform will influence the output results, especially in t
case of medical imaging.

The main advantage of the optical~analog! Fourier trans-
form is its speed. The input image is represented by a
intensity function and the intensities of all pixels of the inp
images are processed in parallel. Therefore, the ana
method is suitable for real-time processing. The veracity
Fourier transform mainly depends on the aberration and
size of the Fourier transform lens. If the aberrations are c
rected and the aperture-limitation effect of the lens is mi
mized, the veracity of 2D Fourier transform could be ide
However, it is impossible to achieve such perfection beca
of the existence of aberrations and limitations of the apert
size of all lenses.

Different from the analog method, Fourier transform usi
a computer needs to digitize the input image first.17 The input
image can also be represented by a 2D density function, bu
this case each complex number will be represented by a
nary series at a certain point, and then complete set of po
distribution can be used as representation of the image. At
same time, some warping errors exist during image distri
tion processing.18 Furthermore, the aliasing effect, which
produced during sampling processing, will strongly influen
the veracity of digital Fourier transforms.19 However, benefits
of the digital method include high accuracy, programmabil
and flexibility. Furthermore, digital processes can be ea
modified in order to implement different kinds of function
and algorithms. Both methods, optical~analog! and digital
~computer! Fourier transforms, can be used for 2D image p
cessing. Each method has its own advantages and disad
tages.

In this article, the errors in both optical and digital Fouri
transforms are discussed. To compare the two methods ex
mentally, a set of x-ray images was processed using both
tical and digital methods and the results are analyzed.
selection of the processing method in real applications, ba
on different limiting factors, is also discussed in this article

2 Properties and Errors of the Optical Fourier
Transform
2.1 Optical Fourier Transform Properties of Lenses
The Fourier transform of a two-dimensional image can
implemented using a positive lens in an optical system. S
a system is shown in Figure 1~a!, where the object planeP1
serves as a light source,P2 is the back focal plane of the
Fourier transform lens, andP3 is the principal plane of the
thin Fourier transform lens. For a given complex light fie
f (x,y) on P1, its conjugate complex light fieldGL(a,b) on
P2 can be determined by the Huygen’s principle20

GL~a,b!5CE E
S3

E E
S1

@ f ~x,y!exp~ ikr 8!dxdy#

3T~p,q!exp~ ikr 9!dpdq, ~1!
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Comparion of Analog and Digital Fourier Transforms
where S1 and S3 denote theP1 and P3 surface integrals,
respectively, C is an arbitrary complex constant, andk
(52p/l) is the wave number. The distancer 8 between the
point (x,y) on P1 and the point(p,q) on P3 and the distance
r 9 between(p,q) and(a,b) on P2 are defined as

r 85@L21~p2x!21~q2y!2#1/2

'L1
1

2L
@~p2x!21~q2y!2#

r 95@ f 21~a2p!21~b2q!2#1/2

' f 1
1

2 f
@~a2p!21~b2q!2#, ~2!

whereL is the distance betweenP1 andP3, and the distance
betweenP3 andP2 is the focal lengthf of the Fourier trans-
form lens. The phase distribution function of the thin Fourier
transform lens is defined asT(p,q)5exp@2i (p/lf)(p2

1q2)#.21 Note that the approximation in Eq.~2! is taken under
the assumption that the perpendicular distanceL betweenP1
andP3 and the focal lengthf of the lens are both much larger
than the dimensions of the input and output images. Ignoring
the spatial quadratic phase variation, one can obtain22

GL~a,b!5C1 expF2 i
p

l f S 12v
v D ~a21b2!G

3E E
S1

f ~x,y!expF2 i
k

f
~ax1by!Gdxdy,

~3!

wherev5 f /L andC1 is an arbitrary complex constant.
Equation~3! shows thatGL(a,b) is the 2D Fourier trans-

form of f (x,y). In fact, if L5 f the quadratic phase factor in
Eq. ~3! equals to unity. Thus Eq.~3! can be written as

GL~a,b!5C1E E
S1

f ~x,y!expF2 i
k

f
~ax1by!Gdxdy.

~4!

It must be emphasized that the exact Fourier transform
takes place under the conditionL5 f only. In other words, the
input image must be placed in the front focal plane of the
lens. However, errors are inevitable due to the well-known
vignetting effect23 and to aberrations of the Fourier lens.24

Such errors are analyzed next.

2.2 Vignetting Effect of the Lens and Its Influence
on the Optical Fourier Transform
Due to the limitation in the size of the lens aperture, the
high-frequency components of the Fourier transform spectrum
vanish using such an optical system.23 In order to illustrate
and to analyze the impact of the vignetting effect, two basic
concepts need to be introduced: the point-spread functio
~PSF! of the lens and the coherent transfer function~CTF! of
the optical system.25

In an optical system, each point on the object plane can b
considered a point light source. The power of the point sourc
can be regarded as the superposition of the powers of su
 -

rounding pixels in a small area. Furthermore, the optical
tensity at each point on the output image plane is contribu
to by all the points on the input object plane when the ima
passes through the lens. Therefore, the optical intensity on
image plane caused by a given point on the object plane p
has a spatial distribution, as illustrated in Figure 1~b!. Such an
intensity distribution is defined as the PSF of the lens, deno
ash(x,y;a,b). Thus, the total optical intensity distribution a
any given point on the image plane can be expressed as

g~a,b!5E E
S1

f ~x,y!h~x,y;a,b!dxdy. ~5!

Considering the space invariance of the amplitude mappin
the coherent optical system, Eq.~5! can be rewritten as25

g~a,b!5E E
S1

f ~x,y!h~a2x,b2y!dxdy. ~6!

Using the convolution theorem, one can obtain the Fou
transform ofg(a,b) as

G~u,v !5FT$g~a,b!%

5E E
S2

exp@2 i ~ua1nb!#g~a,b!dadb

5F~u,v !3H~u,v !, ~7!

whereF(u,v) is the Fourier transform off (x,y) andH(u,v)
is the Fourier transform ofh(x,y):

H~u,v !5FT$h~x,y!%

5E E
S1

h~x,y!exp@2 i ~ux1ny!#dxdy

5
G~u,v !

F~u,v !
. ~8!

The functionH(u,v), which equals the ratio of the Fourie
spectrum of optical intensity on the image plane to that of
object plane, is called CTF. It represents the veracity of
Fourier transform of the coherent optical system.

Calculation of the CTF under the condition of limited a
erture of the lens illustrates the frequency response of
coherent imaging system. As shown in Figure 1~b!, the aper-
ture of the lens is the exit pupil of the total optical system; t
distance between the exit pupil and the back focal plane isdi .
For a converging lens of diameterD, CTF, H(u,v), can be
expressed as a circ function,26

H~u,v !5circSAu21v2

f 0
D 5H 1 Au21v2< f 0

0 Au21v2. f 0

, ~9!

where f 05D/2ldi is a cutoff frequency of the system.
Equation~9! illustrates that the optical system with an a

ertureD is band limited in the frequency domain. Only th
optical signal below the maximum spatial frequencyf 0 is al-
lowed to pass through the lens aperture. The intensity m
sured within the aperture represents the squared modulu
the image’s Fourier spectrum, and a spectrum of spatial
Journal of Biomedical Optics d April 2002 d Vol. 7 No. 2 257
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quency higher than the cutoff frequency will vanish, in spite
of the fact that the image has nonzero Fourier components o
high frequency.

2.3 Effect of Lens Aberration on the Fourier
Transform
Because it is impossible to design and to manufacture
aberration-free lenses, the error in optical Fourier transform
caused by the aberration is inevitable. The effect of aberra
tions can be considered as the windage between the wav
front out of the exit pupil and an ideal spherical wave within
the aperture. Furthermore, we can assume that a phas
shifting plate within the aperture is produced due to the aber
ration. The input image can be divided into many pixels, and
the aberration of each pixel for the space-invariant system ca
be calculated using the same method as that discussed in S
2.2 with a correction factor corresponding to the phase shif
effect of all the pixels. Thus, the generalized coherent transfe
function of the optical system can be expressed as

H~u,v !5circSAu21v2

f 0
D exp@ ikW~u,v !#

5H exp@ ikW~u,v !# Au21v2< f 0

0 Au21v2. f 0

, ~10!

whereW(u,v) is an effective path-length error due to aberra-
tion of the system, andf 05D/2ldi is the same cutoff fre-
quency as that in Eq.~9! for the optical system due to limita-
tion in the size of the lens. Therefore, the band limit of the
coherent optical system is not affected by the presence of th
aberration.

3 Properties and Errors of the Digital Fourier
Transform
When using a computer for digital Fourier transforms, the
integration in Eq. ~4! must be rewritten as a dispersed
function.27 For a continuous input functionf (x,y), f s(x,y)
can represent its sampling function:

f s~x,y!5 f ~x,y!comb~x/Dx!comb~y/Dy!, ~11!

where comb~ ! represents a comb function, andDx and Dy
represent the maximum sampling distance on thex axis and
the y axis, respectively. Then the Fourier transform of the
discrete functionf s(x,y) becomes

FT@ f s~x,y!#5FT@g~x,y!#3FT@comb~x/Dx!comb~y/Dy!]

5Fs~u,v !. ~12!

We can use the comb function to represent the samplin
mathematically,

FT@comb~x/Dx!comb~y/Dy!]

5 (
n52`

1`

(
m52`

1`

d~u2n/Dx ,v2m/Dy!, ~13!

which leads to
258 Journal of Biomedical Optics d April 2002 d Vol. 7 No. 2
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Fs~u,v !5 (
n52`

1`

(
m52`

1`

F~u2n/Dx ,v2m/Dy!. ~14!

We assume thatF(u,v) is band limited, with a bandwidth
Bx5umax on the x axis andBy5vmax on the y axis.28 One
must choose the sampling distances according to the foll
ing rule:29

Dx<
1

2Bx

and ~15!

Dy<
1

2By
.

The specific sampling distancesDx andDy in Eq. ~15!, as
the reciprocal of the spatial bandwidth, are called the Nyqu
rate. The Nyquist rate is the largest sampling distance that
be chosen without introducing the aliasing effect.29

Following Eqs.~11!–~15!, the inverse Fourier transform o
the input function can be rewritten as

f ~x,y!5 (
n52`

1`

(
m52`

1`

f S n

2Bx
,

m

2By
D sincF2BxS x2

n

2Bx
D G

3sincF2ByS y2
m

2By
D G . ~16!

The errors in the digital Fourier transform spectra a
mainly caused by the discrete processing of data. If the s
pling distances are larger than the reciprocal of the spa
bandwidth, the aliasing effect will appear.

4 Comparison Between Analogy and Digital
Fourier Spectra
4.1 Optical Fourier Transform of Medical Images
In our experiments, the optical~analog! Fourier transform was
performed using an optical system containing a Fourier tra
form telephoto lens. The parameters of the optical system
as follows. The distance between the exit pupil of the lens
the lens’s back focal planedi was 458.3 mm, the lens’s foca
lengthf was 1000 mm, its relative apertureD/ f was 1:12, and
the maximum wave aberration was l/8l. The light source is a
He–Ne laser with a center wavelength of 632.8 nm. The c
off frequencyf 0 of the system can be calculated as

f 05
D

2ldi
5143.67/mm. ~17!

For the circular aperture this cutoff frequency is uniform in
directions of the frequency plane.

4.2 Digital Fourier Transform
The digital Fourier Transform of a 2D image was perform
using the computer software Interactive Data Langua
~IDL !, a program designed for 2D image data processing.30 It
consists of a scanner that acquires images from 135 ph
graphic films. The optical intensities of the acquired ima
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Fig. 2 (a) Image of the letter E with a black background used for (b) optical and (c) digital Fourier transforms. Because of the rectangular pattern of
the letter E, the Fourier spectrum is distributed along the x and y axes only. Using the optical method, the spectrum contains more distinctive
diffraction orders, shown in (b).
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were digitized and the Fourier transform for the image was
performed numerically. The cutoff frequency for the optical
system given by Eq.~17! requires a spatial frequency for the
digital Fourier transform to be 120 and 80 lines/mm on thex
and y axes, respectively, for the 36 mm324 mm films. Fol-
lowing Eq. ~15!, the maximum sampling distances should be
0.004 and 0.006 mm on thex and y axes, respectively, to
achieve the same band limit as that given in Eq.~17!. As a
consequence, the number of sampling points should be 900
34000. It is necessary to require 36 Mbit memory capacity to
store one image with 256 gray levels. For simplicity and for a
demonstration of the aliasing effect, we selected 300031333
sampling points, namely, one from every nine neighboring
points. This reduced the total memory for each image to 4
Mbit.

4.3 Comparison Between Optical and Digital
Fourier Spectra
A set of medical images was processed using both optical an
digital Fourier transform methods. The original medical im-
ages on x-ray films were optically reduced and recorded on 3
mm324 mm photographic films, as shown in Figures 2~a!,
3~a!, and 4~a!. Having completed the processing procedures
described in Secs. 4.1 and 4.2, the optical Fourier spectra o
the medical images are given in Figures 2~b!, 3~b!, and 4~b!,
and the digital Fourier spectra are given in Figures 2~c!, 3~c!,
and 4~c!.

Figure 2~a! is an image of letter the E with a black back-
ground. As expected, due to the rectangular shape of the im
age, the spectra in both cases showed a distribution along th
x axis and they axis. The optical Fourier spectrum in Figure
2~b! shows more details of the structure than the digital spec
trum in Figure 2~c! under the same display conditions.

The optical and digital Fourier spectra of an x-ray image of
breast tissue complex in structure@Figure 3~a!# are given in
Figures 3~b! and 3~c!. Apparently, the center region~low fre-
quency region! of both spectra has the same distribution pat-
tern, evidenced by the close resemblance of the center brig
spots. However, differences in the periphery of the spectra ar
seen clearly. The optical method was able to process signa
of higher frequency, as shown by the wider spectrum distri-
bution in Figure 3~b!. Optical and digital Fourier spectra of an
x-ray image of bones@Figure 4~a!# are shown in Figures 4~b!
and 4~c!. These bone images were used to show the resu
when the image with more sharp contrast was inputted. Bot
0

f

-
e

t

s

t

Figures 4~b! and 4~c! show similar patterns in the center re
gion with the spectrum distribution mainly along the bisecti
of the first and third quadrants. Figure 4~b!, however, shows
more details of the structure in the high frequency reg
~peripheral region!.

Figures 2–4 showed the following common features of
two transformation methods:~1! the results in the center re
gions~low-frequency region! of the spectra are nearly ident
cal; ~2! the optical method provides more details in the hi
frequency regions.

The shortcomings of the digital Fourier transform in th
experiment are largely due to the fact that the number
sampling points in the processing is limited. If enough pix
were sampled to satisfy the same frequency cutoff like
optical method, the veracity of both transformations would

Fig. 3 (a) X-ray medical image of breast tissue. The original image was
optically reduced and recorded on a film with a dimension of 36
mm324 mm and with resolution of 200 lines/mm. (b) Optical Fourier
spectrum. (c) Digital Fourier spectrum. In the center region, both
methods provide the same spectrum, as evidenced by the bright spots
at the centers of both (b) and (c). In the high frequency region (the
periphery of the image), the optical method clearly provides a wider
distribution of the spectrum.
Journal of Biomedical Optics d April 2002 d Vol. 7 No. 2 259
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similar. Under the specific conditions of our experiments, the
digital processing points required should be 900034000
based on the required sampling distances given by Eq.~15!.
However, the digital Fourier transform in our experiments re-
quired about 30 s to process an image with 300031333 points
and it will require an estimated 500 s to process one of 900
34000 points using a personal computer. The spectra in Fig
ures 2~c!, 3~c!, and 4~c! obtained using fewer sampling
points—one ninth of the points required for the same optica
cutoff frequency—clearly demonstrated the aliasing effect. If
enough pixels were sampled, the digital method can provid
highly accurate results, provided that the processing time i
not a limiting factor.

The disadvantages of optical method mainly lie in the
complex structure of the optical system, which requires an
assembly of various optical components. Thus, the level o
difficulty of data processing increases. Furthermore, all the
analyses here are based on the assumption of a thin lens.
reality, the thickness of the lens will always introduce notice-
able errors. Based on our analysis of errors introduced by len
aberration@see Eq.~10!#, optical processing can provide the
correct power of the spectrum, but the accuracy of the phas
distribution is limited.

On the positive side, the optical method has the advantage
of real-time parallel processing for a Fourier transform of
larger size images. The computer can provide greater flexibil
ity and high accuracy.

Fig. 4 (a) X-ray medical image of bones. The original image was op-
tically reduced and recorded on a film of 36 mm324 mm and with
resolution of 200 lines/mm. (b) Optical Fourier spectrum. (c) Digital
Fourier spectrum. Because of the image pattern of the bone, the Fou-
rier spectrum is distributed along the bisection of the first and the third
quadrants. The two images show a significant difference in the periph-
eral regions though they are very similar in the center region. The
optical method provides more information of higher frequency.
260 Journal of Biomedical Optics d April 2002 d Vol. 7 No. 2
-

n

s

s

5 Discussions
The Fourier transform is one of the most important metho
in 2D image processing. It has several properties that mak
attractive for image processing applications. In this article,
characteristics of analog~optical processing! and discrete
~digital processing! Fourier transforms are analyzed.

Specifically, we discussed the effect of lens aberration
the optical Fourier transform by introducing the general ph
distribution function. As a consequence, the lens aberrati
only contribute a phase correction factor, and do not affect
overall intensity and the cutoff frequency of the Fourier sp
trum. Thevignettingeffect contributes to errors of the optica
spectrum by introducing a cutoff frequency that is depend
on the size of the lens.

The main factors that contribute to the errors in the digi
Fourier transform are the aliasing effect and the band lim
The former is due to sampling of a small number of pixels a
it affects the veracity of the spectrum in the high frequen
region, as shown in our experiments~see the spectra in Fig
ures 2–4!. The latter is due to the requirement of digital pr
cessing; the band limit automatically restricts the hig
frequency components in the Fourier spectrum, as determ
by Eq.~15!. In principle, digital processing can provide a hig
degree of veracity if there is a large enough number of sa
pling points. However, a long processing time is required
such cases. Therefore, the difficult task is to keep a bala
between the high accuracy desired~more pixels! and the pro-
cessing speed desired~fewer pixels!.

Overall, the error analysis and our experimental results
dicate that the outcomes of the two Fourier transform meth
for medical images are similar in the center region of t
Fourier plane~the lower-frequency region!, but different in
the peripheral region~the higher-frequency region!. In gen-
eral, the analog method~optical processing! is suitable for
medical images with a large number of pixels and for clinic
procedures that require real-time operations, such as fluo
copy because of its required high processing speed. Dig
processing, on the other hand, can provide greater flexib
and programmability.

In summary, optical processors have good analog qua
and high speed through parallel processing. In order
achieve high accuracy, optical components with minimal
erration are needed. In addition, current optical processors
less flexible since they are more limited in programmabil
than digital processors. One technical solution with which
improve their flexibility and programmability is to develo
hybrid devices, namely, parallel optical processors equip
with optimal digital–optical interfaces.
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