You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2005Adaptive technique for image compression based on vector quantization using a self-organizing neural network
A novel image compression technique employing the self-organized clustering capability of Fuzzy-ART neural network and 2D runlength encoding is presented. Initially the image is divided into 4×4 blocks and the 16 element vectors representing the pixels in the blocks are applied to the Fuzzy-ART network for classification. The image is then represented by the block codes consisting of the sequence of class indices, and the codebook consisting of the class index and their respective gray levels. Further compression is achieved by 2D runlength encoding, making use of the repetitions of the class index in the block codes in x and y directions. By controlling the vigilance parameter of Fuzzy-ART, a reasonable compression of the image without sacrificing the image quality can be obtained. From the experimental results, it can be seen that the proposed method of image compression can be used for image communication systems where large compression ratio is required. An efficient technique for automatic computation of the value of vigilance parameter based on the image characteristics for optimum compression of the image is also presented in this paper. With the introduction of a new class of Fuzzy-ART network, namely Force Class Fuzzy-ART, hardware implementation of the image compression module is made feasible. This architecture constrains the maximum number of classes in the output of the network by forcing the new vectors into one of the closest categories.
Vijayan K. Asari
"Adaptive technique for image compression based on vector quantization using a self-organizing neural network," Journal of Electronic Imaging 14(2), 023009 (1 April 2005). https://doi.org/10.1117/1.1901678
The alert did not successfully save. Please try again later.
Vijayan K. Asari, "Adaptive technique for image compression based on vector quantization using a self-organizing neural network," J. Electron. Imag. 14(2) 023009 (1 April 2005) https://doi.org/10.1117/1.1901678