You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2008Recall or precision-oriented strategies for binary classification of skin pixels
Skin detection is a preliminary step in many applications. We analyze some of the most frequently cited binary skin classifiers based on explicit color cluster definition and present possible strategies to improve their performance. In particular, we demonstrate how this can be accomplished by using genetic algorithms to redefine the cluster boundaries. We also show that the fitness function can be tuned to favor either recall or precision in pixel classification. Some combining strategies are then proposed to further improve the performance of these binary classifiers in terms of recall or precision. Finally, we show that, whatever the method or the strategy employed, the performance can be enhanced by preprocessing the images with a white balance algorithm. All the experiments reported here have been run on a large and heterogeneous image database.
The alert did not successfully save. Please try again later.
Francesca Gasparini, Silvia Corchs, Raimondo Schettini, "Recall or precision-oriented strategies for binary classification of skin pixels," J. Electron. Imag. 17(2) 023017 (1 April 2008) https://doi.org/10.1117/1.2916715