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bstract. We present a method of introducing rotation invariance in
exture features based on a local Fourier histogram (LFH) computed
sing a 1-D discrete Fourier transform (DFT). To compensate for

mage rotation, a local image-gradient angle at each image pixel is
ound from within one of the 1-D DFT coefficients. The rotation in-
ariance is established theoretically, analytically as well as empiri-
ally. The rotation-compensated features extracted from the same
exture image oriented at different angles exhibit very high cross
orrelation. Therefore, the proposed texture features are expected
o yield very high accuracies for a variety of image data and appli-
ations. The improved LFH-based features outperform the earlier
ersion of the features and the features based on Gabor filters in
exture recognition on 8560 images from the Brodatz album. © 2008
PIE and IS&T. �DOI: 10.1117/1.2965439�

Introduction
exture features play an important role in several image-
rocessing applications ranging from computer vision and
edical image processing to remote sensing and content-

ased image retrieval. Almost all the texture processing ap-
lications require rotation invariance in the texture features,
hich we achieve here in a very simple and cost-effective
anner. Reference 1 categorizes the wide range of texture

eatures proposed to date into two broad categories and
ompares them: features that use a large bank of filters or
avelets and features that use immediate pixel neighbor-
ood properties. It shows that the latter outperforms the
ormer. Hence, we take on improving a feature set from the
atter category. In Ref. 2, texture features are extracted us-
ng a 1-D discrete Fourier transform �DFT� of the circular
eighborhood around a pixel. It proposes computing a 1-D
FT of the 8-pixel sequence around each image pixel and
ses magnitudes of the DFT coefficients to extract texture
eatures. More recent work3 extracts similar texture fea-
ures from the square neighborhood and calls it a local Fou-
ier histogram �LFH�-based feature set. The LFH-based
eature set was shown to perform better than the texture
eatures extracted from a large filter bank of Gabor filters,4

hich are computationally more expensive than the LFH-
ased features. In this work, we augment the LFH-based

aper 08013LRR received Jan. 25, 2008; revised manuscript received Jun.
9, 2008; accepted for publication Jun. 23, 2008; published online Aug. 5,
008.

017-9909/2008/17�3�/030503/3/$25.00 © 2008 SPIE and IS&T.
ournal of Electronic Imaging 030503-
feature set by using the phases of the DFT coefficients as
texture features as well. However, the improvement sug-
gested herein equally applies to the texture features ex-
tracted from the circular neighborhood.2 Since the phases
are sensitive to image rotation, we also present a method to
make them rotation invariant. This does not cause any ad-
ditional computational cost, but does improve performance.

The following sections explain how the LFH-based fea-
tures are extracted, how the local image gradient angle is
determined from the features themselves, and how the im-
age gradient angle is used to compensate the features
against rotation. Results are presented before concluding
the paper.

2 Method of Extracting DFT-Based Texture
Features

The texture features proposed in Ref. 3 are extracted in the
spatial domain by taking a 1-D DFT of the 8-pixel se-
quence x0 through x7, hereafter called x, around a central
pixel as shown in Fig. 1. We use the local image gradient at
the central pixel to compensate the extracted features for
the effects of image rotation.

When moving a 3�3 pixel window across a texture im-
age, the 1-D DFT of x is computed as

Xk = �
n=0

7

xn exp�−
�i

4
kn� , �1�

where 0�k�7, Xk represents the k’th Fourier coefficient,
and xn represents the n’th value in x. From the computed
DFT, histograms of the absolute values of the first five DFT
coefficients, i.e., �X0� through �X4�, were used for texture
description in Ref. 3

The phases of the DFT coefficients X1 through X3 were
also proposed as features in Ref. 3 but only for those ap-
plications that do not deal with image rotation. The phase
features were otherwise excluded because, unlike magni-
tudes, the phases of the DFT coefficients are sensitive to
image rotation. Reference 2 also proposes only magnitudes
of the DFT coefficients as texture features. We propose
using the histograms of phases of X2 and X3 after appropri-
ately compensating with the local image gradient.

2.1 Local Image Gradient
Traditionally, as a good compromise between cost and ac-
curacy, the 3�3-pixel edge-detection operators such as the
Sobel �SO� and Prewitt operators �PO�are often used to
estimate local image gradient at a given pixel. Below are

Fig. 1 9-pixel neighborhood in the spatial domain.
Jul–Sep 2008/Vol. 17(3)1
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he general 3�3 edge-detection operators in which the
alue of b varies from 1, as in the PO, to 2, as in the SO:

X = �− 1 0 1

− b 0 b

− 1 0 1
�, SY = �− 1 − b − 1

0 0 0

1 b 1
� , �2�

here SX and SY are convolved with a texture image to
btain two gradient images, GX and GY, respectively. The
ocal image gradient angle � is calculated as

= tan−1�GY

GX
� . �3�

onvolving the edge detection operators of Eq. �2� with the
�3-pixel neighborhood of Fig. 1 gives GY and GX, which
re substituted in Eq. �3� giving

an � =
− x1 − bx2 − x3 + x5 + bx6 + x7

bx0 + x1 − x3 − bx4 − x5 + x7
. �4�

owever, the local image-gradient angle can also be ob-
ained from the phase of the first coefficient �X1 of the
FT of x. By substituting k=1 in Eq. �1� gives

an�X1 =
− x1 − 	2x2 − x3 + x5 + 	2x6 + x7

	2x0 + x1 − x3 − 	2x4 − x5 + x7

. �5�

Equations �4� and �5� happen to be exactly the same if
=	2 and they are very similar otherwise, because the
alue 	2 falls between the usual values of 1 and 2. For
nstance, the histograms of the local image-gradient angle
rom �X1 and from the SO �b=2� for image D87 of the
rodatz album �BA� have a cross-correlation coefficient

XCC� of 0.97. In addition, if we consider the �X1 image

Table 1 XCC between the histograms of �2 and
0 deg and to those at 30, 45, 60, and 90 deg a

Orientation �deg�

Phase
feature

�2 0

�3 0

Table 2 Recognition rates relative

Orientation �deg� 0

Feature
set

LFT without � 71.6 6

LFT with � 76.2 7

Gabor 68.8 6
ournal of Electronic Imaging 030503-
as a noisy version of the SO-driven image, the signal-to-
noise ratio �SNR� is 69 dB, verifying that the former is a
very close approximation of the latter. All other images of
the album were tested, and more or less similar values of
correlation coefficient and SNR were found between the
two approximations of the image gradient. Hence, instead
of computing the local image-gradient angle using any 2-D
edge-detection operators, we use the value �X1 to compen-
sate the phases of the two other DFT coefficients, i.e., �X2
and �X3, against the effects of image rotation. It can now
be said that �= �X1.

2.2 Effects of Image Rotation on Fourier
Coefficients

Consider that an image is rotated by an arbitrary angle,
with the center of rotation exactly in the middle of the
image. The angle of rotation at any other point Pxy on the
image would be different from what it is at the center of
rotation. Let the angle of rotation be � deg at point P00 �see
Fig. 1�, corresponding to a shift in the string x by m places.
This shift in x causes nothing but the changes in the phases
of the resulting DFT coefficients. Equation �6� states the
shift property of DFT:

F
�xn−m��k = F
�xn��k exp�−
�i

4
km� , �6�

where F
�xn��k represents the k’th coefficient of the DFT of
�xn�, and F
�xn−m��k represents the k’th coefficient of the
DFT of the string �xn−m� that is the same string �xn� shifted
by m places. Equation �6� shows that any displacement in
time or space domain causes a phase shift given by

spectively, corresponding to images oriented at
d over all the images from the Brodatz album.

Cross correlation coefficient

45 60 90

0.988 0.984 0.987

0.907 0.923 0.997

ntation with 8560 Brodatz images.

% Accuracy

45 60 90 Avg. RV

68.5 68.3 72.4 69.9 2.82

74.9 74.2 74.2 74.6 1.52

62.8 64.4 69.4 66.2 4.27
�3, re
verage

30

.979

.918
to Orie

30

8.5

3.3

5.7
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�k = −
�

4
km �7�

n the Fourier domain: hence, where ��k represents the
hift in �Xk. The phase shift in �X1 is given by

�1 = −
�

4
m = � . �8�

ntuitively, the change in the local image-gradient angle �
s equal to the angle of rotation at point P00 ��� that causes
qual change in �X1. Comparing Eqs. �7� and �8� gives the
hase shift in �Xk as

�k = k � ��1. �9�

herefore, the phases �X2 and �X3 are adjusted accord-
ngly against the rotation by subtracting the local image-
radient angle � as in Eq. �10�. For k� �2,3,

k = �Xk − k�X1, �10�

here �k represents the rotation-compensated phase �Xk,
nd �X1 replaces �.

Experimental Results

.1 Rotation Invariance of the Phase Features
ll the images from the BA were rotated to 30, 45, 60, and
0 deg, and histograms of �2 and �3 were computed at
ach orientation. Table 1 shows the XCC as a similarity
easurement between the histograms corresponding to
deg and to 30, 45, 60, and 90 deg averaged over all the

mages from the BA. As an example, Figs. 2 and 3 show
he histograms of �2 and �3, respectively, for the image
87 from BA. All the histograms appear the same and do
ot exhibit any left or right shift, indicating that the two
hases are highly rotation invariant. We also experimented
ith the features extracted from the circular neighborhood

uggested in Ref. 2 and found that they perform worse than
hose extracted from the square neighborhood.

.2 Texture Recognition
ach of the 107 texture images from the BA was oriented at
, 30, 45, 60, and 90 deg. Then, 16 subimages measuring
28�128 pixels were cropped from each one of the 107
5 images, giving a total of 8560 images.4 Recognition
as performed on this set using the LFH-based feature set

ig. 2 Histograms of �2 for image D87 at four different orientations,
=0, 30°, 45, and 60 deg.
ournal of Electronic Imaging 030503-
without phase features, with phase features, and with tex-
ture features based on 30 Gabor filters.4,5 Reference 6 is a
more recent work that proposes exactly the same filters but
with a new distance metric that cannot be used for rotation-
invariant recognition or retrieval. Table 2 presents the over-
all and orientation-wise texture recognition results, show-
ing that the LFH-based features with phases perform the
best in terms of accuracy and the rotation variance �RV�.4

4 Effect of Noise
Reference 4 found that the LFT-based texture features ex-
hibit les noise immunity than the features based on Gabor
filters. However, our latest results show that the LFT-based
features perform even better when extracted from images
quantized to only 32 gray levels. Considering this, we ex-
pect the proposed features to be more noise resistant than
these were without image-quantization as in Ref. 4.

5 Conclusion
The earlier feature set based on LFH does not use phases of
the DFT coefficients as texture features because the phases
are sensitive to image orientation. To introduce rotation in-
variance in the features, we showed that the process of
extracting phase features can be guided by the local image
gradient. This was achieved by simply subtracting the local
image-gradient angle obtained from the 1-D DFT itself, so
that the features become self-compensating. This computa-
tionally simple and cost-effective method proved useful in
making the LFH-based texture features robust against im-
age rotation. The new feature set including the phase fea-
tures exhibits more rotation invariance and yields higher
recognition rates than the one without phase features.
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