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bstract. Camera synchronization is necessary for multicamera
pplications. We propose a simple and yet effective approach
ermed random on-off light source (ROOLS) to synchronize video
equences. It uses a single light source such as an LED to generate
random binary valued signal that is captured by the video cam-

ras. The captured binary-valued sequences are then matched and
he temporal offset of the cameras is computed up to subframe in-
erval precision. We test the proposed method on synchronizing
ideo sequences captured under a variety of illumination conditions
nd the results are verified against the ground truth provided by an
ED array clock. The main contribution of the proposed method is
hat it reliably achieves high-precision synchronization at a low cost
f only adding a simple light source. In addition, it is suited for syn-
hronization in both laboratory and outdoor environments. © 2009
PIE and IS&T. �DOI: 10.1117/1.3247860�

Introduction
or multicamera systems, synchronization is a must to pro-
ide accurate temporal correlation for incorporating image
nformation from multiple viewpoints.

Synchronicity can be achieved through real-time hard-
are synchronization1 or by establishing a time relationship
etween sequences recorded by unsynchronized video
ameras.2 While ensuring high precision synchronization,
ardware solutions are costly and complex.

In a scenario where synchronous video sequences pro-
ided by hardware are not feasible, it is still possible to
btain synchronicity using image features.3–5 These feature-
ased methods depend on the existence of salient and ro-
ust features in the scene. The failure of such features to
xist in the scene and the error of detecting, tracking, and
atching them would lead to incorrect synchronization.
In this paper, we present a simple and yet effective

ethod, termed random on-off light source �ROOLS�, to
ecover the temporal offset at subframe accuracy. It utilizes
n auxiliary light source such as an LED to provide tempo-
al cues. Compared to special-purpose hardware ap-
roaches, our method is far less complex and is inexpen-
ive. Compared to feature-based approaches, ROOLS is
ore robust since it is completely independent of scene

roperties.
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2 Problem Statement
Without loss of generality, we consider the case of two
video cameras. Let the time instances of the video frames
taken by the �’th camera be denoted by

T� = �t1
�,t2

�, . . . ,tN�

� �, � � �1,2�, N� � N , �1�

where N� denotes the length of the �’th sequence, and tk
�

denotes the time of the k’th frame in the �’th sequence.
Note that T1 and T2 are measured by a common clock.

In a typical situation, identical video cameras of constant
frame interval �T are used, when

T� = �t1
�,t1

� + �T, . . . ,t1
� + �N� − 1� � �T� . �2�

Synchronizing two video sequences in such situation is
equivalent to measuring the temporal offset between their
initial frames

Tdiff = t1
1 − t1

2. �3�

3 Proposed Method

3.1 Formulation

We propose to use a single temporally coded light source
such as an LED as the signal to be captured by the cameras
for synchronization. The light signal is essentially a time-
continuous binary-valued function denoted as

f:R � �0,1� . �4�

It is sampled at T� by the �’th camera, producing a time-
discrete binary-valued sequence

�fcam
� �n��n=1

N� = �f�tn
���n=1

N� = �f��n − 1��T + t1
���n=1

N� . �5�

Since f is binary valued, it can be characterized by time
instants where its function value rises from 0 to 1 or drops
from 1 to 0. We term each of these instants a transition
event. Let � denote a subsequence of all transition events
in f ,

� = ��1,�2, . . . ,�N� . �6�

For each �k, we have

∀� � 0, f��k − �� � f��k + �� = 1, �7�

where � denotes the exclusive or operator, and � is an
arbitrarily small real positive number. For the �’th camera,
let �� denote the transition events corresponding to �.
Obviously, as part of T�, �� can be expressed as follows:

�� = �tI��1�
� ,tI��2�

� , . . . ,tI��N�
� � , �8�

where I� is a subsequence of �1,2 , . . . ,N��. For each I��k�,
it satisfies

fcam
� �I��k�� � fcam

� �I��k� − 1� = 1. �9�

This notation and their relationship are illustrated in Fig. 1.
Oct–Dec 2009/Vol. 18(4)1
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.2 Achieving Sub-Frame-Interval Precision
iven � and ��, consider the difference between a pair of

orresponding transition events:

k
� = �k

� − �k = tI��k�
� − �k. �10�

rovided that �k
� is an independent and identically distrib-

ted �i.i.d.� random variable uniformly distributed over
0 ,�T� with mean and variance being �=�T /2 and 	2

�T2 /12. The averaged difference ��=1 /N�k=1
N �k

� is a ran-
om variable with mean and variance being �̃=� and
2= �1 /N�	2. However,

� =
1

N
�
k=1

N

�tI��k�
� − �k� = tI� − �̄ , �11�

here tI� and �̄ are the mean positions of transition events
ith respect to fcam

� and f , as illustrated by Fig. 1. Accord-
ng to central limit theorem,6 the averaged sum of a suffi-
iently large number of i.i.d. random variables each with
nite mean and variance approximates normal distribution.
ence, �� takes a normal distribution with mean of � and
ariance of �T2 /12N. From Eq. �11� we obtain

I1
1 − tI2

2 = �1 − �2. �12�

ince tI�
� = �1 /N��k=1

N �t1
�+ �I��k�−1��, Eq. �12� can be fur-

her written as

�13�

where Tdiff� =Tdiff /�T, ��= ��1−�2� /�T�N�0,1 /6N�.
hen N is sufficiently large, the variance of �� will be

egligibly small, leading to high precision estimation of

diff� .

.3 Transition Detection Accuracy
n real-world applications, the binary sequence is obtained
hrough quantifying the image intensity of the light source
y certain threshold 
. For samples crossing transition
vents, the quantified binary value might flip, causing the
ransition event to shift one frame backward. If we take a
ample right before the edge where signal rises from 0 to 1
or instance, its intensity is close to 1 and incorrectly quan-
ified to 1. Equation �13� tells us that the shift will introduce

ig. 1 Achieving subframe-interval estimation: �1� the transition
vents of f, fcam

1 , and fcam
2 are highlighted by black dots; �2� black

ertical bars denote the mean position of corresponding transition
vents in f, fcam

1 , and fcam
2 .
ournal of Electronic Imaging 040501-
additional error to the estimation. Suppose the light source
intensity is normalized and 
=0.5 is chosen as the threshold
so that the probabilities for transitions to flip from 0 to 1
and 1 to 0 are identical. Let xi

� denote a single shift event in
a video sequence �. Its probability density function �pdf� is
p�xi

�=−1�= p�xi
�=0�=0.5, with expectation �xi

� =−0.5 and

variance 	xi
� =0.25. Let x�= �1 /N��i=1

N xi
� denote averaged

transition shift. Because xi
� are i.i.d. random variables, once

again by the use of central limit theorem, we have
x��N�−0.5,1 /4N�. According to Eq. �13�, the extra error
�s introduced by transition shift in two video sequences
turns out to be x1−x2. It can be proved that �s takes a
normal distribution with mean of 0 and variance of 1 /2N.
Counting in �s, the total error of temporal offset estimation
is

� = �s + �� ~ N	0,
1

1.5N

 . �14�

3.4 Random Binary Sequence Design

The proposed method requires �k
�= tI��k�

� −�k to be i.i.d. ran-

dom variables uniformly distributed in �0,�T�. To achieve
this, we set the transition time

�k = �k−1 + � , �15�

where �k−1 is the time of the previous transition and � is
uniformly distributed in ���T , ��+��T� · � ,�N. Transi-
tion time generated in this way can be proved to ensure �k

�

meeting the requirement.

3.5 Transition Matching
The estimation of the temporal offset requires the transition
events of the two cameras be matched. We refer to this
process as transition matching. Let the segment

Table 1 Results of 10 experiments.

Illum. Estimated Ground Truth Error

Daylight −3.410 −3.2653 0.1447

Daylight 0.6150 0.6000 0.0150

Daylight 0.5600 0.6122 0.0522

Fluorescent −0.4900 −0.6122 0.1222

Fluorescent 0.1100 0 0.1100

Darkness −2.9200 −2.9605 0.0405

Darkness 1.1150 1.1475 0.0325

Darkness −2.8850 −2.7961 0.0889

Darkness 1.1900 1.3158 0.1258

Darkness −2.7300 −2.6273 0.1027
Oct–Dec 2009/Vol. 18(4)2
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between two consecutive transition events be denoted as
��k�:

��k� = �fcam
� �I��k + 1�� − fcam

� �I��k��� � �I��k + 1� − I��k�� .

�16�

he binary sequence �fcam
� �n��n=1

N� can be equivalently rep-
esented by a sequence of transition segments. Let ��i , j�
�D1�i�−D2�j�� denote the difference between two seg-
ents. Transition matching can be equivalently achieved by
atching two sequences of transition segment. Based on

he observation that the difference of corresponding seg-
ents would be small, optimal transition matching can be

btained by solving the following formula:

rg min
l,i,j � �

�=0

l−1

��i + �, j + ��

max�
�=0

l−1

�D1�i + ���,�
�=0

l−1

�D2�j + ����
+ exp�−

�
�=0

l−1

�D1�i + ��� + �
�=0

l−1

�D2�j + ���

2 max �
k=1

M1−1

�D1�k��, �
k=1

M2−1

�D2�k����� , �17�

here l denotes the number of overlapping segments, and
M1 and M2 are the lengths of the two segment sequences.

he first term assesses the similarity of two overlapping
egment sequences. Howerver, considering only the first
erm possibly leads to erroneous matching due to short
verlapping length l. To avoid this, the second term is in-
roduced to give a large penalty for small l. The optimal
olution is sought by evaluating all combinations of i and j.

Experiments

.1 Hardware and Configuration
he experiment system is made up of two Sony HVR-V1
igh-definition �HD� video cameras, an LED array clock
roviding the ground truth, and a single temporally en-
oded LED light source. The video cameras operate at 200
rames per second. The values of � and  in Eq. �15� are set
o 2 and 6, which ensures there are at least two frames

Table 2 Average temporal offset error of various approaches

Method�3� Method�4� Method�5� ROOLS

verage
rror

0.1 1 0.2 0.08
ournal of Electronic Imaging 040501-
between adjacent transition events and avoids ambiguity in
transition matching. We selected 
=0.5 to quantize the im-
age intensity of the LED a binary value.

4.2 Experiment Results
We conducted three groups of experiments under illumina-
tion conditions including daylight, fluorescent lighting, and
darkness. The results are shown in Table 1. In all the tests,
only 200 transition events were used. The average estima-
tion error was about 0.08 frame intervals. We observe that
all estimation errors are less than 0.2 frame intervals. This
would be explained later.

4.3 Comprison with Other Methods
The proposed method was compared with the feature-based
approaches3–5 and the results are summarized in Table 2.
The comparison indicates ROOLS achieves higher estima-
tion accuracy than existing approaches.

4.4 Analysis and Discussions
The property of normal distribution states that 3 standard
deviations from the mean account for about 99.7% of the
distribution. When N=200 transitions are used, according
to Eq. �14�, the standard deviation is about 0.05. The esti-
mation error is bounded in 3�0.05=0.15 frame intervals.
This explains why the estimation error in Table 1 are
bounded in 0.2 frame intervals. The performance of the
proposed method can be improved by increasing N.

5 Conclusion
We presented an innovative approach toward synchronizing
commercial video cameras. It achieved high-precision syn-
chronization at the low cost of adding only a simple tem-
porally coded light source. The proposed method requiring
the video cameras to have identical frame rates is not a
serious limitation since using identical video cameras for
one task is convenient and typical.
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