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Abstract. Hexagons are widely observed as a packing or tiling geo-
metry in nature, yet they appear to have been avoided in conventional
halftone tiling. A goal of the present study is to understand the poten-
tial barriers that have prevented their use and present new halftone
geometry options that overcome the issues while offering several
potential benefits. While conventional halftone geometries often
include the fourth screen (e.g., yellow) in a suboptimal manner, the
hexagonal geometry presented here can include a clustered-dot
fourth screen moiré-free. Hexagonal screens can appear to have
smoother texture. Due to differences in packing geometry and
touch point geometry, hexagons have the potential to possess differ-
ent tone reproduction characteristics, which may be favorable for
somemarking processes. We also present a parametrically controlled
hexagonal halftone spot function that allows for optimization of dot
touch points and provides compact growth. The controllable touch
points can prevent a tone reproduction discontinuity, while the com-
pact growth throughout the gray range ensures maximum stability.
Additionally, we present a three-colorant dot-off-dot halftone config-
uration using hexagonal geometry. Examples are provided. © 2012
SPIE and IS&T. [DOI: 10.1117/1.JEI.21.1.013017]

1 Introduction
Hexagons are widely observed as a packing or tiling geome-
try in nature, yet they appear to have been avoided in con-
ventional halftone tiling. A goal of the present study is to
understand the potential barriers that have prevented their
use and present new halftone geometry options that over-
come the issues while offering several potential benefits.

Most digital color printers operate in a binary mode,
where for each color separation, a given pixel is written
as a colored spot or it is not written. The human visual system
provides the illusion of continuous color tones by spatial
averaging of the printed colored spots and intermediate
space. Digital halftoning controls the printing of the colored
spots and therefore defines the appearance of the halftone
output. A common halftone method is screening, which
compares requested continuous tone levels of a colorant to
predetermined thresholds typically defined over a square cell
that is tiled to fill the image plane. The output of screening is
a binary pattern of multiple small spots, which are regularly
spaced as determined by the addressability of the imaging
system. Marking processes such as electrophotography

and offset printing typically cluster the small spots within
a cell because the larger clustered mass prints with more
consistent size and density than spots printed with
isolated pixels. The alignment of the clusters in the tiling
defines the geometry of the halftone screen. The resulting
halftone structure is a two-dimensionally periodic pattern,
possessing two fundamental spatial frequencies determined
by the geometry of the halftone screen.

A common problem in digital color halftoning is the poten-
tial manifestation of moiré patterns. Moiré is an undesirable
interference pattern that can occur when two or more color
halftone separations are printed in overlay. The interference
occurs primarily due to the nonlinearity of color mixing of
subtractive colorants, and suppression of printing one colorant
by another colorant. As a result, low frequency components
can be visibly evident as interference patterns in the halftone
print. To avoid moiré and color shifts due to misalignment and
misregistration, different halftone screens are typically used
for different color separations, and the fundamental frequency
vectors of the different halftone screens are separated by rela-
tively large angles. The large angular separation produces a
large frequency difference vector between any two fundamen-
tal frequencies of the different screens so that no visibly objec-
tionable moiré patterns are produced. There is a classical
screen combination that provides suitable angular separation
for two-colorant printing and moiré-free three-colorant print-
ing. This combination consists of three screens constructed by
square halftone cells of identical scalar frequency with one
screen each placed at 15, 45, and 75 deg.1

The difficulty in avoiding objectionable moiré between
halftone screens is more challenging when considering
that four colorants are used in most printing presses. The
four colorants are typically cyan (C), magenta (M), black
(K), and yellow (Y). The classical 15∕45∕75 deg screen con-
figuration is commonly used for C,M, and K, while the clas-
sical screening method for Y uses a screen at 0 deg and is 8%
to 10% different in frequency than the other screens so that
the moiré is relatively high frequency and low contrast.2

Other common solutions for Y have also been suboptimal,
such as stochastic screens, which can be prone to noise
and tone instability. The understanding of moiré becomes
increasingly complicated, and moiré-free solutions more
challenging, when you consider that clustered-dot halfton-
ing produces binary patterns, which are rich in harmonics
that can cause unacceptable interference for certain colorant
combinations. Moiré within halftones has been studied
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extensively. One example is by Amidror et al.,3 in which a
spectral model based on Fourier analysis was used to explain
the moiré due to the superimposition of halftone screens.
Amidror et al. further developed an algorithm for moiré
minimization, which included minimization of moiré due
to interference of high-order harmonics. However, most half-
tone screen designs, including the classical three-color
moiré-free solution, only can satisfy the moiré-free condition
for moiré between fundamental frequencies of two or three
colors. They neglect subtle moiré patterns due to interaction
of harmonics, and employ an unnecessary constraint of
square or rectangular cells.

Halftone designers consider many options to deliver a
screen with desirable characteristics, such as smooth texture,
textures that are compatible with the image subject matter,
low noise, tone stability, and lack of moiré. The designer
often must settle for less than desirable results due to phy-
sical constraints such as a digital pixel grid and due to goals
that sometimes lead to conflicting design strategies.

In this paper we propose a new option to halftone screen
designers with several potential beneficial properties com-
pared to conventional square-cell-based screens. We propose
hexagonally tiled screens that can be produced with a con-
ventional orthogonal pixel grid. Halftones with hexagonal
shape clusters are visually pleasing4 and theoretically the
most compact halftone structure. Hexagonal halftones have
been discussed in several publications and patents5–7 but a
frequency analysis and connection to moiré in color print-
ing is lacking. The proposed screens can appear to have
smoother texture, and avoid moiré between fundamental and
harmonic frequencies. Due to differences in packing geome-
try and touch point geometry, hexagons have the potential to
possess different tone reproduction characteristics, which
may be favorable for some marking processes. A fourth
screen (e.g., yellow) can be included moiré-free, thereby
avoiding problems associated with suboptimal halftoning
for yellow. We also present a corresponding parametrically
controlled hexagonal halftone spot function that allows for
optimization of dot touch points and provides compact
growth. The optimized touch points can prevent a tone repro-
duction discontinuity, while the compact growth throughout
the gray ranges ensures maximum stability.

Additionally, we present a three-colorant dot-off-dot
(DOD) halftone configuration using hexagonal geometry.
The geometry is based on a hexagonal base screen, where
the three colorants are printed with specific displacements
of the screen. DOD screens are used to produce smoother
textures than rotated dot screens when colorant-to-colorant
registration can be held to very tight tolerance, thereby
avoiding the need for registration insensitivity enabled by
rotated screens. Two previous DOD halftone methods8,9 pro-
vided pleasing texture for two and fourcolorants but did not
describe three-colorant DOD. Harrington10 taught a method
that can perform DOD halftoning with an arbitrary number
of colors but the dot growth is along a curve rather than
according to a conventional spot function.

2 Background

2.1 Frequency Representation of Periodic
Halftone Patterns

Clustered-dot halftoning methods produce halftone images
that possess periodic structures defined by the halftone

screens. For the purposes of moiré analysis, these images
can be described in the frequency domain by discrete com-
ponents without regard to amplitude and phase. In this repre-
sentation, a two-dimensional halftone for a single colorant x
forms a frequency lattice defined by two generator vectors
Vx1, Vx2. The generator vectors correspond to the two fun-
damental frequencies of the halftone. Linear combinations of
the vectors form the full spectrum with all points (harmonics)
located on the lattice defined by the generator vectors and no
frequencies are lower than the fundamentals.

Moiré analysis for conventional halftoning focuses on
cyan (C), magenta (M), and black (K). Yellow (Y) is usually
include in some suboptimal manner, which may or may not
be fully acceptable depending upon the visibility of yellow
and its interaction with the other colorants. The fundamental
vector frequencies for C, M, and K can be denoted by Vc1,
Vc2, Vm1, Vm2, Vk1, and Vk2, respectively, where the sub-
scripts 1 and 2 refer to positive and negative angles, respec-
tively. Figure 1(a) illustrates the appearance for an overlay of
C, M, Y , and K halftone images based on a traditional
configuration, with cyan at 75∕ − 15 deg; magenta at
15∕ − 75 deg; black at 45∕ − 45 deg, and yellow at
0∕90 deg. The traditional configuration uses the same half-
tone screen for C, M, and K, with square cells rotated to
given angles. The combined halftone texture, often referred
to as the rosette pattern, is not a simple repeated pattern and
its Fourier representation is complicated. Figure 1(b) shows
the frequency vector representation of the C, M, and K
screens, which is used below for the moiré analysis.

The Fourier transform is dominated by discrete frequency
components shown as circular dots. The discrete components
are defined by the two fundamental halftone frequencies for
each screen, their two-dimensional higher-order harmonics
(which can be considered to be linear combinations of the
fundamentals), and linear combinations of components from
different screens (which are beats, or forms of moiré). Note
that amplitude and phase are not represented in these plots
and also that there are many higher-order harmonics of the
halftone frequencies that are not shown in the plots.

The superposition of halftone color separations creates
more frequency components than exist in the single separa-
tions of the various process colors. We can express the resul-
tant vector frequency caused by superposition of two
different colors as their frequency-vector difference, e.g.,
Vcm ¼ Vc � Vm, where Vc and Vm are two frequency com-
ponents from C andM, andVcm is the difference vector. Since
each Fourier component has its conjugate, i.e., there is
always a frequency vector −Vc that represents the conjugate
component of Vc, the sign definition of frequency vectors is
rather arbitrary. For each halftone screen, there are two fun-
damental frequency vectors, therefore, the color mixing of
two screens for two different colors yields eight difference
vectors by the fundamental frequencies alone. Considering
other harmonics of the halftone frequencies, the combina-
tions can yield a large number of difference vectors.

2.2 Moiré-Free Conditions
Multiple periodic phenomena can interfere to produce lower
frequencies known as beats. In the field of halftoning, these
beats appear as moiré. There are particular configurations of
halftones that avoid creating objectionable moiré. The con-
ventional moiré-free halftoning method utilizes screens for

Wang and Loce: Moiré-free color halftoning using hexagonal geometry and spot functions

Journal of Electronic Imaging 013017-2 Jan–Mar 2012/Vol. 21(1)



C, M, and K, such that three-way combinations of their
fundamental frequencies sum to zero frequency or very high
frequencies. Typically, the screens are chosen to be com-
posed of square cells, and the frequencies are chosen to
be roughly equal with the angles separated by about 30 deg.

A strategy to avoid two-color moiré is to ensure that no
two-color difference vector due to fundamental halftone
frequencies is too small.11 Using C and M halftones as
an example, the two-color moiré-free condition can be
summarized by

jVc � Vmj > Vmin; (1)

where Vc represents any one of Vc1, −Vc1, Vc2, −Vc2; Vm
represents any one of Vm1, −Vm1, Vm2, −Vm2; and Vmin is a
frequency limit set around 50 to 70 cycles/inch to avoid
visually objectionable moirés.

It is well known that the most troublesome moiré is the
three-color moiré that can appear in cyan-magenta-black
prints produced by CMYK four-color printers.1 As an exten-
sion of the two-color case, one condition for three-color
moiré-free printing can be summarized by

jVc � Vm � Vkj > Vmin; (2)

where Vk represents any one of Vk1;−Vk1, Vk2;−Vk2; and
Vmin is set similar to the two-color case.

Unless the halftone frequencies are very high, say ≫200
cycles/inch, it is very difficult to design halftone screens such
that all three-color difference vectors, as well as all two-color
difference vectors are large enough to avoid any color moiré
because there are thirty-two combinations of different
components. A common alternative approach is to set two
of the three-color difference vectors null while setting the
remaining difference vectors large.1 This design practice
for three-color moiré-free halftone printing can be specified
by the following vector equations:

Vc1 − Vm1 þ Vk2 ¼ 0; (3a)

Vc2 − Vm2 − Vk1 ¼ 0: (3b)

Equations (3a) and (3b) represent two of all possible fre-
quency combinations of the three colors. In most practical
applications, the remaining combinations satisfy the inequal-
ity of Eq. (2). It is instructive to view the frequency vectors of
the conventional moiré-free configuration. Figure 2(a) shows
the fundamental frequency vectors of the individual screens,
and Fig. 2(b) shows the vector combinations of Eq. (3).

2.3 Nonorthogonal Clustered-Dot Screens
Most halftone screens used in color reproduction are ortho-
gonal screens. That is, the screens are constructed of rectan-
gular cells, or more likely, square cells. However, for most
digital printing devices, the size and shape of halftone cells
are constrained by a digital rectilinear pixel grid, which
defines the locations of printed spots, and therefore, an

Fig. 2 (a) Screen fundamental frequency vectors for a conventional
halftone design. (b) Conventional screen frequency vectors shown
summing to zero frequency.

Fig. 1 (a) Superposition of cyan, magenta, yellow, and black halftones in a conventional configuration (single color area converage ¼ 25%)
(b) Fourier representation of cyan, magenta, and black halftones.
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exact 15 or 75 deg rotation of a clustered-dot screen is not
possible. Although there are alternative approaches for
moiré-free color halftoning, most of those methods provide
approximate solutions and/or have a tendency to generate
additional artifacts in the halftone outputs. The difficulty
to achieve moiré-free color halftoning is greatly relieved
by using non-orthogonal halftone cells, which tile a screen
with general parallelogram shapes. Wang et al.12 provide
detailed description of the design procedure for moiré-free
halftoning using nonorthogonal clustered dot screens.

An example of a moiré-free nonorthogonal screen is illu-
strated in Figs. 3 and 4. The three parallelograms in Fig. 3
illustrate the shape and orientation of the halftone cells that
define the screens. The corresponding frequency vectors are
shown in Fig. 4(a). A halftone image resulting from this
configuration is shown in Fig. 4(b).

2.4 Pellar Spot Function
A halftone cell that is replicated to tile an image plane can be
specified by an array of threshold values, along with three
parameters: width and height of the array, and an offset of
successive rows in tiling the array.13 The threshold values
are often selected using what is known as a spot function.
The Pellar14,15 spot function, also known as the Euclidean
profile,2 is parameterized as a sum of two cosine functions
and has several desirable features:

Q ¼ cos½2πðh1∕H1Þ� þ cos½2πðh2∕H2Þ�; (4)

where Q is the threshold function that is compared to the
input image pixel values in the halftoning operation. In prac-
tice, Q would be scaled and offset to have the same range as
the image data, e.g., [0, 255]. The thresholding result by the
Pellar spot function is a black compact disk for lower input
levels, a diamond at middle input levels where the dots touch,
and a compact white hole for higher input levels [contours
shown in Fig. 5(a)].

As shown in Fig. 5(b), in instances where the clustered-
dot screen is an orthogonal halftone screen, all clusters, or
dots, are centered on the intersection points of a grid, or
lattice. The lattice is defined by two sets of parallel lines
L1 and L2, such that the lines L1 are perpendicular to the
lines L2. The periods of the lattice in two different directions,
45 and −45 deg directions are defined by the shortest dis-
tance between the adjacent parallel lines L1 of the first group,
denoted byH1 and the shortest distance between the adjacent
parallel lines L2 of the second group, denoted by H2. The
threshold value at an arbitrary point p, defined by the dis-
tances, h1 and h2, from the point p to the adjacent orthogonal
grid lines L1 and L2, respectively, is given by the function Q
in Eq. (4). Since the two cosine functions in Q of Eq. (4) are
defined with periods h1∕H1 and h2∕H2, respectively, it does
not matter which particular grid lines within each of the two-
sets are chosen to define the distance h1 or h2.

3 Hexagonal Halftone Geometry
The novel halftone configuration that we present utilizes
three or four rotated hexagonal screens, or more precisely,
screens with hexagonally tiled clusters, for moiré-free
color printing. Halftone designers consider many options
to deliver halftone screens with desirable characteristics,
and often must settle for less than desirable results. The pre-
sent method is a new option with several potential beneficial
properties compared to conventional square-cell-based
screens. Hexagonal screens can appear to have smoother tex-
ture. Due to differences in tiling geometry and touch point
geometry, hexagons have the potential to possess different
tone reproduction characteristics, which may be favorable
for some marking processes. A clustered-dot fourth screen

Fig. 3 Halftone cells for three nonorthogonal screens satisfying
moiré-free conditions.

Fig. 4 (a) Fundamental frequency vectors for the nonorthogonal screens of Fig. 3; (b) halftone rosettes formed from that set of moiré-free non-
orthogonal halftone screens.
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(e.g., Y) can be included moiré-free, thereby avoiding pro-
blems associated with suboptimal solutions for Y.

The configuration has the following properties. Each
screen is constructed of tessellated convex hexagons,
where a screen can be thought of as having three fundamen-
tal frequencies that are similar in vector length. One pair of
screens possesses frequency vectors that are approximately
equal in length and are within one frequency range. A second
pair of screens also possesses frequency vectors of approxi-
mately equal length and can be constructed from sums and
differences of frequency vectors from the first pair. The
frequency vectors of the present halftone configuration can
be readily achieved with common orthogonal pixel grids,
as opposed to methods that relied on a hexagonal pixel grid.6

3.1 Hexagonally-Tiled-Cluster Halftone
and its Frequency Representation

Although the appearance of hexagonally tiled hexagon clus-
ters is quite different from square or rectangular tiled clus-
ters, spatially repeated hexagons are essentially the result of

tiling, or two-dimensional replication using a parallelogram,
shown in the example of Fig. 6(a) by blue outlines.
Hence, the hexagonal halftone shown in Fig. 6(a) is a two-
dimensional periodic structure and can be represented by
two fundamental frequency vectors, Vh1 and Vh2, shown
in Figs. 6(a) and 6(b), defined for the corresponding
nonorthogonal parallelogram screen. As discussed in the
previous sections, a two-dimensionally repeated halftone
pattern possesses many frequency harmonics as linear com-
bination of the two fundamentals. For a hexagonal halftone
pattern, one of the harmonics is noteworthy because its fre-
quency vector length is exactly the same as the length of the
two fundamentals if the hexagons are regular (i.e., 0 to 60 to
120 deg). The hexagons in Fig. 6(a) are regular and the note-
worthy vector is shown as Vh3 ¼ Vh1 þ Vh2 in Fig. 6(b).

Any two of the three vectors, Vh1, Vh2 and Vh3, can be
used as fundamental frequency vectors and the third is equal
to the sum of the two fundamentals (or their conjugates).
Thus, we may loosely refer to the set of three as the “funda-
mentals” of a hexagonal halftone screen. In the following

Fig. 5 (a) Contour plot of Pellar (i.e., Euclidean) spot function and (b) associated parameters.

Fig. 6 (a) Halftone pattern hexagonally tiled with hexagon-shape clusters; (b) frequency vector representation of the regular hexagonal halftone
pattern of (a).
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discussion, we use quotation marks for the three “fundamen-
tals” to avoid confusion with the original meaning of funda-
mental frequencies for two-dimensional periodic functions in
Fourier analysis.

We may have arrived at the reason that hexagons have
found little use in N-color halftoning. While designers cur-
rently struggle under the constraint of using square-based
cells that require sums of Npairs of frequency vectors
to avoid moiré, hexagonal halftones require Ntriplets of fre-
quency vectors to avoid moiré.

3.2 Moiré-Free Condition for Regular
Hexagonal Screens

The interference of the various color separations when using
multiple hexagonal halftone screens is much more compli-
cated than the interference due to square-cell screens.
Because of the presence of three “fundamentals” in a hexa-
gonal halftone screen, the moiré-free conditions, Eqs. (1)
through (3), have to be extended to all combinations of fre-
quency vectors chosen from a redefined set of “fundamen-
tals.” For each hexagon screen in the configuration, the third
“fundamental” Vh3 is defined as

Vh3 ¼ Vh1 þ Vh2; if jVh1 þ Vh2j < jVh1 − Vh2j;
Vh3 ¼ Vh1 − Vh2; otherwise; (5)

where Vh1 and Vh2 are the two fundamental frequency vec-
tors defined previously for general non-orthogonal screens.

In the conventional three-color moiré-free halftoning
cases, three rotated screens with square cells are separated
by 30 deg between the halftone color separations. The same
approach does not work for the hexagonal case because
rotating a regular hexagon by 60 deg results in an identical
tiling yielding screens that are not mutually rotated and
therefore sensitive to color-to-color misregistration. Another
initial thought is to rotate the three (C, M, and K) hexagonal
screens by 1∕3 of the symmetry to evenly divide the angle
space, similar to rotating the three square-cell screens by 1∕3
of their symmetry (90 deg ∕3 ¼ 30 deg). Examination of
Eq. (3) shows that angular separation by 20 deg does not
produce a moiré-free result. Evidently, it is not straightfor-
ward to satisfy moiré-free conditions using rotated regular
hexagonal screens. This obstacle may help explain why
hexagonal screens seldom appear in practical applications
of color halftoning.

3.3 Moiré-Free Solution Using Four Regular
Rotated Hexagonal Screens

The general principle that defines the configuration is the fol-
lowing. Each screen is constructed of regular hexagons, where
a screen can be thought of as having three “fundamental” fre-
quencies of equal vector length separated by 60 deg. In a first
pair of screens (A and B), the frequency vectors of screen A
are of equal length to the vectors of screen B, and the fre-
quency vectors of screen A are separated by 30 deg from the
vectors of screen B. A second pair of screens (C and D) also
have equal length frequency vectors and are separated by
30 deg, but their frequency length is

ffiffiffi

2
p

greater than those
of the first pair of screens and the frequency vectors are rotated
15 deg from the first pair of screens. While we describe four

screens in the above configuration, any three of that config-
uration is a useful configuration (e.g., for CMK three colors).

Let us examine a specific case of interest. We propose a
configuration using three or four halftone screens with reg-
ular-hexagon-symmetry for moiré-free color halftoning. The
proposed configuration is shown by the frequency vectors in
Fig. 7. We denote the “fundamentals” of the four screens as
VC1, VC2, VC3, VM1, VM2, VM3, VY1, VY2, VY3, VK1, VK2,
and VK3. For idealized regular hexagons, jVC1j ¼ jVC2j
¼ jVC3j, jVM1j ¼ jVM2j ¼ jVM3j, jVY1j ¼ jVY2j ¼ jVY3j
and jVK1j ¼ jVK2j ¼ jVK3j.

In Fig. 7, the angle between a pair of screens of the same
frequency is given by

AðVCi;VMiÞ ¼ AðVKi;VYiÞ ¼ 30 deg; (6a)

pair-to-pair separation is15 deg, i.e.,

AðVCi − VKiÞ ¼ AðVCi − VYiÞ ¼ 15 deg; (6b)

and the frequency vector lengths are related by

jVC1j ¼ jVM1j; (6c)

jVY1j ¼ jVK1j ¼
ffiffiffi

2
p

· jVC1j: (6d)

The images of Fig. 8 compare color halftoning using a clas-
sical screen (Fig. 1) to the proposed configuration.

3.4 General Solution for Moiré-Free Halftoning Using
Four Rotated Tessellated Convex Hexagon
Screens

In this section, we provide a general solution for moiré-free
halftoning using four rotated screens with tessellating convex
hexagon cells. The term “tessellating convex hexagon”
implies that the shape of each cell is such that it can tessellate
to fully tile the image plane and it is a convex hexagon.
This implies that the two fundamental frequency vectors,
jVh1j and jVh2j, do not necessarily have the relation as
in the regular hexagon cases, i.e., jVh1j ¼ jVh2j and
AðVh1; Vh2Þ ¼ 60 deg.

For two fundamental frequency vectors of the C and M
screens, VC1, VC2, VM1, and VM2, defined by the notation

Fig. 7 Moiré-free color halftoning using four regular hexagonally tiling
screens.
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illustrated in Fig. 9, the third “fundamental” of C and M are
given by

VC3 ¼ VC1 − VC2; (7a)

VM3 ¼ VM1 − VM2. (7b)

The general moiré-free solution can be described by

VK1 ¼ VC3 þ VM2; (8a)

VK2 ¼ VC1 − VM3; (8b)

VY1 ¼ VC1 þ VM3; (8c)

VY2 ¼ VC2 þ VM1. (8d)

And the third “fundamental” of K and Y is given by

VK3 ¼ VK1 − VK2; (9a)

VY3 ¼ −VY1 þ VY2. (9b)

For example, consider two convex tessellating hexagons
defined for the C and M color separations by

VC1 ¼ ð160; 0Þ;VC2 ¼ ð80;−150Þ;

VM1 ¼ ð150; 80Þ;VM2 ¼ ð150;−80Þ;

where ðf x; f yÞ notion in units of cycles/inch is used. The
solution described by Eqs. (7)–(9) can be used to find the
other two screens as

VY1 ¼ ð160; 160Þ; VY2 ¼ ð230;−70Þ;

VK1 ¼ ð230; 70Þ; VK2 ¼ ð160;−160Þ:

The corresponding third “fundamentals” of the four screens
are

VC3 ¼ ð80; 150Þ;

VM3 ¼ ð0; 160Þ;

VY3 ¼ ð70;−230Þ;

VK3 ¼ ð70; 230Þ:

The use of the combination of above four screens
provides a moiré-free halftoning solution. Halftone outputs
comparing examples of regular hexagon tiling to general
convex hexagon tiling are shown in Fig. 10. It is particularly
interesting to notice that all four halftone screens illustrated
here can be implemented digitally using single-cell
nonorthogonal halftone screens specified by two spatial
vectors16 listed below (in pixel units), respectively, for
color printers with a 4800 × 4800 pixel∕inch resolution:

Fig. 9 Moiré-free color halftone frequency vector configuration using
general convex tessellating hexagons.

Fig. 8 Moiré-free halftone patterns using (a) four conventional screens, (b) four regular hexagonal screens.
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vC1 ¼ ð30; 16Þ; vC2 ¼ ð−30; 16Þ;

vM1 ¼ ð16; 30Þ; vM2 ¼ ð−16; 30Þ;

vY1 ¼ ð23; 7Þ; vY2 ¼ ð7; 23Þ;

vK1 ¼ ð23;−7Þ; vK2 ¼ ð−7; 23Þ:

4 Hexagonal Spot Function
Halftone spot function design is generally a monochrome
consideration and is optimized for a given marking process
or for particular image subject matter.2 There are two primary
considerations if we restrict the concerns to image quality on
general image subject matter printed using laser printing or
lithographic offset: maintain compactness as much as possi-
ble through the gray range to minimize noise and instability;
control the shape of dot-to-dot touch points to avoid sudden
shifts in tone that can occur when dots for the same colorant
bridge together. A first thought may be to tile the hexagons
side-to-side, but an issue arises in the midtones where narrow
white tracks are formed between the dots that could be
unstable leading to jumps in a tone reproduction curve,
and noise and density variations over time. Rather than use
a “topologically strong” side connection between dots, we
use a “topologically weak” corner connection. The spot
function is parameterized as the weighted sum of three
cosines that are functions of distance from three respective
reference lines defined by the sides of the hexagon. Alge-
braic powers of the distances control the shape of the
sides of the dot and the sharpness of each spot touch
point with its neighboring dots. Weights of the cosines con-
trol a sequencing of touches, such that contact with the
neighboring dots can occur at three different gray levels,
thereby avoiding a large instability and tone jump that
can occur for simultaneous touching. Dot rotation can also
be performed by rotating the coordinate system (Fig. 11).

An arbitrary nonorthogonal halftone screen can be
defined by two spatial vectors, v1 and v2, as shown in
Fig. 12. The vectors v1 and v2 define a parallelogram that
can completely tile the plane of the image being halftoned.
The dot shape function can be evaluated within such a
parallelogram tile to form a cell. Parallelogram cells can be
converted to other geometric forms, such as rectangles, or
Holladay bricks.13 In Fig. 12, all clusters are centered on
the intersection points of a grid defined by two sets of
parallel lines L1 and L2. The dot shape function for non-
orthogonal clusters can be described by the same threshold
function Q used for orthogonal halftone screens in Eq. (4),
where the periods of the grid, H1 and H2, are defined in the
two directions, perpendicular to the nonorthogonal grid
lines. Similar to the orthogonal case, choosing different
grid lines within a parallel set of lines as the distance refer-
ence does not change the values of the dot shape function.

Additional vectors can be used in defining the halftone
screen grid. A vector of interest, v3, is the one that connects
an intersection point with a second closest neighboring grid
point. The spatial vector v3 is the summation of v1 and v2:

v3 ¼ v1 þ v2: (10)

Fig. 11 (a) Intuitive approach to grow dots produces potentially
unstable narrow white tracks; (b) corner-touching growth avoids
the narrow white tracks but forms two triangular holes in the shadows.

Fig. 10 Moiré-free halftone patterns using four screens with (a) regular hexagonal tiles, (b) general hexagonal tiles.
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For a square-shape orthogonal screen, this vector is longer
than v1 and v2 by

ffiffiffi

2
p

, and is angled 45 deg from those vec-
tors. As the angles of the grid depart from orthogonal, the
length of v3 becomes closer to v1 and v2. As shown in
the hexagonal halftone screen of Fig. 12, as the angle
between v1 and v2 approaches 120 deg, for v1 ≈ v2 the length
of v3 approaches the length of v1 and v2 the halftone screen
grid approaches a regular hexagonal lattice. Each intersec-
tion point in the hexagonal halftone screen grid has sixnear-
est neighboring intersection points that are substantially
equidistant, and separated from each other in a hexant
arrangement.

A third set of parallel lines L3 crossing all intersecting
points and parallel to the direction of v3 can be added to
the grid, as shown in Fig. 12. The period of the third set
of parallel lines is defined as H3. By vector analysis the
three periods, H1, H2, and H3, can be described as functions
of the three spatial vectors, v1, v2, and v3:

H1 ¼ jv2 × v1j∕jv1j ¼ jv3 × v1j∕jv1j; (11a)

H2 ¼ jv1 × v2j∕jv2j ¼ jv3 × v2j∕jv2j; (11b)

H3 ¼ jv1 × v3j∕jv3j ¼ jv2 × v3j∕jv3j; (11c)

where vi × vj represents the cross product of vectors vi and
vj, and jvj is the magnitude of vector v. By the definition of
vector v3, or Eq. (10), it can be shown that the magnitudes of
all vector products shown in Eqs. (11a) to (11c) are equal and
the value of these magnitudes represents the area A of the
parallelograms defined by any two of the three vectors v1,
v2, and v3:

A ¼ H1jv1j ¼ H2jv2j ¼ H3jv3j: (12)

For the following derivation, we select an intersection
point o as a reference point and define the three vectors
v1, v2, and v3 as sharing the same origin. Then, the distances
from an arbitrary point p to the three lines L1, L2, and L3
defined by the spatial vectors v1, v2, and v3 can be described
by the following equations, where the spatial vector v is

defined as from the reference point o to the arbitrary
point p:

h1 ¼ jv × v1j∕jv1j; (13a)

h2 ¼ jv × v2j∕jv2j; (13b)

h3 ¼ jv × v3j∕jv3j: (13c)

Using Eq. (12), we can rewrite Eqs. (13a) to (13c) as:

ĥ1 ≡ h1∕H1 ¼ jv × v1j∕A; (14a)

ĥ2 ≡ h2∕H2 ¼ jv × v2j∕A; (14b)

ĥ3 ≡ h3∕H3 ¼ jv × v3j∕A; (14c)

where ĥ1, ĥ2, and ĥ3are heights normalized by the grid
periods H1, H2, and H3, respectively and have nonnegative
values.

We use a new dot shape function for hexagonal shaped
clustered-dot screens:

Q ¼ cos½2πðh1∕H1Þ� þ cos½2πðh2∕H2Þ� þ cos½2πðh3∕H3Þ�;
(15a)

or

Q ¼ cosð2πĥ1Þ þ cosð2πĥ2Þ þ cosð2πĥ3Þ: (15b)

Since the vector v3 is defined as the sum of two vectors v1
and v2, the distance h3 in Eq. (15a) and the corresponding
normalized height ĥ3 in Eq. (15b) are not independent. The
vector product in Eq. (14c) can be expressed as:

v × v3 ¼ v × v1 þ v × v2: (16)

In Eq. (16) the three vector products are in the same direc-
tion but may carry different signs, plus or minus. Depending
on the way of defining the spatial vectors, the normalized
height ĥ3 given by Eq. (14c) may be equal to either the
sum or the difference of ĥ1 and ĥ2. To avoid the ambiguity,
we define the two spatial vectors v1 and v2, such that both
vectors start from the reference point o and the angle from v1
to v2 is positive and the angle is substantially equal to
120 deg. The vector v3 is defined by Eq. (10) and all dis-
tances used for the nonorthogonal hexagonal clustered-dot
screen are defined by vector product and Eqs. (13a) to
(13c). With these above specified definitions, the following
relationship exists between the three normalized heights has
been found:

ĥ3 ¼ jĥ2 − ĥ1j: (17)

This allows us to eliminate ĥ3from Eq. (15b) so that the
hexagonal dot shape function can be givenas a function of
two independent variables ĥ1and ĥ2:

Q ¼ cosð2πĥ1Þ þ cosð2πĥ2Þ þ cosð2πĥ1Þ cosð2πĥ2Þ
þ sinð2πĥ1Þ sinð2πĥ2Þ: (18)

Fig. 12 Nonorthogonal halftone screen with all clusters centered
on the intersection points of a grid defined by two spatial vectors,
v1 and v2.
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By modifying Eq. (15a), a parametrically controlled hex-
agonal halftone dot shape function Q1 can be defined as:

Q1 ¼ a1 cos½πð2h1∕H1Þ� þ a2 cos½πð2h2∕H2Þ�
þ a3 cos½πð2h3∕H3Þ�; (19)

where the parameter ai is a weight that controls the rate at
which the i 0th vertex of the dot approaches the vertex of a
neighboring dot. When the ai are substantially equal, the
growth of the dot is substantial equal in all threevector direc-
tions (positive and negative directions for each of the three
vectors). When an ai value is larger than the other ai values,
the dot becomes eccentric, growing at a faster rate in the
direction (positive and negative directions) of the vector
associated with the larger ai. In this respect, this parameter
can be used to control which vertices touch at particular gray
levels. For example, the a parameter in Eq. (19), (a1, a2, a3)
allows neighbor touching at one, two, or three different
respective gray levels, thereby avoiding tone instability
caused by touching all neighbors simultaneously (i.e., at the
same gray level).

Furthermore, it can be desirable to control the contour
(shape) of a dot perimeter and the touch points to compensate
for attributes of the marking engine used to print the half-
toned image. The parametrically controlled dot shape func-
tion Q2 shown in Eq. (20) utilizes an additional set of
parameters to control the roundness and convexity/concavity
of the dot sides and the sharpness of the vertex touch points:

Q2 ¼ a1 cos½πð2h1∕H1Þγ1 � þ a2 cos½πð2h2∕H2Þγ2 �
þ a3 cos½πð2h3∕H3Þγ3 �; (20)

wherein γi controls the shape of the sides of the dot. In the
dot shape function of Eq. (20), the perpendicular distance
from the point of interest p to the closest grid lines is
used to determine each respective h.

Using a dot shape function Q2 in which γ < 1 results in
printed hexagonal dots having pincushion (i.e., concave)
shaped sides, producing sharper touch points with adjacent
dots, which can improve stability of gray tone for marking
processes with significant growth. Using a dot shape func-
tion Q2 having a γ > 1 results in a rounder, convex shape,
to the printed dot, which can delay the touching of adjacent
dots to darker gray levels. Figure 13 illustrates the effect
of γ. Figure 14 illustrates how the dot shape function Q2

can be used to control neighbor halftone dot touching as
a function of halftoned image gray level by controlling
the a parameters.

Referring to Fig. 13(c), an example halftone screen output
generated by the base hexagonal dot shapefunction Q of
Eq. (15), which is equivalent to the parametrically controlled
dot shape function Q2 of Eq. (20) with a1 ¼ a2 ¼ a3 ¼ 1.0
and γ1 ¼ γ2 ¼ γ3 ¼ 1.0, is shown producing a halftoned
image having a continuously varying gray level progressing
from a minimum (e.g., 0 representing the lightest gray level)
at the left, to a maximum (e.g., 255, or other scaled number,
representing the darkest gray level) at the right. The base
hexagonal dot shape function Q of Eq. (15) begins as sub-
stantially circular dots at lighter gray levels, growing to some
selected form of hexagon, producing for example regular
hexagonal dots in Fig. 13(c), at mid-gray levels, and closes

producing compact triangular holesbetween adjacent dots in
the darker gray levels. Note that for each dot, the hole is split
into two triangles. This split does create thepotential for less
stable shadow tones.

We note that any halftone dot shape function, such as
those represented by the dot function of Eqs. (19) and
(20), can be inverted in valueto provide an opposite growth
sequence, which could be desirable in some marking
processes or image subject matter. Also, the hexagonal
dot shape function can be rotated within a fixed position
of the hexagonal grid using a coordinate transformation.

Fig. 13 γ series showing control over side shape and sharpness of
connection. ai ¼ 1.

Fig. 14 ai series showing control over neighbor touching as a function
of gray level. γi ¼ 1.
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5 Hexagonal Dot-Off-Dot Configuration
DOD screens are sometimes used for uniform tints because
they produce much finer textures than conventional rotated
dot screens. Rotated dot screens have the negative drawback
of possessing a texture frequency component (the rosette)
that is roughly half of the halftone frequency.1 Conversely,
periodic DOD screens have the desirable attribute of posses-
sing an apparent frequency that is significantly higher than
the single-separation halftone frequency. Another positive
attribute of DOD screens is that they have the potential to
produce colors that are out of the gamut of rotated screens.17

A significant drawback of DOD halftones is that colorant-to-
colorant registration must be held to a very tight tolerance (5
to 20 microns for common halftone frequencies) to avoid
color shifts, whereas rotated screens are relatively insensitive
to colorant-to-colorant misregistration.18 If a print engine can
hold tight colorant-to-colorant registration, and hence is able
to use DOD screens for tints, the screens would generate
acceptable textures using very low frequency halftones,
which could drastically reduce noise levels and instability.
In addition to the registration sensitivity, another barrier to
employing DOD screens occurs when using three colorants.
Although methods exist for using two9 or four (Flamenco
screens)8 colorants, methods for DOD periodic clustered
dot halftoning three colorants have not been previously
taught. Harrington10 taught a method that can perform DOD
with an arbitrary number of colors, but the dot growth is
along a growth curve rather than according to a conventional
spot function.

Here, we present a three-colorant dot-off-dot (DOD) half-
tone configuration using hexagonal geometry. The geometry
is based on a hexagonal base screen, where the three color-
ants are printed with specific displacements of the screen.
Figure 15 shows a schematic example of a three-colorant
halftone using cyan, magenta and black dots, and Fig. 16
illustrates their displacements. As described above, a hexa-
gonal screen has three “fundamental frequencies” (and three

corresponding “fundamental periods”), where any one of the
fundamentals can be considered dependent on the other two.
We can assume that the base screen is used in a reference
position for one colorant and the other two colorants use
the base screen displaced from the reference position. The
displacements are in two different directions, each along
the direction of a fundamental frequency. The amount of dis-
placement is 2/3 of the period of the fundamental frequency
in the direction of the frequency.

5.1 Comments on Texture
Wewill compare Fig. 1 to Figs. 17–19 to better understand the
nature of the texture difference between a multicolor rotated
dot screen and the present three-colorant DOD screen.
Figure 17 shows the fundamental periods of a single-colorant
hexagonal screen, which corresponds to the spectrum shown
in Fig. 6(b). Figure 18 shows the fundamental periods for
the three-colorant screen. Note that the frequencies of the
texture are higher than in the mono case. Figure 19 shows the
frequency vector diagram for the three-colorant hexagonal
DOD screen. In comparing Fig. 19 to the frequency diagram
in Fig. 1, we see that combining rotated screens produces
lower (unwanted) frequency components than what
exists in the single-colorant spectrum. These components

Fig. 15 Schematic example of a three-colorant DOD hexagonal half-
tone. The hexagons would not be in the actual image. They are
included in the schematic only to better communicate the pattern.
The choice of the colorants is arbitrary.

Fig. 16 Example of displacements for three-colorant DOD screens.

Fig. 17 Periods of fundamental frequencies of a single-colorant
hexagonal screen.
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are considered beats or forms of moiré due to the interaction of
the colorants, such as overlap in their optical absorption spec-
tra. Printing DOD using the method described here produces
higher frequencies than the single-colorant screen. The over-
lap in absorption spectra actually suppresses the fundamental
frequencies and the combined screens appear to have a higher
“combined fundamental frequency.” This phenomenon can be
understood by examining a limiting case of optical spectra
overlap, where we substitute black halftones for the cyan
and magenta halftones in Fig. 18. The additional dots elimi-
nate the single-screen fundamental frequency, and result in a
higher “combined fundamental frequency.” Since cyan and
magenta absorption spectra do not completely overlap, the
single-screen fundamental frequency is not completely sup-
pressed, but its appearance is significantly reduced as is
shown in the example below. This suppression of single-
screen fundamental frequency allows us to use very low
frequency single-colorant screens, which tend to have low
noise and high tone stability, while achieving a high frequency
appearance for three-color tints.

5.2 Example
The example below compares a three-colorant DOD screen
with a combined fundamental frequency of roughly 170 cpi
to a rotated screen set with fundamental frequencies of
roughly 170 cpi.

5.2.1 Parameters for the DOD screen
(at 2400 pixels∕inch)

Base screen: V1 ¼ 115.2 cpi, 60.3 deg; V2 ¼ 115.2 cpi,
−60.3 deg; V3 ¼ 114.3, 0 deg.

Spatial vectors (in pixel units): v1 ¼ ð24; 0Þ and
v2 ¼ ð12; 21Þ:

Shift for each screen: ShiftK ¼ 0; 0; ShiftM ¼ 0; 17;
ShiftC ¼ 12; 7:

5.2.2 Parameters for rotated screens
(at 2400 pixels∕inch)

Black screen: V1 ¼ 170 cpi, 45 deg; V2 ¼ 170 cpi,
−45 deg.

Cyan screen: V1 ¼ 170 cpi, 75 deg; V2 ¼ 170 cpi,
−15 deg.

Magenta screen: V1 ¼ 170 cpi, 15 deg; V2 ¼ 170 cpi,
−75 deg.

Figure 20 shows a comparison of appearance for the
two halftoning methods. Figure 20(a) shows a fine texture,
while significant portions of the marking process (exposure,
development) operated at only 115 cpi, thereby producing a
relatively low-noise print. On the other hand, the rotated
screens show less desirable low-feature texture while oper-
ating at a noisier, less stable 170 cpi.

6 Areas for Future Study and Summary

6.1 Future Study
While the present study focuses on enabling the use of
hexagonal halftone through particular geometric rules and
suitable spot functions, we recognize that additional work
in needed in the realm of characterization. In particular,
study is needed on the tone reproduction behavior and on
the smoothness appearance. At least three points arise
when considering the tone reproduction: (1) packing density
differences, (2) sixtouch points vs. four, (3) splitting each
hole into two triangles. Concerning smoothness, visual com-
parisons tend to indicate that hexagonally tiled screens have
a smoother appearance than conventional square tiled screen-
sfor monochrome images (see Fig. 21). This may be due to
the more complex frequency spectrum providing some level
of masking of the periodic structure. A visual model or
empirical study will be needed to better understand this
potential smoothness effect. A visual comparison of smooth-
ness for a full color image is not immediately compelling.
Consider the example of Fig. 22. The right picture was half-
toned by a digital simulation of the conventional square-cell-
based halftone screens, and the left one was halftoned by a
set of hexagonal screens with the following spatial frequen-
cies (in units of cycles/inch):

VC1 ¼ ð32; 32Þ; VC2 ¼ ð46;−14Þ; VC3 ¼ ð14;−46Þ;

VM1 ¼ ð30; 16Þ; VM2 ¼ ð30;−16Þ; VM3 ¼ ð0; 32Þ;

Fig. 18 Periods of fundamental frequencies of a three-colorant DOD
hexagonal screen.

Fig. 19 Frequency vector diagram for three-colorant hexagonal DOD
screen. Dashed vectors represent the “fundamentals” of the single-
colorant halftone. In this configuration, the single screen components
are at lower frequency than the frequencies in the three-color screen.
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VY1 ¼ ð32; 0Þ; VY2 ¼ ð16;−30Þ; VY3 ¼ ð16; 30Þ;

VK1 ¼ ð46; 14Þ; VK2 ¼ ð32;−32Þ;
VK3 ¼ ð14; 46Þ:

The frequencies are very low to make the texture apparent in
this publication. Empirical print studies are needed to effec-
tively rate the smoothness of these images. The result may be
marking process dependent. Another consideration is that
many color prints have substantial regions that are primarily
monochrome. The hexagonal screen method presented here
will allow full color moiré-free printing, with a certain gain

in smoothness benefit in the image regions that are predomi-
nantly monochrome.

6.2 Summary
Hexagonal halftone geometries for color printing may have
been avoided due to the requirement to include additional
frequency vectors into the system while remaining moiré
free. We have worked through this issue and presented a half-
tone configuration that utilizes three or four halftone screens
with hexagonally tiled cells and clusters for moiré-free
color printing. The configuration has the following proper-
ties. Each screen is constructed of tessellated convex hexa-
gons, where a screen can be thought of as having three

Fig. 20 (a) Three-colorant DOD screen; (b) conventional rotated three-colorant screen

Fig. 21 Comparison of smoothness appearance for a monochrome (a) square tiled screen; (b) hexagonally tiled screen.
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fundamental frequencies that are similar in vector length.
One pair of screens possesses frequency vectors that are
approximately equal in length and are within one frequency
range. A second pair of screens also possesses frequency
vectors of approximately equal length and can be constructed
from sums and differences of frequency vectors from the
first pair. The frequency vectors of this configuration can
be readily achieved with common orthogonal pixel grids.

This halftone configuration presents a new option with
several potential beneficial properties compared to conven-
tional square-cell-based screens. Hexagonal screens can
appear to have smoother texture, at least in image regions
that are predominantly monochrome. Due to differences in
packing geometry and touch point geometry, hexagons
have the potential to possess different tone reproduction
characteristics, which may be favorable for some marking
processes. A fourth screen (e.g., yellow) can be included
moiré-free, thereby avoiding problems associated with sto-
chastic or low contrast moiré solutions for yellow.

Also presented was a corresponding parametrically con-
trolled hexagonal halftone spot function that allows for opti-
mization of dot touch points and provides compact growth.
The optimized touch points can prevent a tone reproduction
discontinuity, while the compact growth throughout the gray
range ensures maximum stability. Examples are provided.

Additionally, we presented a hexagonal-dot-off-dot con-
figuration for three colorants, where previously taught meth-
ods for clustered periodic screens allowed for two or four8,9

colors. These DOD configurations produce very smooth tints
at the cost of maintaining very tight color-to-color registra-
tion, which may need to be on the order of 5 to 20 microns18

for common screen frequencies.
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