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1 Introduction
Despite rapid developments in electronic media, most people
still prefer reading text printed on paper rather than repro-
duced on electronic displays.1 Printed media remain more
suitable for delivering local news than electronic media,
and the packaging industry increasingly relies on the produc-
tion of visually pleasing and personalized packages by using
digital printing. In addition, an increasing number of images
are captured each year, and despite the fact that the digitiza-
tion has created novel ways to share and distribute images,
printed images still have their users. For example, the
amount of bound photobooks has grown rapidly during the
recent years.2 These, among other reasons, are why paper
and other fiber-based products still play an important role in
communication, and printed products, such as books, news-
papers, and packages, are an important part of daily life.
When a customer decides to purchase a printed book or mag-
azine, one of the key factors is print and image quality.
Rather than using technical measurements, humans do not
evaluate the quality of print and images based on physical
parameters, but rather based on personal preferences and
what they see as pleasurable.3

The problem of how humans perceive the quality of a
reproduced image is of interest to researchers in many fields,
including optics and material physics, image processing
(compression and transfer), printing and media technology,
and psychology. The problem is particularly difficult for
printed media, since solving it requires understanding the
paper and ink physics, viewing parameters, optics, and ele-
ments of human visual perception. No measure of visual
print quality can be defined without ambiguity, because it
is ultimately a subjective opinion of an “end-user” observing
the result. As a consequence, visual evaluations have been

traditionally conducted using groups of human observers,
but recent developments in perceptual models and machine
vision have made it possible to develop automatic methods
of print quality evaluation. The use of machine vision
founded on reliable perceptual and print models promises
to make it possible to replace humans in laborious off-line
evaluations. In addition, such computational methods sug-
gest the potential for quality-optimized on-line measure-
ments during printing.

Image quality assessment (IQA) models can be divided
into three categories: full-reference (FR), reduced-reference
(RR), and no-reference (NR) methods. In FR methods, a
reference image with presumed ideal quality is available,
whereas in RR methods only a small amount of information
describing the reference image is given as input. NR methods
operate in the absence of any reference image. Currently, FR
methods are the main approach for evaluating and comparing
the quality of digital images, especially compressed ones.
The digital representations of the original and compressed
images are in correspondence, i.e., there exist no-spatial
transformations between the images, and the compression
should retain at least photometric equivalence. Therefore, FR
measures can be computed in a straightforward manner by
computing “distance metrics,” and the actual problem is to
define an appropriate metric for the task. NR-IQA is the most
difficult task, and the majority of the proposed methods are
designed for a single-distortion type and can be considered
as domain specific.

The FR-IQA has been shown to be a good approach to
predict the image quality when the reference image exists.4

With a carefully designed measurement framework, it is pos-
sible to apply an FR approach to printed images and rela-
tively high correlations with subjective evaluation results can
be achieved, as was shown by Eerola et al.5 However, several
problems exist when the quality of printed images is evalu-
ated by FR methods.*Address all correspondence to: Tuomas Eerola, E-mail: tuomas.eerola@lut.fi
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The first obvious weakness is the fact that the FR methods
are suitable only when a digital reference image exists. This is
not always the case with printed images. Even more notable
problems arise from the basic assumption of the FR approach
that the reference image is of ideal quality and can be used as
a basis for quality evaluation. For quality assessment (QA) of
compressed images, this assumption is perhaps justified; a
good image compression method reduces the size of the
image in such a manner that the visual appearance of the
image changes as little as possible, i.e., the evaluated (com-
pressed) image is visually similar to the reference (original)
image. For printed images, however, it is not clear that such
an assumption applies. First of all, the original image is in a
very different form than the printed image that is being evalu-
ated, making its use as a reference image not only difficult,
but also rather questionable.6 It is not clear how the difference
between a printed photograph and a digital image should be
measured. Second, visual quality may be impaired when the
original image is transferred onto paper even if no printing
artifacts appear, since different aspects of image quality
take different degrees of importance on different media.
For example, gloss is not a property of a digital image,
but has a remarkable effect on the perceived quality of a
printed image. Even in the hypothetical ideal situation,
where the original image is of “perfect quality” (whatever
that is) and the printer or paper do not cause any visible arti-
facts, quality may still be compromised after transferring onto
paper due to the different natures of the media. Third, while
making subjective evaluations of printed samples, showing a
digital reference to human observers is not a simple matter,
since simultaneous viewing of digital and printed images
does not allow an observer to adapt both white points,
whereas the memory viewing technique does not allow
one to directly compare the images.7 Often a digital reference
image is not shown to the observers, and they are forced to
make decisions without knowing what the printed image was
supposed to look like.5 RR-QA algorithms suffer from similar
problems since a reference image is still needed.

For the aforementioned reasons, NR-QA methods are of
high interest. However, NR-QA is a much more difficult task
than FR-QA, and until recently, there did not exist any gen-
eral NR-QA methods. All methods were either application
specific or measured only a specific kind of distortion
such as blur or noise. While these methods have a role in
QA, no such method alone can predict the perceived quality
of an image. During the last few years, significant develop-
ments have led to the creation of generic NR-QA algorithms.
Thus, the objective of this study is to determine the efficacy
of these new NR models for predicting the subjective quality
of printed images by statistically evaluating their perfor-
mances against subjective mean opinion scores (MOSs)
obtained from psychometric experiments on printed samples.
Since NR models have been developed for images of natural
scenes, this study focuses only on the important application
of printed photograph quality analysis while the quality of
printed text and graphics is not considered.

The paper is organized as follows. Section 2 introduces
the existing generic NR-IQA algorithms that are statistically
evaluated in this study. Section 3 presents the data, a method
to apply NR-IQA algorithms to printed images, and the
results. The results are discussed in Sec. 4, and the conclu-
sion is drawn in Sec. 5.

2 NR-IQA
Most existing NR-IQA algorithms fall in one of the following
categories: (1) distortion-specific IQA algorithms, (2) train-
ing-based IQA algorithms, and (3) natural scene statistics
(NSS)-based IQA algorithms. The first category is composed
of methods that try to model the distortion such as blur8–10 or
blockiness.11 These methods are application specific and are
not in the scope of this work. However, it should be men-
tioned that the distortion-specific methods have also been
developed for printed images.12 The second category contains
methods and models that use image-based features and
require training on appropriate data.13–15 These methods
are highly dependent on the quality of the selected features
and often require a large amount of training data, i.e., dis-
torted images with subjective data that is laborious to collect.
Generic image features to describe the image quality are dif-
ficult to establish, which limits the application domain. The
third category contains methods that are based on the
assumption that the pristine natural images form a subset
of images that have different statistical properties than the dis-
torted images. NSS methods have turned out to be a very
promising approach, and most existing NR-IQA algorithms
with good performance more or less rely on NSS. These
methods may also require training, but the amount of training
is greatly reduced relative to training-based IQA algorithms.

Ideally, NSS features are invariant to image content, but
are sensitive to distortions. Such features can be used to
assess the image quality by estimating the degree of distortion
or the distance of the distorted image to the pristine (natural)
image, regardless of the content of the image. Several prom-
ising NSS approaches have been proposed in the literature. A
typical NSS-based IQA algorithm starts with a multiscale
image transform, such as the discrete cosine16 or wavelet
transform,17 but spatial NSS methods also exist.18 The com-
puted transform coefficients have statistical properties that
vary based on the presence of distortions. For example,
the distribution of wavelet coefficients computed from natural
images usually has a sharp peak near zero and long and
smooth tails. Most image distortions break this regularity,
which makes the shape of the coefficient distribution a
good feature for IQA.

The coefficient distributions are often parametrized using
the (zero mean) general Gaussian distribution (GGD),19

which has been found to capture the broad spectrum of pos-
sible distribution shapes. The GGD is defined as
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The distribution parameters (α, β) or (γ, βl, βr) are then
used as features to either (1) classify images based on the
decided distortion, then apply a distortion-specific IQA algo-
rithm or (2) estimate the quality directly using regression
techniques. Most of the methods are trained on data contain-
ing MOSs or difference MOSs (DMOSs) of the images.

The NR-IQA algorithms selected for this study and their
basic information are listed in Table 1. All the selected meth-
ods are based on NSS. There are also promising training-
based methods, such as the learning-based blind image qual-
ity (LBIQ)13 measure and the visual codebook-based image
quality (CBIQ) measure,15 but these were excluded from
the study due to their strong dependence on training data.
As discussed later in Sec. 3.3, due to the laborious nature
of preparing and subjectively evaluating printed samples,
data volume remains a problem and limits the selection of
the NR-IQA algorithms that can be used.

The Blind Image Quality Index (BIQI)17 makes use of
NSS features based on wavelet coefficients to first classify
an image between different distortion types and to estimate
distortion-specific quality scores. A support vector machine
(SVM) is used for classification, and a support vector regres-
sion (SVR) is used for a distortion-specific quality score esti-
mation. The final quality score is computed as a weighted
sum of the distortion-specific quality scores. The weights
are the probability estimates provided by the SVM used in
the distortion classification stage.

The Distortion Identification-based Image Verity and
Integrity Evaluation (DIIVINE) index23 is an extension of
BIQI with a richer set of NSS-based features. Instead of
the wavelet transform, a scale-space-orientation decomposi-
tion is used.

BLIINDS-II21,22 is an extension of the Blind Image
Integrity Notator (BLIINDS).16 It uses NSS features based
on the local discrete cosine transform coefficients and a sim-
ple probabilistic model to predict the quality.

Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE)25,26 differs from the methods above because it
uses only spatial features, albeit over multiple scales.
There is no need to map the data to a different coordinate
domain, such as the wavelet or DCT domain. The NSS
used is based on locally normalized luminances [mean sub-
tracted contrast normalized (MSCN) coefficients].18

BRISQUE was further developed leading to the very
generic, training-free Natural Image Quality Evaluator
(NIQE).27 It uses similar NSS features, but instead of estab-
lishing the quality value directly from features using an SVR,
the NSS features are modeled as multivariate Gaussian. The
main advantage of NIQE is that, unlike other methods, it
does not require training data with subjective human evalu-
ations. Instead, the model is constructed from features drawn
from a corpus of undistorted natural images, making it the
first truly distortion-independent NR-IQA algorithm.

The hybrid NR (HNR) model24 is based on curvelet,
wavelet, and discrete cosine transform coefficient statistics,
and the quality is predicted using the peak coordinates of the
logarithmic probability distribution of the coefficient magni-
tudes (LPMC).

2.1 Previous Comparisons of NR-IQA Algorithms
Most of the original references provide the results achieved
on the well-known LIVE database.4,28 Therefore, reliable

conclusions can be made on the performance on the specific
distortions present in the LIVE database, i.e., JPEG and
JPEG2000 compressions, additive white Gaussian noise,
Gaussian blur, and a Rayleigh fast-fading channel distortion.
The results show that BRISQUE outperforms the other NR
methods with a 0.94 linear correlation against the subjective
scores, but LBIQ, BLIINDS-II, DIIVINE, and NIQE also
attain good results with better than 0.9 correlation over all
distortion types.

3 Experiments
In this section, we introduce the data used in this study, i.e.,
the particular types of paper used, the (printed) natural
images, the psychometric subjective evaluation results (sub-
jective scores), and the methods used to process the raw data.

3.1 Test Sets
The original objective guiding the data collection was to
evaluate the effect of paper grade on the overall perceived
visual quality of printed images. Therefore, our test sets con-
sist of several paper grades at the cost of image contents. The
first set of test samples (Test Set A) consisted of natural
images printed with a prepress proofing inkjet printer on
16 different paper grades. The paper grades and the printing
process were selected according to current practices, as
described in detail in previous publications.29–31 The natural
images used in the study are presented in Fig. 1. The image
contents were selected based on current practices and pre-
vious experience in media technology, and typical content
types such as objects with details (cactus), a human portrait
(man), and a landscape (landscape) were included. The
fourth image content combined all the types (studio).

The second set of samples (Test Set B) consisted of
images printed with a production-scale electrophotographic
(EPG) printer on 21 different paper grades. The same image
contents were used excluding studio [Fig. 1(d)]. The subjec-
tive evaluations, described below, were performed separately
for both sets and image contents resulting in seven separate
tests of 16 or 21 samples, respectively.

3.2 Subjective Evaluation
The performance of the selected IQA algorithms was studied
against the psychometric subjective evaluations (subjective
scores). The subjective evaluation procedure has been
described in detail in a previous publication.29 In brief,
the sample images were attached on neutral gray frames of
size A5 (148 × 210 mm). The observers were allowed to
touch the frames, but not the images. Samples of a specific
set (the same image content and printing method) were
placed in random order on a table covered with a gray table-
cloth. Labels with numbers ranging from 1 to 5 were also
presented on the table. The observer was asked to select the
sample image representing the lowest quality in the set and
place it on the label with number 1. Then, the observer was
asked to select the highest quality sample and place it on the
label with number 5. After that, the observer’s task was to
place the remaining samples on the labels, so that the quality
increased steadily from 1 to 5. The final subjective score was
formed by computing the MOSs over all observers (N ¼ 28).
For Test Set A, the standard deviation of the opinion scores
varied from 0.26 to 0.76 depending on the sample, whereas
for Test Set B, it varied from 0.18 to 1.3. The illumination
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used had a luminous intensity of 2200 lux and a color tem-
perature of 5000 K.

3.3 Applying NR Algorithms on Printed Images
Since all the NR-IQA algorithms being studied have been
developed for digital images, the printed samples need to
be processed in such a manner that the algorithms can be
applied. The first important consideration is related to the
scanning (digitization) process. Since we are interested in
print quality instead of scanning quality, the scanner must
be an order of magnitude better than the printing system.
Fortunately, this is not difficult to achieve with available
top-quality scanners, where subpixel accuracy of the original
image can be achieved. Furthermore, to prevent photometric
errors, the scanner color mapping should be adjusted to cor-
respond to the original color information. This can be
achieved by using the scanner profiling software accompa-
nying the high-quality scanners. Second, a printed image
contains halftone patterns, and, therefore, descreening is
needed to remove the high-halftone frequencies and to form
a continuous-tone image before the IQA algorithms devel-
oped for digital images can be applied.

To produce digitized versions of the prints, the samples
were scanned using a high-quality scanner with 1250-dpi
resolution and 48-bit RGB colors. A color management pro-
file was devised for the scanner before scanning, and color
correction, descreening, and other automatic settings of the
scanner software were disabled. The digitized images were
saved using lossless compression.

The descreening procedure was performed with a Gaussian
low-pass filter which produces a continuous-tone image. To
perform the descreening in a more perceptually plausible way,
the images were converted to the CIE L*a*b* (Commission
Internationale de l'Eclairage, L = lightness, a = chroma
along red-green axis, b = chroma along yellow-blue axis)
color space, in which the color channels are filtered separately.
The CIE L*a*b* spans a perceptually uniform color space and
does not suffer from problems related to, e.g., RGB, where
color differences do not correspond to perception.32

Moreover, the filter cut-off wavelength is limited by the half-
tone screen period and should not exceed 0.5 mm, which is the
smallest visually disturbing detail from a viewing distance of
30 cm when the unevenness of print is evaluated.33 In ideal
conditions, the acuity limit of the human eye can be as
small as 0.017 deg which corresponds to 0.1 mm.34 It is crucial

Table 1 NR-IQA algorithms used in this study.

IQA algorithm Acronym Features Regression/quality estimation

Blind Image Integrity Notator—II21,22 BLIINDS-II DCT coefficient statistics Probabilistic model + support vector
regression (SVR)

Blind Image Quality Index17 BIQI Wavelet coefficient statistics Support vector machine (SVM) + SVR

Distortion Identification-based
Image Verity and Integrity
Evaluation index23

DIIVINE Scale-space-orientation
decomposition coefficient
statistics

SVM + SVR

Hybrid No-Reference model24 HNR Curvelet, wavelet, and cosine
transform coefficient statistics

Peak coordinates of logarithmic
probability distribution of the
coefficient magnitudes (LPMC)

Blind/Referenceless Image
Spatial Quality Evaluator25,26

BRISQUE Mean subtracted contrast
normalized (MSCN) coefficient
statistics

SVR

Natural Image Quality
Evaluator27

NIQE MSCN coefficient statistics Distance between multivariate
Gaussian models

Fig. 1 Image contents used in this study: (a) man; (b) lake; (c) cactus; and (d) studio.
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to select a proper cut-off wavelength that corresponds to an
assumed viewing distance and to the ability of a human
observer to perceive distortions caused by the halftone pattern.
The smaller the cut-off wavelength is, the greater the degree of
distortion caused by the halftone pattern in the image after
descreening. In this way, with a properly selected cut-off wave-
length, the halftone pattern affects the quality predicted by the
NR-IQA algorithms in a similar manner of the quality evalu-
ation made by human observers. There also exists more sophis-
ticated descreening methods, which are aimed at producing a
visually pleasing result. However, since our goal was only to
remove the halftone pattern and minimize other effects on the
image, the descreening method was kept as simple as possible.

The images were downscaled to approximately match the
resolution of the images that were used to develop the NR-
IQA algorithms. Ideally, after descreening and scaling, all
the distortions invisible to the human eye are removed.
However, the optimal cut-off wavelength and scale factor
need to be determined.

All the NR-IQA algorithms selected for this study require
some kind of training or estimation of the NSS feature dis-
tribution. However, due to the laborious nature of preparing
and subjectively evaluating printed samples, the amount of
data is too small to properly train the methods. Therefore, a
separate IQA database is required to train the methods. For
all the selected NR-IQA algorithms, implementations avail-
able on the Internet and the provided (trained) model param-
eters were used. BIQI, BLIINDS-II, BRISQUE, DIIVINE,
and HNR implementations were trained using the LIVE
database. It contains, among other distortions, blur and
noise, which have counterparts in print distortions (spreading
of ink and graininess/mottling). The HNR implementation
differs from the other methods by producing four different
quality scores: noise, blur, JPEG2000, and JPEG quality.
Only the noise measure (HNR-noise) was selected for further
study, since it was shown to produce the best results with our
data. The NIQE model was constructed using a larger set of
only pristine images.27

3.4 Results
The descreening was performed using six different cut-off
wavelengths: 0.05; 0.10; : : : ; 0.30 mm, and seven scale fac-
tors: 0.08; 0.10; : : : ; 0.20 corresponding to 100; 125; : : : ;
250 dpi. The NR-IQA algorithms were applied with every

cut-off wavelength-scale pair to find the optimal parameter
values for each method.

Figure 2 presents the examples of coefficient histograms
that were used to compute NSS features. For visualization
purposes, the histograms are presented for four samples:
low-quality inkjet sample (the sample with lowest MOS in
Test Set A), low-quality EPG sample, high-quality EPG sam-
ple, and high-quality inkjet sample. Although the two test
sets were never combined, the quality variation between the
selected samples is high. Most people would prefer the high-
quality inkjet sample as the best one, followed by the high-
quality EPG sample and low-quality EPG sample, the
low-quality inkjet sample being the worst one. As can be
seen from Fig. 2(a), the wavelet coefficient distributions
used by BIQI seem to have a lower-standard deviation for
high-quality samples and a higher one for low-quality sam-
ples, which indicates their potential in print QA. The same
also applies for the MSCN coefficients used in BRISQUE
and NIQE. However, the scale-space-orientation coefficients
used in DIIVINE seem to be more suitable for distinguishing
printing methods from each other than predicting the quality
of printed images.

Figures 3 and 4 present the results of the best NR-IQA
algorithm with the optimal cut-off wavelength and scale fac-
tor for each image content. As can be seen, the correlations
are very high. However, selecting the optimal parameter val-
ues for each method produces overly optimistic results. Since
the image content is often unknown beforehand in a practical
application, the parameters should be fixed in such a manner
that the NR-IQA algorithm is not sensitive to image content.
Figure 5 shows the optimal parameter values for each
method for different image contents, while Table 2 presents
the corresponding correlations [linear correlation coefficient
(LCC) and Spearman’s rank correlation coefficient (SRCC)]
between the MOS and algorithm scores. Also, the parameter
values that maximize the mean correlation over all image
contents and the corresponding correlation coefficients are
presented.

As it can be seen from Fig. 3, Test Set A contains two
relatively distinct clusters of different qualities: high-quality
photopapers and lower-quality multipurpose papers. Any
NR-IQA algorithm that distinguishes the two clusters and
places them into the right order gets a high LCC value,
while a method that fails to correct select the better cluster
gets a high negative correlation coefficient. Moreover, the

(c)(b)(a)
−15 −10 −5 0 5 10 15

Low quality
inkjet sample
Low quality
EPG sample 
High quality
EPG sample
High quality 
inkjet sample

−1.5 −1 −0.5 0 0.5 1 1.5

Low quality
inkjet sample
Low quality
EPG sample 
High quality
EPG sample
High quality 
inkjet sample

−4 −3 −2 −1 0 1 2 3 4

Low quality
inkjet sample
Low quality
EPG sample 
High quality
EPG sample
High quality 
inkjet sample

Fig. 2 Examples of coefficient histograms used to compute NSS features: (a) wavelet coefficient dis-
tribution used in BIQI; (b) MSCN coefficient distribution used in BRISQUE and NIQE; and (c) scale-
space-orientation coefficient distribution used in DIIVINE.
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overall correlation coefficient increases if an algorithm pla-
ces the cluster further away even if the correlations inside the
clusters do not change. Therefore, based on the LCCs
obtained using Test Set A, one can only determine whether
a method works adequately at a coarse level or not, but it
does not reveal the relative performances of the method

studied in detail. Hence, when selecting the optimal combi-
nation parameter values, SRCC appears to be a more suitable
measure.

To further study the performances of the various NR-IQA
models on Test Set A using LCC, the samples representing
the two clusters were divided into two and an additional test

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06
MAN (SRCC: 0.94776)

MOS

H
N

R
−

no
is

e

1.5 2 2.5 3 3.5 4 4.5 5
14

16

18

20

22

24

26
LAKE (SRCC: 0.91832)

MOS

N
IQ

E

1 1.5 2 2.5 3 3.5 4 4.5 5
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
CACTUS (SRCC: 0.95217)

MOS

H
N

R
−

no
is

e

1 1.5 2 2.5 3 3.5 4 4.5 5
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
STUDIO (SRCC: 0.94404)

MOS

H
N

R
−

no
is

e

(a) (b) (c) (d)

Fig. 3 The best method, cut-off wavelength, and scale factor selected for each image content of Test Set
A: (a) man; (b) lake; (c) cactus; and (d) studio.
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Fig. 4 The best method, cut-off wavelength, and scale factor selected for each image content of Test Set
B: (a) man; (b) lake; and (d) cactus.
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Fig. 5 Optimal parameter values for different image contents in Test Set A (red) and Test Set B (blue):
(a) BIQI; (b) BLIINDS-II; (c) BRISQUE; (d) DIIVINE; (e) HNR-noise; and (f) NIQE. If for two or more image
contents of the optimal parameter values were the same, then the markers were slightly shifted to make
the figures more readable.
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was carried out using the challenging lower-quality multipur-
pose papers. The result is shown in Fig. 6 and Table 2, and as
expected, the correlations are much lower than on the full
Test Set A. However, although the quality variation inside
the set is very low, clear correlations between the MOS val-
ues and the algorithm scores can be observed.

Figures 7 and 8 show the results with optimal parameter
values (mean SRCC over all image contents). Based on the
figures, it is clear that the image content significantly affects
the algorithm scores. Although the within-content correla-
tions are high, different image quality score values for differ-
ent contents cause a low overall correlation over all contents.
However, it should be noted that the subjective evaluation
results were separately scaled to the interval 1 to 5 for

each content, and the MOS values are not directly compa-
rable between the image contents. Therefore, combining the
plots without preprocessing is not a well-grounded approach.

One option to avoid the above problem is to scale the IQA
algorithm scores for each image content, as was done in
Ref. 5. From a practical viewpoint, it is more interesting
to put the paper grades in a proper order than to find the over-
all quality of a single-printed image on some abstract quality
scale. Therefore, the subjective evaluation as well as the IQA
algorithm scores should be similar over different image
contents for the same paper grade. The subjective evaluation
results were always scaled to the interval 1 to 5, but the IQA
algorithm scores may differ significantly across image con-
tents. Therefore, either the IQA algorithm scores need to be

Table 2 Correlations with optimal parameter values for each image content. The first number in each entry is LCC value, and the second is SRCC.
The numbers shown in bold indicate the best results.

Image content

Method

BIQI BLIINDS-II BRISQUE DIIVINE HNR-noise NIQE

Test Set A Man 0.97/0.92 0.87/0.77 0.79/0.82 0.74/0.64 0.98/0.95 0.97/0.92

Lake 0.98/0.91 0.69/0.56 0.88/0.60 0.95/0.83 0.98/0.91 0.98/0.92

Cactus 0.97/0.93 0.72/0.62 0.93/0.85 0.92/0.86 0.98/0.95 0.97/0.92

Studio 0.94/0.93 0.76/0.75 0.94/0.77 0.91/0.91 0.98/0.94 0.97/0.84

Mean 0.97/0.89 0.33/0.32 0.84/0.69 0.85/0.77 0.97/0.90 0.97/0.85

Test Set A (multipurpose
papers only)

Man 0.68/0.78 0.56/0.54 0.79/0.75 0.23/0.27 0.64/0.81 0.57/0.71

Lake 0.87/0.88 0.60/0.54 0.69/0.70 0.39/0.40 0.76/0.76 0.59/0.69

Cactus 0.77/0.87 0.85/0.86 0.76/0.82 0.62/0.68 0.91/0.87 0.78/0.78

Studio 0.83/0.79 0.58/0.55 0.42/0.35 0.81/0.70 0.75/0.80 0.43/0.38

Mean 0.64/0.72 0.39/0.39 0.50/0.43 0.27/0.25 0.64/0.66 0.34/0.44

Test Set B Man 0.86/0.88 0.82/0.81 0.87/0.87 0.57/0.56 0.89/0.85 0.92/0.93

Lake 0.89/0.81 0.65/0.60 0.77/0.70 0.88/0.89 0.70/0.54 0.85/0.73

Cactus 0.85/0.76 0.75/0.75 0.87/0.83 0.71/0.72 0.78/0.67 0.70/0.67

Mean 0.82/0.79 0.67/0.64 0.80/0.76 0.59/0.64 0.67/0.53 0.73/0.66
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scaled to a common scale or the analysis needs to be done
separately for different image contents. We selected the first
option, since the number of samples (16 or 21) was not
enough to find statistically significant differences between
the IQA algorithms. Therefore, the different image contents
were combined to form a larger test set by scaling the IQA
algorithm scores. Here, the scaling was performed linearly.
Let xn ¼ ðxn;1; : : : ; xn;MÞ represent the IQA algorithm scores
of one assessment for all samples (1; : : : ;M) within a single-
image content n. Then, in the linear model, we have

x̂n;i ¼ b̂n

�
1

xn;i

�
; (4)

where b̂n ¼ ðbn;1; bn;2Þ are selected by minimizing the errors
between the image contents as follows:

b̂n ¼ argmin
b̂n

X
i

½x1;i − ðbn;1 þ bn;2xn;iÞ�2: (5)

For the first image content b̂1 ¼ ð0;1Þ and for the remain-
ing image contents b̂n is such that the IQA algorithm scores
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are converted to values similar to the values of the first image
content on the same paper grade. The above-mentioned
method does not allow combining Test Sets A and B, since
there were no samples with comparable quality in different
sets that could have been used to scale the MOS values to the
same scale. Figures 9 and 10 and Table 3 present the results
with aligned algorithm scores. Table 3 also lists the results
for selected FR-IQA algorithms obtained using similar
procedures:5 peak signal-to-noise ratio (PSNR), structural

similarity metric (SSIM),35 multiscale SSIM (MS-SSIM),36

and visual information fidelity (VIF).37

The statistical significance of the previous results was
studied using the variance test. It expresses the trust in the
superiority or inferiority of one QA algorithm over another
based on performance measures. The test is based on the
assumption that the residuals (difference between MOS and
the IQA algorithm score linearly fitted to MOS) are normally
distributed. The normality of the residuals was tested using
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Fig. 9 Aligned algorithm scores with the best cut-off wavelengths and scale factors selected for each
method on Test Set A: (a) BIQI; (b) BLIINDS-II; (c) BRISQUE; (d) DIIVINE; (e) HNR-noise; and (f) NIQE.
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the Lilliefors test38 at a 5% significance level, and the resid-
uals were shown to follow a normal distribution for all meth-
ods in Test Set A and for all methods except DIIVINE in Test
Set B. Moreover, since DIIVINE had the lowest LCC in Test
Set B, the non-normality has no significant effect on our con-
clusions. The F-test was used to test whether the variances of
the residuals of two QA algorithms are identical, i.e., the QA
algorithm residuals are randomly drawn from the same dis-
tribution. The null hypothesis is that the residuals of both QA
algorithms come from the same distribution and are sta-
tistically indistinguishable with 90% confidence. The signifi-
cance test results for the aligned algorithm scores are shown
in Tables 4 and 5 for both test sets and for all possible pair-
ings of QA algorithms.

4 Discussion
As described earlier, the training of IQA algorithms was per-
formed using a separate set of distorted or pristine digital
images, and the printed and scanned images were used
only for testing. Therefore, the training and testing data were
very different from each other and the training data did not
contain the printing distortions. It is understandable that this
reduced the performance of the learned models and might
favor certain IQA algorithms. However, as the results
showed, most IQA algorithms were still able to achieve
high correlations with MOS, suggesting that the distortions
in the training data were close to the distortions in the testing
data. Moreover, since the ultimate goal is to develop an NR-
IQA algorithm that needs to be trained only once, after which
it should be possible to apply it to any appropriate image
quality application, it is worthwhile to also evalate the algo-
rithms’ dependency on the quality of the training data. This
justifies the use of different training and testing data as it
reveals not only the performance of the methods, but also
their sensitivity to imperfect training data.

On both test sets, most of the NR methods outperformed
PSNR and the best methods were shown to produce almost
as good results as state-of-the-art FR-IQA algorithms. As
mentioned earlier, Test Set A contains two relatively distinct
clusters, making SRCC a more reliable metric for comparing
the performance of IQA algorithms. Based on the SRCC
results, the best methods are BIQI, NIQE, and HNR-noise
and these are also statistically significantly better than the
rest of the methods. Test Set B does not contain similar dis-
tinguishable clusters, and therefore, LCC also provides use-
ful information. Unlike SRCC, it also measures the linear
dependence, i.e., whether a change in the quality at the
high-quality end of the scale corresponds to a similar change
at the low-quality end. Based on the LCC results, the best
methods are BIQI, BRISQUE, and NIQE. The SRCC results
support this conclusion. However, it should be noted that no
statistically significant differences in performance were found
between these methods and BLIINDS-II or HNR-noise.

The notably lower performance of DIIVINE compared
with BIQI on both test sets is a surprising result, since
DIIVINE is an extension of BIQI and it outperformed BIQI
in experiments made using the LIVE database. The results
shown in Fig. 2 suggest that the scale-space-orientation
decomposition used by DIIVINE is more sensitive to the
different printing methods and, therefore, a less suitable

Table 3 Correlations between the MOS and the aligned algorithm
scores from NR-IQA algorithms and from selected FR-IQA algo-
rithms.5 The numbers shown in bold indicate the best results.

IQA algorithm

Test Set A Test Set B

LCC SRCC LCC SRCC

PSNR (FR) 0.44 0.29 0.54 0.43

SSIM (FR) 0.98 0.92 0.80 0.70

MS-SSIM (FR) 0.98 0.91 0.89 0.79

VIF (FR) 0.98 0.90 0.82 0.74

BIQI (NR) 0.96 0.88 0.74 0.77

BLIINDS-II (NR) 0.75 0.66 0.68 0.68

BRISQUE (NR) 0.82 0.73 0.79 0.78

DIIVINE (NR) 0.82 0.75 0.52 0.59

HNR-noise (NR) 0.93 0.86 0.67 0.58

NIQE (NR) 0.97 0.84 0.73 0.67

Table 4 F-test results for Test Set A: 0 means that the QA algorithms
are statistically indistinguishable from each other, 1 means that the
IQA algorithm for the row is statistically better than the IQA algorithm
in the column, and −1 means that the IQA algorithm in the row is sta-
tistically worse than the IQA algorithm for the column.

BIQI
BLIINDS-

II BRISQUE DIIVINE
HNR-
noise NIQE

BIQI — 1 1 1 1 0

BLIINDS-II −1 — 0 0 −1 −1

BRISQUE −1 0 — 0 −1 −1

DIIVINE −1 0 0 — −1 −1

HNR-noise −1 1 1 1 — −1

NIQE 0 1 1 1 1 —

Table 5 F-test results for Test Set B.

BIQI
BLIINDS-

II BRISQUE DIIVINE
HNR-
noise NIQE

BIQI — 0 0 1 0 0

BLIINDS-II 0 — 0 0 0 0

BRISQUE 0 0 — 1 0 0

DIIVINE −1 0 −1 — 0 −1

HNR-noise 0 0 0 0 — 0

NIQE 0 0 0 1 0 —
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approach for the QAs of printed images. Moreover, since it is
the more complex of the two (88 NSS features in DIIVINE
compared with 18 in BIQI), there is a higher chance of over-
tuning, making it more vulnerable to the large differences
between training and testing data.

As can be seen in Figs. 7 and 8, image content has a
noticeable effect on the algorithm scores. The main reasons
for this are the fact that the NR-IQA algorithms were trained
using a separate database containing different image con-
tents, and the scaling of the MOS values for each type of
image content was performed separately. Scaling the algo-
rithm scores similarly to the MOS values does not really
solve the problem, since we do not know if the effect
of image content will be eliminated even if the above prob-
lems did not exist. Therefore, the results presented in Figs. 9
and 10 can be seen as an upper limit of method performance
and to achieve such results, a manual effort is needed.
However, if the parameters a and b that define the scaling
of the algorithm scores could be predicted based on the
image content, then the results presented in Figs. 9 and 10
could be achieved using a fully automatic method.

BIQI and NIQE perform well on both the test sets. While
BIQI achieves slightly higher correlations, NIQE contains
one significant benefit: it requires only pristine images to
be trained. This enables training with a much larger number
of images, making it less vulnerable to new image content.
The results show that the NIQE is less sensitive to different
image contents than the other tested NR-IQA algorithms [see
Fig. 7(f)].

5 Conclusion
We applied the leading general-purpose NR-IQA algorithms
to printed images and evaluated the performance of several
state-of-the-art NR-IQA algorithms on an extensive set of
printed photographs. We found that the BIQI and NIQE algo-
rithms outperformed the other QA algorithms. Of these two,
NIQE was less sensitive to image content, making it the most
promising current method for NR-printed IQA.
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