ReferencesD. E. Smalleyet al.,
“Anisotropic leaky-mode modulator for holographic video displays,”
Nature, 498
(7454), 313
–317
(2013). http://dx.doi.org/10.1038/nature12217 NATUAS 0028-0836 Google Scholar
S. Tayet al.,
“An updatable holographic three-dimensional display,”
Nature, 451
(7179), 694
–698
(2008). http://dx.doi.org/10.1038/nature06596 NATUAS 0028-0836 Google Scholar
P. A. Blancheet al.,
“Holographic three-dimensional telepresence using large-area photorefractive polymer,”
Nature, 468
(7320), 80
–83
(2010). http://dx.doi.org/10.1038/nature09521 NATUAS 0028-0836 Google Scholar
J. C. Liet al.,
“Wave front reconstruction through a paraxial optical system in color digital holography,”
Opt. Commun., 287
(15), 53
–57
(2013). http://dx.doi.org/10.1016/j.optcom.2012.08.100 OPCOB8 0030-4018 Google Scholar
V. G. Sidorovich,
“Mode theory of 3D hologram,”
Opt. Spectrosc., 112
(2), 305
–311
(2012). http://dx.doi.org/10.1134/S0030400X12020245 OPSUA3 0030-400X Google Scholar
S. C. KimE. S. Kim,
“Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,”
Appl. Opt., 48
(6), 1030
–1041
(2009). http://dx.doi.org/10.1364/AO.48.001030 APOPAI 0003-6935 Google Scholar
H. Zhanget al.,
“Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,”
Opt. Eng., 51
(7), 075801
(2012). http://dx.doi.org/10.1117/1.OE.51.7.075801 OPEGAR 0091-3286 Google Scholar
H. D. Zhenget al.,
“A novel three-dimensional holographic display system based on LC-R2500 spatial light modulator,”
Optik, 120
(9), 431
–436
(2009). http://dx.doi.org/10.1016/j.ijleo.2007.11.002 OTIKAJ 0030-4026 Google Scholar
N. Okadaet al.,
“Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,”
Opt. Express, 21
(7), 9192
–9197
(2013). http://dx.doi.org/10.1364/OE.21.009192 OPEXFF 1094-4087 Google Scholar
M. Lucente,
“ Computational holographic bandwidth compression,”
IBM Syst. J., 35
(3.4), 349
–365
(1996). http://dx.doi.org/10.1147/sj.353.0349 IBMSA7 0018-8670 Google Scholar
D. Chenget al.,
“Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,”
Chin. Opt. Lett., 11
(3), 031201
(2013). http://dx.doi.org/10.3788/COL COLHBT 1671-7694 Google Scholar
J. P. Rollandet al.,
“Multifocal planes head-mounted displays,”
Appl. Opt., 39
(19), 3209
–3215
(2000). http://dx.doi.org/10.1364/AO.39.003209 APOPAI 0003-6935 Google Scholar
T. Bandoet al.,
“Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,”
Displays, 33
(2), 76
–83
(2012). http://dx.doi.org/10.1016/j.displa.2011.09.001 DISPDP 0141-9382 Google Scholar
S. Seung-HoB. Javidi,
“Speckle-reduced three-dimensional volume holographic display by use of integral imaging,”
Appl. Opt., 41
(14), 2644
–2649
(2002). http://dx.doi.org/10.1364/AO.41.002644 APOPAI 0003-6935 Google Scholar
A. O. YontemL. Onural,
“Integral imaging based 3D display of holographic data,”
Opt. Express, 20
(22), 24175
–24195
(2012). http://dx.doi.org/10.1364/OE.20.024175 OPEXFF 1094-4087 Google Scholar
Y. TakakiM. Yokouchi,
“Accommodation measurements of horizontally scanning holographic display,”
Opt. Express, 20
(4), 3918
–3931
(2012). http://dx.doi.org/10.1364/OE.20.003918 OPEXFF 1094-4087 Google Scholar
S. R. BharadwajT. R. Candy,
“Accommodative and vergence responses to conflicting blur and disparity stimuli during development,”
J. Vis., 9
(11), 4
(2009). http://dx.doi.org/10.1167/9.11.4 1534-7362 Google Scholar
M. S. Bankset al.,
“Insight into vergence-accommodation mismatch,”
Proc. SPIE, 8735 873509
(2013). http://dx.doi.org/10.1117/12.2019866 PSISDG 0277-786X Google Scholar
J. Kimet al.,
“Visual discomfort and the temporal properties of the vergence-accommodation conflict,”
Proc. SPIE, 8288 828811
(2012). http://dx.doi.org/10.1117/12.912223 PSISDG 0277-786X Google Scholar
D. M. Hoffmanet al.,
“Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,”
J. Vis., 8
(3), 1
–30
(2008). http://dx.doi.org/10.1167/8.3.33 1534-7362 Google Scholar
T. Shibataet al.,
“The zone of comfort: predicting visual discomfort with stereo displays,”
J. Vis., 11
(8), 1
–29
(2011). http://dx.doi.org/10.1167/11.8.11 1534-7362 Google Scholar
T. Shibataet al.,
“Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict,”
Proc. SPIE, 7863 78630P
(2011). http://dx.doi.org/10.1117/12.872347 PSISDG 0277-786X Google Scholar
G. D. Loveet al.,
“High-speed switchable lens enables the development of a volumetric stereoscopic display,”
Opt. Express, 17
(18), 15716
–15725
(2009). http://dx.doi.org/10.1364/OE.17.015716 OPEXFF 1094-4087 Google Scholar
J. Hahnet al.,
“Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,”
Opt. Express, 16
(16), 12372
–12386
(2008). http://dx.doi.org/10.1364/OE.16.012372 OPEXFF 1094-4087 Google Scholar
Y. TakakiK. Ikeda,
“Simplified calculation method for computer-generated holographic stereograms from multi-view images,”
Opt. Express, 21
(8), 9652
–9663
(2013). http://dx.doi.org/10.1364/OE.21.009652 OPEXFF 1094-4087 Google Scholar
H. Kanget al.,
“Compensated phase-added stereogram for real-time holographic display,”
Opt. Eng., 46
(9), 095802
(2007). http://dx.doi.org/10.1117/1.2784463 OPEGAR 0091-3286 Google Scholar
Q. Y. J. Smithwicket al.,
“Interactive holographic stereograms with accommodation cues,”
Proc. SPIE, 7619 761903
(2010). http://dx.doi.org/10.1117/12.840526 PSISDG 0277-786X Google Scholar
Y. Takaki,
“Super multi-view display with 128 viewpoints and viewpoint formation,”
Proc. SPIE, 7237 72371T
(2009). http://dx.doi.org/10.1117/12.807119 PSISDG 0277-786X Google Scholar
Y. TakakiN. Nago,
“Multi-projection of lenticular displays to construct a 256-view super multi-view display,”
Opt. Express, 18
(9), 8824
–8835
(2010). http://dx.doi.org/10.1364/OE.18.008824 OPEXFF 1094-4087 Google Scholar
M. Lucente,
“Holographic bandwidth compression using spatial subsampling,”
Opt. Eng., 35
(6), 1529
–1537
(1996). http://dx.doi.org/10.1117/1.600736 OPEGAR 0091-3286 Google Scholar
T. Yatagai,
“Stereoscopic approach to 3-D display using computer-generated holograms,”
Appl. Opt., 15
(11), 2722
–2729
(1976). http://dx.doi.org/10.1364/AO.15.002722 APOPAI 0003-6935 Google Scholar
M. W. Halle,
“The generalized holographic stereogram,”
Massachusetts Institute of Technology,
(1991). Google Scholar
V. M. Boveet al.,
“Real-time holographic video images with commodity PC hardware,”
Proc. SPIE, 5664 255
–262
(2005). http://dx.doi.org/10.1117/12.585888 PSISDG 0277-786X Google Scholar
Q. Y. J. Smithwicket al.,
“Real-time shader rendering of holographic stereograms,”
Proc. SPIE, 7233 723302
(2009). http://dx.doi.org/10.1117/12.808999 PSISDG 0277-786X Google Scholar
W. Plesniak,
“Incremental update of computer-generated holograms,”
Opt. Eng., 42
(6), 1560
–1571
(2003). http://dx.doi.org/10.1117/1.1572501 OPEGAR 0091-3286 Google Scholar
W. Plesniaket al.,
“Reconfigurable image projection holograms,”
Opt. Eng., 45
(11), 115801
(2006). http://dx.doi.org/10.1117/1.2390678 OPEGAR 0091-3286 Google Scholar
M. E. Lucente,
“Interactive computation of holograms using a look-up table,”
J. Electron. Imaging, 2
(1), 28
–34
(1993). http://dx.doi.org/10.1117/12.133376 JEIME5 1017-9909 Google Scholar
Introduction to Fourier Optics, 2nd ed.McGraw-Hill, New York
(1996). Google Scholar
M. Makowskiet al.,
“Efficient image projection by Fourier electroholography,”
Opt. Lett., 36
(16), 3018
–3020
(2011). http://dx.doi.org/10.1364/OL.36.003018 OPLEDP 0146-9592 Google Scholar
M. Makowskiet al.,
“Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,”
Opt. Eng., 44
(12), 125805
(2005). http://dx.doi.org/10.1117/1.2148980 OPEGAR 0091-3286 Google Scholar
M. Makowskiet al.,
“Iterative design of multiplane holograms: experiments and applications,”
Opt. Eng., 46
(4), 045802
(2007). http://dx.doi.org/10.1117/1.2727379 OPEGAR 0091-3286 Google Scholar
|
ACCESS THE FULL ARTICLE

CITATIONS
Cited by 2 scholarly publications.
Holography
Stereo holograms
Holograms
3D image reconstruction
Eye
3D displays
3D image processing