15 September 2014 Method for generating full-parallax holographic stereograms without vergence-accommodation conflicts
Author Affiliations +

References

1. 

D. E. Smalleyet al., “Anisotropic leaky-mode modulator for holographic video displays,” Nature, 498 (7454), 313 –317 (2013). http://dx.doi.org/10.1038/nature12217 NATUAS 0028-0836 Google Scholar

2. 

S. Tayet al., “An updatable holographic three-dimensional display,” Nature, 451 (7179), 694 –698 (2008). http://dx.doi.org/10.1038/nature06596 NATUAS 0028-0836 Google Scholar

3. 

P. A. Blancheet al., “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature, 468 (7320), 80 –83 (2010). http://dx.doi.org/10.1038/nature09521 NATUAS 0028-0836 Google Scholar

4. 

J. C. Liet al., “Wave front reconstruction through a paraxial optical system in color digital holography,” Opt. Commun., 287 (15), 53 –57 (2013). http://dx.doi.org/10.1016/j.optcom.2012.08.100 OPCOB8 0030-4018 Google Scholar

5. 

V. G. Sidorovich, “Mode theory of 3D hologram,” Opt. Spectrosc., 112 (2), 305 –311 (2012). http://dx.doi.org/10.1134/S0030400X12020245 OPSUA3 0030-400X Google Scholar

6. 

S. C. KimE. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt., 48 (6), 1030 –1041 (2009). http://dx.doi.org/10.1364/AO.48.001030 APOPAI 0003-6935 Google Scholar

7. 

H. Zhanget al., “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng., 51 (7), 075801 (2012). http://dx.doi.org/10.1117/1.OE.51.7.075801 OPEGAR 0091-3286 Google Scholar

8. 

H. D. Zhenget al., “A novel three-dimensional holographic display system based on LC-R2500 spatial light modulator,” Optik, 120 (9), 431 –436 (2009). http://dx.doi.org/10.1016/j.ijleo.2007.11.002 OTIKAJ 0030-4026 Google Scholar

9. 

N. Okadaet al., “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express, 21 (7), 9192 –9197 (2013). http://dx.doi.org/10.1364/OE.21.009192 OPEXFF 1094-4087 Google Scholar

10. 

M. Lucente, “ Computational holographic bandwidth compression,” IBM Syst. J., 35 (3.4), 349 –365 (1996). http://dx.doi.org/10.1147/sj.353.0349 IBMSA7 0018-8670 Google Scholar

11. 

D. Chenget al., “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett., 11 (3), 031201 (2013). http://dx.doi.org/10.3788/COL COLHBT 1671-7694 Google Scholar

12. 

J. P. Rollandet al., “Multifocal planes head-mounted displays,” Appl. Opt., 39 (19), 3209 –3215 (2000). http://dx.doi.org/10.1364/AO.39.003209 APOPAI 0003-6935 Google Scholar

13. 

T. Bandoet al., “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays, 33 (2), 76 –83 (2012). http://dx.doi.org/10.1016/j.displa.2011.09.001 DISPDP 0141-9382 Google Scholar

14. 

S. Seung-HoB. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integral imaging,” Appl. Opt., 41 (14), 2644 –2649 (2002). http://dx.doi.org/10.1364/AO.41.002644 APOPAI 0003-6935 Google Scholar

15. 

A. O. YontemL. Onural, “Integral imaging based 3D display of holographic data,” Opt. Express, 20 (22), 24175 –24195 (2012). http://dx.doi.org/10.1364/OE.20.024175 OPEXFF 1094-4087 Google Scholar

16. 

Y. TakakiM. Yokouchi, “Accommodation measurements of horizontally scanning holographic display,” Opt. Express, 20 (4), 3918 –3931 (2012). http://dx.doi.org/10.1364/OE.20.003918 OPEXFF 1094-4087 Google Scholar

17. 

S. R. BharadwajT. R. Candy, “Accommodative and vergence responses to conflicting blur and disparity stimuli during development,” J. Vis., 9 (11), 4 (2009). http://dx.doi.org/10.1167/9.11.4 1534-7362 Google Scholar

18. 

M. S. Bankset al., “Insight into vergence-accommodation mismatch,” Proc. SPIE, 8735 873509 (2013). http://dx.doi.org/10.1117/12.2019866 PSISDG 0277-786X Google Scholar

19. 

J. Kimet al., “Visual discomfort and the temporal properties of the vergence-accommodation conflict,” Proc. SPIE, 8288 828811 (2012). http://dx.doi.org/10.1117/12.912223 PSISDG 0277-786X Google Scholar

20. 

D. M. Hoffmanet al., “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis., 8 (3), 1 –30 (2008). http://dx.doi.org/10.1167/8.3.33 1534-7362 Google Scholar

21. 

T. Shibataet al., “The zone of comfort: predicting visual discomfort with stereo displays,” J. Vis., 11 (8), 1 –29 (2011). http://dx.doi.org/10.1167/11.8.11 1534-7362 Google Scholar

22. 

T. Shibataet al., “Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict,” Proc. SPIE, 7863 78630P (2011). http://dx.doi.org/10.1117/12.872347 PSISDG 0277-786X Google Scholar

23. 

G. D. Loveet al., “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express, 17 (18), 15716 –15725 (2009). http://dx.doi.org/10.1364/OE.17.015716 OPEXFF 1094-4087 Google Scholar

24. 

J. Hahnet al., “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express, 16 (16), 12372 –12386 (2008). http://dx.doi.org/10.1364/OE.16.012372 OPEXFF 1094-4087 Google Scholar

25. 

Y. TakakiK. Ikeda, “Simplified calculation method for computer-generated holographic stereograms from multi-view images,” Opt. Express, 21 (8), 9652 –9663 (2013). http://dx.doi.org/10.1364/OE.21.009652 OPEXFF 1094-4087 Google Scholar

26. 

H. Kanget al., “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng., 46 (9), 095802 (2007). http://dx.doi.org/10.1117/1.2784463 OPEGAR 0091-3286 Google Scholar

27. 

Q. Y. J. Smithwicket al., “Interactive holographic stereograms with accommodation cues,” Proc. SPIE, 7619 761903 (2010). http://dx.doi.org/10.1117/12.840526 PSISDG 0277-786X Google Scholar

28. 

Y. Takaki, “Super multi-view display with 128 viewpoints and viewpoint formation,” Proc. SPIE, 7237 72371T (2009). http://dx.doi.org/10.1117/12.807119 PSISDG 0277-786X Google Scholar

29. 

Y. TakakiN. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express, 18 (9), 8824 –8835 (2010). http://dx.doi.org/10.1364/OE.18.008824 OPEXFF 1094-4087 Google Scholar

30. 

M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng., 35 (6), 1529 –1537 (1996). http://dx.doi.org/10.1117/1.600736 OPEGAR 0091-3286 Google Scholar

31. 

T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt., 15 (11), 2722 –2729 (1976). http://dx.doi.org/10.1364/AO.15.002722 APOPAI 0003-6935 Google Scholar

32. 

M. W. Halle, “The generalized holographic stereogram,” Massachusetts Institute of Technology, (1991). Google Scholar

33. 

V. M. Boveet al., “Real-time holographic video images with commodity PC hardware,” Proc. SPIE, 5664 255 –262 (2005). http://dx.doi.org/10.1117/12.585888 PSISDG 0277-786X Google Scholar

34. 

Q. Y. J. Smithwicket al., “Real-time shader rendering of holographic stereograms,” Proc. SPIE, 7233 723302 (2009). http://dx.doi.org/10.1117/12.808999 PSISDG 0277-786X Google Scholar

35. 

W. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng., 42 (6), 1560 –1571 (2003). http://dx.doi.org/10.1117/1.1572501 OPEGAR 0091-3286 Google Scholar

36. 

W. Plesniaket al., “Reconfigurable image projection holograms,” Opt. Eng., 45 (11), 115801 (2006). http://dx.doi.org/10.1117/1.2390678 OPEGAR 0091-3286 Google Scholar

37. 

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging, 2 (1), 28 –34 (1993). http://dx.doi.org/10.1117/12.133376 JEIME5 1017-9909 Google Scholar

38. 

Introduction to Fourier Optics, 2nd ed.McGraw-Hill, New York (1996). Google Scholar

39. 

M. Makowskiet al., “Efficient image projection by Fourier electroholography,” Opt. Lett., 36 (16), 3018 –3020 (2011). http://dx.doi.org/10.1364/OL.36.003018 OPLEDP 0146-9592 Google Scholar

40. 

M. Makowskiet al., “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng., 44 (12), 125805 (2005). http://dx.doi.org/10.1117/1.2148980 OPEGAR 0091-3286 Google Scholar

41. 

M. Makowskiet al., “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng., 46 (4), 045802 (2007). http://dx.doi.org/10.1117/1.2727379 OPEGAR 0091-3286 Google Scholar
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Holography

Stereo holograms

Holograms

3D image reconstruction

Eye

3D displays

3D image processing

Back to Top