You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 September 2016Computational estimation of resolution in reconstruction techniques utilizing sparsity, total variation, and nonnegativity
Techniques which exploit properties such as sparsity and total variation have provided the ability to reconstruct images that surpass the conventional limits of imaging. This leads to difficulties in assessing the result, as conventional metrics for resolution are no longer valid. We develop a numerical approach to evaluating the second-order statistics of the estimate by relating a confidence interval on the solution to a confidence interval on a pixel value, and from this we formulate an approach to estimating the spatial resolution. With this estimate, we can calculate the resolution at each point subject to chosen bounds on the desired precision and confidence. We demonstrate the method for limited-angle tomographic reconstructions utilizing nonnegativity, sparse regularization, total-variation minimization, and their combinations. This provides a means to visualize and understand the effect on the image inherent in these penalties and constraints. Examples are provided using simulated data for different methods, and the results are shown to agree with resolution calculated empirically via the local edge response.
The alert did not successfully save. Please try again later.
Keith Dillon, Yeshaiahu Fainman, Yu-Ping Wang, "Computational estimation of resolution in reconstruction techniques utilizing sparsity, total variation, and nonnegativity," J. Electron. Imag. 25(5) 053016 (23 September 2016) https://doi.org/10.1117/1.JEI.25.5.053016