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Abstract. We present an image inpainting technique using frequency-domain information.
Prior works on image inpainting predict the missing pixels by training neural networks using
only the spatial-domain information. However, these methods still struggle to reconstruct high-
frequency details for real complex scenes, leading to a discrepancy in color, boundary artifacts,
distorted patterns, and blurry textures. To alleviate these problems, we investigate if it is possible
to obtain better performance by training the networks using frequency-domain information
(discrete Fourier transform) along with the spatial-domain information. To this end, we propose
a frequency-based deconvolution module that enables the network to learn the global context
while selectively reconstructing the high-frequency components. We evaluate our proposed
method on the publicly available datasets: celebFaces attribute (CelebA) dataset, Paris street-
view, and describable textures dataset and show that our method outperforms current state-
of-the-art image inpainting techniques both qualitatively and quantitatively. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JEI.30.2.023016]
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1 Introduction

In computer vision, the task of filling in missing pixels of an image is known as image inpainting.
It can be extensively applied for creative editing tasks such as removing unwanted/distracting
objects in an image, generating the missing region of an occluded image, or improving data
availability for satellite imagery. The main challenge in this task is to synthesize the missing
pixels in such a way that it looks visually realistic and coherent to human eyes.

Traditional image inpainting algorithms1–11 can be broadly divided into two categories.
Diffusion-based image inpainting algorithms1–4 focus on propagating the local image appearance
into the missing regions. Although these methods can fill in small holes, they produce smoothed
results as the hole grows bigger. On the other hand, patch-based traditional inpainting
algorithms5–11 iteratively search for the best-fitting patch in the image to fill in the missing
region. These methods can fill in bigger holes, but they are not effective either in inpainting
missing regions that have complex structures or in generating unique patterns or novel objects
that are not available in the image in the form of a patch.

Recent research on image inpainting12–17 has leveraged the advancements in generative mod-
els such as generative adversarial networks (GANs)18 and have shown that it is possible to learn
and predict missing pixels in coherence with the existing neighboring pixels by training a con-
volutional encoder–decoder network. In this paradigm, generally speaking, the model is trained
in a two-stage manner: (i) in the first stage, the missing regions are coarsely filled in with initial
structures by minimizing the traditional reconstruction loss and (ii) in the second stage, the
initially reconstructed regions are refined using an adversarial loss. Although these methods
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are good at generating visually plausible novel contents such as human faces, structures, and
natural scenes in the missing region, they still struggle to reconstruct high-frequency details for
real complex scenes, leading to a discrepancy in color, boundary artifacts, distorted patterns, and
blurry textures. Additionally, the reconstruction quality of previous methods deteriorates as the
size of the missing region increases. The above problems can be attributed to existing methods
using only spatial-domain information during the learning process, similar to diffusion tech-
niques, to obtain information from the mask boundary. Thus as the mask size increases, the
interior reconstruction details are lost, and only a low-frequency component of the original patch
is estimated by these methods.

To alleviate the above problem, we resort to frequency-based image inpainting. We show that
image inpainting can be converted to the problem of deconvolution in the frequency domain,
which can predict local structure in the missing regions using global context from the image.
Qualitative analysis shows that our proposed frequency-domain image inpainting approach helps
improve the texture details of missing regions. Previous methods make use of only spatial-
domain information. Therefore, the reconstruction of the information close to the mask boundary
is good compared with that of the interior region since the local context is available only in the
boundary regions. On the other hand, a frequency-based approach would take information from
the global context in the image because to discrete Fourier transforms (DFT) that considers all
pixels for computing the frequency components. As a result, it captures more detailed structural
and textural content of the missing regions in the learned representation. Due to these reasons,
we propose a two-stage network consisting of (i) a deconvolution stage and (ii) a refinement
stage. In the first stage, the DFT image from the original RGB image is computed. Each fre-
quency component in the DFT image captures the global context, thus forming a better repre-
sentation of the global structure. We employ a convolutional neural network (CNN) to learn the
mapping between the masked DFT and the original DFT, which is a deconvolution operation
obtained by minimizing the l2 loss. Although DFT-based deconvolution can reconstruct the
global structural outline, we observe that there exists a mismatch in the color space of the
first-stage output. Therefore, in the second stage, we fine-tune the output of the first stage using
adversarial methods to match the color distribution of the true image. Figure 1 shows an example
of the reconstructed output using our method; Fig. 1(b) shows the DFT map of our first-stage
reconstruction obtained from the deconvolution network. This additional frequency-domain
information is later used by the refinement network to obtain the final output as shown in
Fig. 1(c). Our main contributions in this paper are summarized as follows.

1. We introduce a new frequency-domain-based image inpainting framework that learns the
high-frequency component of the masked region using the global context of the image.
We find that the network learns to preserve image information in a better way when it
is trained in the frequency domain. Therefore, adding the frequency-domain and spatial-
domain information certainly improves the inpainting performance compared with the
conventional spatial-domain image inpainting algorithms. To enable better inpainting,
we train the network using both frequency-domain and spatial-domain information,
which leads to a better consistency of inpainted results in terms of the local and global
contexts.

(a) (b) (c)

(c)

(d) (d)

Fig. 1 (a) Input images with missing regions; (b) DFT of first-stage reconstruction by our decon-
volution network; (c) image inpainting results (after the second stage) of our proposed approach;
and (d) GT image. The last column shows the prediction of the missing region obtained from our
method and original pixel values for the same region in the GT image.
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2. We validate our method on benchmark datasets including celebFaces attributes (CelebA),
Paris streetview (PSV), and describable textures dataset (DTD) and show that our
method achieves better inpainting results in terms of visual quality and evaluation metrics,
outperforming the state-of-the-art results. To the best of our knowledge, this is the first
work that explores the benefits of using frequency-domain information for image
inpainting.

2 Related Work

2.1 Traditional Inpainting Techniques

Diffusion-based image completion methods1–4 are based on partial differential equations (PDE)
in which a diffusive process is modeled using PDE to propagate colors into the missing regions.
These methods work well for inpainting small missing regions but fail to reconstruct the struc-
tural component or texture for larger missing regions.

Patch-based algorithms, on the other hand, are based on iteratively searching for similar
patches in the existing image and pasting/stitching the most similar block onto the image.
Efros and Freeman5 first proposed a patch-based algorithm for texture synthesis based on this
philosophy. These algorithms perform well on textured images by assuming that the texture of
the missing region is similar to the rest of the image. However, they often fail in inpainting
missing regions in natural images because the patterns are locally unique in such images.
Moreover, these methods are computationally expensive because of the need for computing sim-
ilarity scores for every target–source pair. For more accurate and faster image inpainting, several
optimal patch search-based methods were proposed by Drori et al.6 (fragment-based image com-
pletion algorithm) and Criminisi et al.7 (patch-based greedy sampling algorithm). Another opti-
mization method to synthesize visual data (images or video) based on bidirectional similarity
measure was proposed by Simakov et al.8 Afterward, these techniques were expedited by Barnes
et al.9 who proposed patchMatch (PM), a fast randomized patch search algorithm that could
handle the high computational and memory cost. Later, such patch-based image completion
techniques were improved by Darabi et al.10 by incorporating gradient-domain image blending,
He et al.11 by computing the statistics of patch offsets, and Ogawa and Haseyama19 by optimizing
sparse representations with respect to structural similarity index (SSIM) perceptual metric.
However, these methods rely only on existing image patches and use low-level image features.
Therefore, they are not effective in filling complex structures by performing semantically aware
patch selections.

2.2 Deep Learning-Based Inpainting

Recently, CNN models20 have shown tremendous success in solving high-level tasks such as clas-
sification, object detection, and segmentation, as well as low-level tasks such as image inpainting
problem. Xie et al.21 proposed stacked sparse denoising autoencoders that combine sparse coding
and deep networks pretrained with a denoising autoencoder to solve a blind image inpainting task.
Blind image inpainting is harder because, in this case, the missing pixel locations are not available
to the algorithm and it has to learn to find the missing pixel location and then restore them. Köhler
et al.22 showed a mask specific deep neural network-based blind inpainting technique for filling in
small missing regions in an image. Chaudhury et al.23 attempted to solve this problem by propos-
ing a lightweight fully convolutional network and demonstrated that their method can achieve
comparable performance as the sparse coding-based K-singular value decomposition24 technique.
However, these inpainting approaches were limited to very small sized masks.

More recently, adversarial learning-based inpainting algorithms have shown promising
results in solving image inpainting problems because of their ability to learn and synthesize
novel and visually plausible contents for different images such as objects,12 scene completion,13

and faces.25 A seminal work by Pathak et al.12 showed that their proposed context encoder (CE)
network can predict missing pixels of an image based on the context of the surrounding areas of
that region. They used both the standard l2 loss and adversarial loss18 to train their network.
Later, Iizuka et al.13 demonstrated that their encoder–decoder model could reconstruct pixels
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in the missing region that are consistent both locally and globally by leveraging the benefits of
dilated convolution layers, a variant of standard convolutional layers. Similar to Ref. 12, this
approach also uses adversarial learning for image completion, but unlike it,12 it can handle arbi-
trary images and mask sizes because of the proposed global and local context discriminator
networks. Recently, Yu et al.14 introduced the concept of attention for solving an image inpaint-
ing task by proposing a novel contextual attention (CA) layer and trained the unified feedforward
generative network with the reconstruction loss and two Wasserstein GAN losses.26,27 They
showed that their method can inpaint images with multiple missing regions having different
sizes and located arbitrarily in the image. Later, Liu et al.28 proposed a partial convolution layer
with an automatic mask-update rule that can handle free-form/irregular masks. Here the mask is
updated in such a way that the missing pixels are predicted based on the real pixel values of the
original image where the partial convolution can operate. Song et al.15 showed that it is possible
to perform image inpainting using segmentation information. To this end, they proposed a model
that predicts the segmentation labels of the corrupted image at first and then fills in the segmen-
tation mask so that it can be used as a guide to complete the image. Nazeri et al.16 introduced an
edge generator that at first predicts the edges of the missing regions and then uses the predicted
edges as a guidance to the complete the image. Yu et al.17 proposed a gated convolution-based
approach to handle free-form image completion.

2.3 Frequency-Domain Learning

Recently, enabling the network to learn information in the frequency domain has gained popular-
ity because the frequency-domain information contains rich representations that allow the net-
work to perform the image understanding tasks in a better way than the conventional way of
using only spatial-domain information. Gueguen et al.29 proposed image classification using
features from the frequency domain. Xu et al.30 showed that it is possible to perform object
detection and instance segmentation by learning information in the frequency domain with a
slight modification to the existing CNN models that use RGB input. In this paper, we propose
using frequency-domain information along with spatial-domain information to achieve better
image inpainting performance.

3 Proposed Method

Given a corrupted input image, our aim is to predict the missing region in such a way that it looks
similar to the clean images as viewed by human eyes. In this paper, we propose a frequency-based
non-blind image inpainting framework that consists of two stages: (i) a frequency-domain decon-
volution network and (ii) a refinement network. The overall framework of the proposed method
is shown in Fig. 2. In the first stage, we compute the DFT of the masked image (both magnitude
and phase information) and the original RGB image and train a CNN for deconvolution to learn
the mapping between the two signals by minimizing the l2 loss. Here we formalize the problem
of inpainting in the spatial domain as deconvolution in the frequency domain. We employ the
feed-forward denoising convolutional neural networks,31 a manifestation of deconvolution that
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Fig. 2 Overview of our frequency-domain-based image inpainting framework. The deconvolution
network is trained in the frequency domain with l2 loss to learn the mapping between DFT of the
masked image and the original image. The refinement network is trained in the spatial domain with
the adversarial loss.
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uses residual learning to predict the denoised image. The motivation behind this DFT-based
deconvolution operation is to learn a better representation of the global structure that can serve
as guidance to the second network. In the second stage, we use the spatial-domain information (of
the masked image and the mask) and train a GAN-based model18 by minimizing an adversarial
loss along with the l2 loss. The motivation to incorporate this stage is to fine-tune the output of the
first stage by refining the structural details and matching the color distribution of the true image in
a local scale. The various components of our model are explained in the following sections.

3.1 Frequency-Domain Deconvolution Network

3.1.1 Problem formulation

Let us consider Iin the corrupted/incomplete input image, Igt the ground truth (GT) image, and
I1pred the predicted output image after the first stage. At first, we calculate the DFTof Iin and Igt as

Ifin ¼ DFTðIinÞ and Ifgt ¼ DFTðIgtÞ. Let us consider a mask function in spatial domainM, with its

frequency-domain counterpart Mf.
A masked image is represented as Iinðx; yÞ ¼ Igtðx; yÞ ⊙ Mðx; yÞ, where ⊙ denotes element-

wise multiplication. Our contribution in this paper is to analyze this relation between the fre-
quency-domain signals of Iin, Igt, and M. For example, if we consider a mask of size ð2W; 2HÞ,
the power spectral density for the DFT of mask signal is given as

EQ-TARGET;temp:intralink-;e001;116;485jMfðp; qÞj2 ∝ sinðπpÞ
sin

�
πp
N

� sinðπqÞ
sin

�
πq
N

� ; (1)

where k ¼ 0;1; : : : ðN − 1Þ represents the discrete frequency, with N being the number of sam-
ples. The frequency-domain representation of the mask signal is shown in Fig. 3, which depicts a
decaying pulse from the origin. By the convolution–multiplication property of DFT, we show that
the multiplication of mask with the image in spatial domain is equivalent to the convolution of the
mask with the image in the frequency domain (Fig. 3). Mathematically, this is represented as

EQ-TARGET;temp:intralink-;e002;116;373Ifinðp; qÞ ¼ Ifgtðp; qÞ ⊛ Mfðp; qÞ; (2)

where ⊛ denotes the convolution operation and the masked frequency signal is the output of the
convolution of the mask and clean image DFT signal. Therefore, we perform a deconvolution

Fig. 3 Visualization of the masked signal in the frequency domain (using DFT). Here we use the
convolution–multiplication property of DFT to transform signals from the spatial to frequency
domains and vice versa.
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operation to predict the missing region of the incomplete image. Let FðIin; θÞ be the deconvolu-
tional neural network that converts Iin to I1pred, such that I

1
pred ¼ FðIin; θÞ. After calculating Ifin and

Ifgt, we train the network to learn the mapping between them to predict the first-stage output. We

denote frequency-domain representation as I1fpred, where I1fpred ¼ FðIfin; θÞ. Next, we perform an

inverse DFT of the first-stage output and get the predicted output image I1pred ¼ IDFTðI1fpredÞ.
It should be noted that, while calculating the DFTof the image, mask, and masked image, we

compute both the magnitude and phase for all channels, normalize them to bring within the range
of 0 to 1, and concatenate the normalized magnitude and phase information for all channels for
training purposes.

3.1.2 Network architecture

To perform the deconvolution operation in the frequency domain, we adopt a CNNmodel having
17 layers similar to Zhang et al.31This deconvolution network contains three types of layers as
shown in Fig. 2. The first layer is a conv layer with ReLU non-linearity, where 64 filters of
(3 × 3 × 3) size are used. The next layers (2nd to 16th) are a combination of the conv layer,
a batch normalization layer,32 and a ReLU layer, where 64 filters of (3 × 3 × 64) size are used.
The last layer is a conv layer, where three filters of (3 × 3 × 64) size are used to reconstruct the
output. Details of our first-stage deconvolution network are given in Table 1.

3.1.3 Training

To train our deconvolution network, we use the l2 loss that minimizes the distance between the

DFT of GT image Ifgt and the DFT of inpainted image I1fpred, which is given by

EQ-TARGET;temp:intralink-;e003;116;427Ls1 ¼ kIfgt − I1fpredk22: (3)

After training the first-stage deconvolution network, we compute the inverse DFT of I1fpred which
is used as a guidance to train the refinement stage as shown in Fig. 2. The reason for choosing the
frequency domain in the first network is that it contains rich information30,33 for high-frequency
preservation.

3.2 Refinement Network

The refinement network is a GAN-based model18 that has shown promising results in generative
modeling of images34 in recent years. Our refinement network has a generator and a discrimi-
nator network, where the generator network takes the output of the first stage (frequency-domain
deconvolution module), the original masked image, and the corresponding binary mask (spatial-
domain information) as input pairs and outputs the generated image. The discriminator network
takes this generator output and minimizes the Jensen–Shannon divergence between the input and
output data distribution to match the color distribution and structural details of the output image
to the true image.

Table 1 First-stage network architecture (deconvolution network).

Layer name Layer no. Stride, padding Activation Layer output size

Input — — — 1 × 12 × 64 × 64

Conv 3 × 3 1 1, 1 ReLU

Conv 3 × 3 2 to 16 (15 layers) 1, 1 (Batch norm + ReLU)

Conv 3 × 3 17 — — 1 × 6 × 64 × 64
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3.2.1 Network architecture

Generator. We adapt the generator architecture from Johnson et al.35 that has exhibited good
performance for an image-to-image translation task.36 Our generator network is an encoder–
decoder architecture having three convolution layers for downsampling, eight residual blocks,37

and three convolution layers for up-sampling. Here the conv-2 and conv-3 layers are stride-2
convolution layers that are responsible for down-sampling twice, and the conv-4 and conv-5
layers are transpose convolution layers that are responsible for up-sampling twice back to the
original image size. We use instance normalization38 and ReLU activation function across all
layers of the generator network.

Discriminator. We adapt the discriminator network from several works;36,39 it is a
Markovian discriminator similar to 70 × 70 PatchGAN.39 The advantage of using a PatchGAN
discriminator is that it has fewer parameters compared with a standard discriminator because it
works only on a particular image patch instead of an entire image. Furthermore, it can be applied
to any arbitrarily sized images in a fully convolutional fashion.36,39 We apply the sigmoid func-
tion after the last convolution layer, which produces a one-dimensional output score that predicts
whether the 70 × 70 overlapping image patches are real or fake. To stabilize the discriminator
network training, we use spectral normalization40 as our weight normalization method.
Moreover, we use leaky ReLUs41 with a slope of 0.2. The details of our second-stage refinement
network (generator and discriminator network) and the output size of each layer are given in
Table 2.

Table 2 Second-stage network architecture.

Layer name Stride Activation Layer output size

Generator network

Input — — 1 × 9 × 64 × 64

Encoder network

Conv 7 × 7 1 ReLU 1 × 64 × 64 × 64

Conv 4 × 4 2 ReLU 1 × 128 × 32 × 32

Conv 4 × 4 2 ReLU 1 × 256 × 16 × 16

Residual block (×8)

Residual blocks 1 × 256 × 16 × 16

Decoder network

Conv 4 × 4 2 ReLU 1 × 128 × 32 × 32

Conv 4 × 4 2 ReLU 1 × 64 × 64 × 64

Conv 7 × 7 1 Tanh 1 × 3 × 64 × 64

Discriminator network

Input — — 1 × 3 × 64 × 64

Conv 4 × 4 2 LeakyReLU 1 × 64 × 32 × 32

Conv 4 × 4 2 LeakyReLU 1 × 128 × 16 × 16

Conv 4 × 4 2 LeakyReLU 1 × 256 × 8 × 8

Conv 4 × 4 1 LeakyReLU 1 × 512 × 7 × 7

Conv 4 × 4 1 Sigmoid 1 × 1 × 6 × 6
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3.2.2 Training

After obtaining the first-stage output, we feed it along with the spatial-domain information (of
the masked image and the mask) to the refinement network. While training, the generator of the
inpainting network G takes a combination of input image Iin, image mask M, and the first-stage
output image I1pred and generates I2pred ¼ GðIin;M; I1predÞ as output. Then by adding I2pred to the

input image, we get the completed image as Ipred ¼ Iin þ ½I2pred ⊙ ð1 −MÞ�. The training pro-

cedure of the refinement stage is described in Algorithm 1. We train our refinement module using
two loss functions: a reconstruction loss and an adversarial loss.18 Here for the reconstruction
loss, we use the l1 loss12 that minimizes the distance between the clean/GT image Igt and the
completed/inpainted image Ipred, which is given by

EQ-TARGET;temp:intralink-;e004;116;393Ll1ðxÞ ¼ kIgt − Ipredk1; (4)

where Ipred ← Iin þ GðIin;M; I1predÞ ⊙ ð1 −MÞ. For the adversarial loss, we follow the min–max

optimization strategy, where the generator G is trained to produce inpainted samples from the
artificially corrupted images such that the inpainted samples appear as “real” as possible and the
adversarially trained discriminator criticD tries to distinguish between the GT clean samples and
the generator predictions/inpainted samples. The objective function is expressed as follows:

EQ-TARGET;temp:intralink-;sec3.2.2;116;299G�; D� ¼ arg min
G

max
D

LadvðG;DÞ ¼ Ex∼Pr
½log DðxÞ� þ Ex̃∼Pg

½logð1 −Dðx̃Þ�;

where Pr is the real/GT data distribution and Pg is the model/generated data distribution defined
by x̃ ¼ GðIin;M; I1predÞ. Thus our overall loss function for the refinement stage becomes

EQ-TARGET;temp:intralink-;e005;116;236Ltotal ¼ λ1Ll1
þ λ2Ladv; (5)

where λ1 ¼ 1, λ2 ¼ 0.1. The weighted sum of these two loss functions compliments each other in
the following ways: (i) the GAN loss helps to improve the realism of the inpainted images by
fooling the discriminator. (ii) The l1 reconstruction loss serves as a regularization term for train-
ing GANs,14 helps in stabilizing GAN training, and encourages the generator to generate images
from the modes that are close to the GT in an l1 sense.

4 Implementation Details

Our proposed model is implemented in PyTorch and our code is available in GitHub (https://
github.com/hiyaroy12/DFT_inpainting). In our experiments, we resize the image to 64 × 64 and
linearly scale the pixel values from the range [0, 256] to ½−1;1�. For the first stage, we initialize

Algorithm 1 Training the refinement network.

1: while Generator G has not converged do

2: Sample batch images Iin from training data;

3: Generate random masks M;

4: Construct combined input (Iin, M, and I1pred);

5: Get masked region prediction I2pred ¼ GðIin;M; I1predÞ;

6: Generate inpainted image by modifying the masked region Ipred ← Iin þ I2pred ⊙ ð1 −MÞ;

7: Update G with l1 loss and adversarial critic loss;

8: Update discriminator critic D with Iin, Ipred;

9: end while
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the weights using He initialization42 and use the SGD optimizer with a weight decay of 0.0001,
momentum of 0.9, and mini-batch size of 128. To train the first-stage network, we decay the
learning rate exponentially from 10−1 to 10−4 for 50 epochs. For the second stage, both our
generator G and discriminator D are trained together using the following settings: (i) G and
D learning rates of 10−4 and 10−5, respectively, and (ii) optimized using the Adam optimizer43

with β1 ¼ 0.5 and β2 ¼ 0.999. In our experiments, we use a batch size of 14 and the training
iterations of 100. Both stages are implemented on a TITAN Xp (12 GB) GPU.

5 Experiments

In this section, we evaluate the inpainting performance of our proposed method on three standard
datasets: CelebA,44 PSV,45 and DTD.46 For our experiments, we use both regular and irregular
masks. Regular masks refer to square masks having a fixed size consisting of 25% of total image
pixels and being randomly located in the image. For irregular masks, during training, we use the
masks from the work of Liu et al.,28 where the irregular mask dataset contains the augmented
versions of each mask (0 deg, 90 deg, 180 deg, and 270 deg rotated, horizontally reflected) and
are divided based on the percentage of mask size on the image in increments of 10% such as 0%
to 10%, 10% to 20%, etc.

5.1 Qualitative Evaluation

Figures 4 and 5 compare the inpainting results of our method with previous image inpainting
methods: PM,9 CE,12 CA,14 and generative inpainting (GI),17 for regular masks on CelebA and
PSV datasets. The last six columns of these figures demonstrate the magnitude spectrum of the
DFT map obtained from different methods,9,12,14,17 our method (first-stage reconstruction), and

Fig. 4 Visual comparison of semantic feature completion results for different methods on the
CelebA dataset along with the DFT maps corresponding to different methods, our first-stage out-
put, and the GT image.

Fig. 5 Visual comparison of semantic feature completion results for different methods on the PSV
dataset along with the DFT maps corresponding to different methods, our first-stage output, and
the GT image.
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the GT image. We can see that previous methods (PM) copy incorrect patches in the missing
regions, whereas others (CE, CA, and GI) sometimes fail to achieve plausible results and gen-
erate distinct artifacts. However, our method can restore the missing regions with sharp structural
details, minimal blurriness, and hardly any “checkerboard” artifacts. Moreover, the inpainting
results using our method look the most similar to the GT images. We conjecture that in the
presence of frequency-domain information, the network efficiently learns the high-frequency
details, which enables it to preserve the structural details in the restored image. This can be
confirmed from the DFT maps in which we see that our deconvolution network learns to predict
the missing region in such a way that the DFT map of our first-stage reconstruction looks similar
to that of the GT image. Later, the refinement network uses this frequency-domain information to
produce better inpainting results.

We also show the performance of our proposed method on the CelebA and PSV datasets for
irregular masks. Figure 6 shows the inpainting results using GI17 and our proposed method for
different percentages (10% to 50%) of mask size. Our method can generate photorealistic images
having similar texture and structures as the original clean images even when a large region (50%
to 60%) of the image is missing.

5.2 Quantitative Evaluation

We report the quantitative performance of our method in terms of the following metrics: (i) peak-
signal-to-noise ratio (PSNR), (ii) SSIM,47 and (iii) mean absolute error. Table 3 demonstrates the
comparison in metric values on the CelebA, PSV, and DTD datasets for the state-of-the-art
inpainting methods and our method. Our method outperforms the other methods in terms of
these metrics on both regular and irregular masks. This proves the effectiveness of using fre-
quency-domain information. Note that we obtain the metrics for the CE12 using the l1 and adver-
sarial loss in our network settings.

We also report the quantitative performance of previous methods and our method in terms of
two inpainting specific metrics, namely gradient magnitude similarity deviation (GMSD)48 and
visual saliency-induced index (VSI)49 for perceptual image quality assessment of the inpainted

Fig. 6 Visual comparison of semantic feature completion results for irregular masks on the CelebA
and PSV datasets.
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image. Table 4 provides the quantitative values on the PSV dataset for both regular and irregular
masks. We can see our method consistently achieves low GMSD scores (indicating low distor-
tion range and high perceptual quality of the inpainted image) compared with the other methods.
On the other hand, our method also achieves high VSI scores compared with the other algo-
rithms, which ensures that the inpainted images obtained using our method have higher percep-
tual image quality. These metrics furthermore prove the effectiveness of our proposed frequency-
based inpainting algorithm.

5.3 Ablation Study

We perform an ablation study to investigate the role of our frequency deconvolution network and
to analyze the effect of different loss components used to train our model. Figure 7 shows the
inpainting results using only l1 loss, l1 with adversarial loss, and our proposed method of incor-
porating frequency-domain information (DFT component). We can see blurry reconstructions in

Table 4 Quantitative results in terms of image perceptual quality metrics on PSV dataset45 for
different deep-learning-based inpainting models: context encoder, CE;12 contextual attention,
CA;14 generative inpainting, GI;17 and ours. The best results for each row are shown in bold.

Mask (%) CE12 CA14 GI17 Ours

GMSDa 10 to 20 0.0621 0.0637 0.0736 0.0574

20 to 30 0.0877 0.0946 0.1078 0.0819

30 to 40 0.1094 0.1184 0.1345 0.1069

40 to 50 0.1344 0.1432 0.1585 0.1317

Regular 0.1032 0.1043 0.1196 0.0987

VSIb 10 to 20 0.985 0.981 0.981 0.987

20 to 30 0.973 0.966 0.964 0.976

30 to 40 0.962 0.952 0.947 0.964

40 to 50 0.947 0.937 0.928 0.949

Regular 0.967 0.967 0.956 0.969

aLower is better.
bHigher is better.

Fig. 7 Visual results on the PSV dataset (first row) and DTD (second row) showing the effect of
different components in our model on the input incomplete images (first column): (a) results
using standard l1 loss; (b) results using l1 + adversarial loss; (c) results of our model trained using
l1 + adversarial loss (with DFT component); and (d) the GT image.
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Fig. 7(a) when we use only l1 loss in the spatial domain. However, inpainting performance
improves to a certain extent if we add the adversarial loss component. Nevertheless, in
Fig. 7(b), we can still find structural and blurry artifacts on the reconstructions. Figure 7(c)
demonstrates the inpainting results of our proposed method of training the model using both
frequency and spatial components. We can see in that using our method the model can perform
significantly better by restoring fine structural details. Therefore, we can conclude that training
the model along with frequency-domain information certainly helps the network to learn high-
frequency components and restore the missing region with better reconstruction quality.

5.4 Computational Complexity

We measure the computational complexity of our method in terms of inference time for three
different datasets: CelebA, PSV, and DTD. Table 5 shows the average computation time of image
inpainting using our method for regular masks and various percentages of irregular masks. Note
again that we evaluate our method on a NVIDIAGeForce TITAN Xp (12 GB) GPU. Our method
can generate inpainted images in millisecond order using a GPU. Based on the computation time,
our method can inpaint 10 to 20 frames in each second, thus making its application to real-time
frame-wise video reconstruction a possibility.

6 Conclusions

We presented a frequency-based image inpainting algorithm that enables the network to use both
frequency and spatial information to predict the missing region of an image. Our model first
learned the global context using frequency-domain information and selectively reconstructed
the high-frequency components. Then it used the spatial-domain information as a guidance
to match the color distribution of the true image and fine-tuned the details and structures obtained
in the first stage, leading to better inpainting results. Experimental results showed that our
method could achieve results better than state-of-the-art performances on challenging datasets
by generating sharper details and perceptually realistic inpainting results. Based on our empirical
results, we believe that methods using both frequency and spatial information should gain domi-
nance because of their superior performance. Our proposed approach can be extended to videos
and to a temporally changing flow of images as well using continuity constraints on each frame
of the videos to ensure that there is no discontinuity in the frame-wise motion of the pixels. This
can be implemented by reducing the sum of L1 distance between each frame after inpainting the
corresponding frame. In the future, we want to extend this work to using other kinds of fre-
quency-domain transformations, e.g., discrete cosine transform and to solving other kinds of
image restoration tasks, e.g., image denoising.
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Table 5 Analysis of computation time of our model on
CelebA,44 PSV,45 and DTD.46

Mask (%) CelebA44 (s) PSV45 (s) DTD46 (s)

10 to 20 0.048 0.045 0.050

20 to 30 0.103 0.045 0.058

30 to 40 0.052 0.047 0.057

40 to 50 0.053 0.058 0.052

Regular 0.059 0.117 0.036
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