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Abstract

Purpose: Mammographic breast density is one of the strongest risk factors for cancer. Density
assessed by radiologists using visual analogue scales has been shown to provide better risk pre-
dictions than other methods. Our purpose is to build automated models using deep learning and
train on radiologist scores to make accurate and consistent predictions.

Approach: We used a dataset of almost 160,000 mammograms, each with two independent
density scores made by expert medical practitioners. We used two pretrained deep networks
and adapted them to produce feature vectors, which were then used for both linear and nonlinear
regression to make density predictions. We also simulated an “optimal method,” which allowed
us to compare the quality of our results with a simulated upper bound on performance.

Results: Our deep learning method produced estimates with a root mean squared error
(RMSE) of 8.79� 0.21. The model estimates of cancer risk perform at a similar level to
human experts, within uncertainty bounds. We made comparisons between different model
variants and demonstrated the high level of consistency of the model predictions. Our modeled
“optimal method” produced image predictions with a RMSE of between 7.98 and 8.90 for
cranial caudal images.

Conclusion: We demonstrated a deep learning framework based upon a transfer learning
approach to make density estimates based on radiologists’ visual scores. Our approach requires
modest computational resources and has the potential to be trained with limited quantities of
data.
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1 Introduction

Studies have shown a strong relationship between breast density and the risk of developing
breast cancer.1–3 Breast density is generally defined as the proportion of fibro-glandular tissue
within the breast; however, there are various different methods to estimate this measure, and
these show different levels of correlation with cancer risk, with breast density assessed subjec-
tively by radiologists demonstrating a stronger link to breast cancer than other methods.4,5

Exactly why this subjective type of measure produces improved performance is not clear,
although presumably radiologists utilize years of knowledge and experience to go beyond simple
estimates of ratios of dense to nondense tissue. Their knowledge and experience can be har-
nessed by training an automated method to produce similar density assessments. If we can
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accurately measure breast density over time, we can also measure whether risk-reducing inter-
ventions are working effectively.6

Deep learning is now the dominant method used in general image analysis tasks due to the
higher accuracy it tends to achieve over more traditional methods.7 The main alternative to deep
learning is to hand-craft features and then apply traditional machine learning methods. The
advantage of deep learning is that the features are automatically extracted from the data itself.
This is appealing for breast density estimation as we do not completely understand why sub-
jective expert judgement seems to outperform other methods. Deep learning does have signifi-
cant downsides, such as the requirement of significant amounts of data and computing power. In
addition, the interpretation of results is challenging.8

Medical imaging problems often have significantly smaller amounts of data than datasets that
deep learning is usually trained on. One of the most commonly used nonmedical imaging data-
sets is ImageNet,9 which consists of over a million images and a thousand classes. Conversely,
medical imaging datasets tend to be considered large if they contain tens of thousands of images,
with many datasets consisting of far fewer.10 Even with these challenges, deep learning is
increasingly being used in medical imaging studies11 with good outcomes.

There have been many approaches for making breast density estimates. One example12

used convolutional neural networks (CNNs) with support vector machines (SVMs) to classify
breasts into four different density categories. Other work used unsupervised CNNs at different
scales to extract features before finetuning on known labels.13 Another method used fuzzed
c-means before applying an SVM.14 Deep learning has been used to make binary (dense and
nondense) and four-way (fatty, scattered, heterogeneous, dense) classifications of mammo-
grams.15 Other classifiers of four-way density predictions have used synthetic and real mammo-
grams.16 Other work has involved segmentation to separate the tissue into dense and fatty before
calculating the density.17 One recent approach built18 a deep learning model and trained it
from scratch to make estimates of breast density using domain expert labeled images as targets.
The authors showed that deep learning models could make estimates that correlate well with the
expert labels.

Deep learning can either be performed by designing and training a model from scratch or
with a transfer learning approach.19 At the moment, there is little agreement across the medical
imaging field about which option produces better outcomes.10 In a field as new as deep learning,
with little solid underlying theory and estimates being made on highly complex datasets, and
using complex models, it is difficult to draw strong conclusions about which method to follow.
A sensible approach is to test multiple methods on different problems and attempt to determine
which models work better in certain situations. A transfer learning method to estimate breast
density for low dose mammograms recently showed good performance20 albeit on a small data-
set; in this paper, we will demonstrate that transfer learning using deep networks produces good
performance using a large full dose dataset.

We present a transfer learning method based upon two independent deep learning models
trained on ImageNet9 with regression models trained using a dataset with visual labels produced
by domain experts.21 These models are combined using a multilayer perceptron (MLP) to make a
final ensemble prediction. We compare these results with those of a previous method trained on
this dataset.18 Each image in the dataset was previously assessed by two independent readers,
which gives us the opportunity to analyze the quality of the labels themselves.21 We will show
there are challenges with using data with this level of noise both in terms of training and also in
how we assess model performance.

The key contributions of this work are

• We design and implement a transfer learning-based pipeline to make estimates of breast
density. Our framework consists of preprocessing, feature extraction, density mapping, and
final ensemble estimation steps. The overall method produces automated breast density
estimates with relatively low computational requirements.

• We analyze the dataset itself to assess how well our model performs. We demonstrate
that the variability of the reader assessment means that we are limited in our ability to
effectively discriminate between the quality of models once they have reached a certain
accuracy. Our framework produces estimates that fall close to this range.
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2 Data

The dataset is formed of full-field digital mammogram images with associated density assess-
ments by domain experts (radiologists, advanced practitioner radiographers, and breast physi-
cians). The images are from the predicting risk of cancer at screening (PROCAS)21 study. All
images were produced using GE mammography machines and have three different image sizes:
2294 × 1914, 3062 × 2394, and 5625 × 4095. There are four views for each woman: cranial
caudal (CC) and mediolateral oblique (MLO) for the left and right breast, giving a right cra-
niocaudal view, right mediolateral oblique view, left craniocaudal view, and left mediolateral
oblique view.

In the PROCAS study, every image was independently viewed by two domain experts, out of
a total pool of 19, who assigned a density value on a visual analogue scale (VAS) between 0 and
100 for each image. Therefore each woman received eight estimates of breast density across both
CC and MLO and right and left breasts.

Before performing any preprocessing, we removed any images that do not have labels
assigned from two readers. In Table 1, we show the number of images at the three different
sizes in our dataset. The images are drawn from 39,357 women, although not all the women
have the full set of image views. When considering predictions per image, we will use the entire
dataset, but when analyzing density estimates per woman, we will only consider those women
who have all four views. In Fig. 1, (a)–(c) show image examples of CC and (d)–(f) show image
examples of MLO images with [(a), (d)] low, [(b), (e)] medium, and [(c), (f)] high densities as
defined by the average of the two reader scores. These are images after preprocessing
(see Algorithm 1 in Sec. 3.1 for details).

We partition the dataset into training, validation, and testing sets by woman, so that all the
available views for a women are in the same partition. All the women from a previous case
control set,4 discussed below, are placed in the testing set. Otherwise the rest of the training,
validation, and testing sets are chosen at random from the PROCAS dataset. In total, we have
33,011 women in the training set, 3649 women in the validation set and 2697 women in the
testing set.

In addition, to compare with a previous study,18 we have a second partition with 19,048
women in the training set, 769 women in the validation set, and 19,844 women in the testing
set. Similar to the previous partition, all women from the previous case control set4 are in the
testing set.

We also investigated the log ratios for developing cancer from a previously created subset of
the data4 called the priors, which consist of women who did not have a cancer detected when
their screen was taken but subsequently went onto develop a cancer. All these data were held in
the test set and not used for training or validation.

These cancer risk predictions (on the priors) are found by taking the breast density estimates
and splitting them into quintiles. Three control (no breast cancer) mammograms are matched
with one breast cancer prior mammogram by matching on other known risk factors (age, body
mass index, hormone replacement therapy use, menopausal status, and year of mammogram).
This attempts to isolate breast density as a risk factor while controlling for potential confounding
variables. Therefore it allows for estimates of the ratios of probability of developing cancer for
women with high breast density compared with low breast density. The log ratio is calculated
using conditional logistic regression on quintiles of the density. The higher the risk ratios at high

Table 1 Number of images at each size and aspect ratio.

Name Height by width Number of pixels Aspect ratio Number of images

Small 2294 × 1914 4,390,716 1:1.20 57,733

Medium 3062 × 2394 7,330,428 1:1.28 95,184

Large 5625 × 4095 23,034,375 1:1.37 4055

All — — — 156,972
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Algorithm 1 Preprocessing.

Input: a set of n mammogram images, fImi ∈ Ra×bgni¼1

Output: a set of processed mammogram images, fI i ∈ R224×224gni¼1

1: for i to n do

2: Resize image using cubic interpolation from size a × b to size 224 × 224

3: Clip all element values at 75% of maximum image value

4: Subtract minimum and divide by maximum value

5: Invert values

6: if image is on left side then

7: Flip image to be on right side

8: end if

9: Perform histogram equalization on image

10: Normalize to between 0 and 1 by subtracting minimum values and dividing
by maximum

11: Loop Output: Processed image, I i

12: end for

(a) (b) (c)

(d) (e) (f)

Fig. 1 Images of (a), (d) low density; (b), (e) middle density; (c), (f) high density images as
defined by the average percentage density. These are the images after preprocessing (see
Algorithm 1 in Sec. 3.1 for details). (a)–(c) shows the CC images and (d)–(f) shows the
bottom MLO.
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density compared with low density, the better the density model is at assessing risk. For further
details of the approach, see Astley et al.4

3 Prediction Methods

The objective is to take in a mammogram image and output an estimate of the density score of
that image. The procedure we follow has four parts: (1) preprocessing stage, (2) using pretrained
deep learning models to extract features from the processed image, (3) mapping the features to a
set of density scores, and (4) using an ensemble approach to take the multiple scores and produce
a final density estimate. Throughout this paper, we will use “density mapping” to refer to the
third step, where individual feature vectors are mapped to a density score and “ensemble pre-
diction” to refer to the fourth step, which takes those density estimates and combines them into a
final ensemble prediction. In Fig. 2, we show this process in a schematic format.

3.1 Preprocessing

We preprocessed the images to size 224 × 224 (50,176 input pixels) for processing by the feature
extractors. The downscaling process reduces the number of input pixels down to 1.1%, 0.68%,
and 0.22% of the original size for the small, medium, and large images, respectively (see Table 1
for the three image sizes).

We also enhance the contrast of the images to make it easier for the methods to extract infor-
mation. In Algorithm 1, we lay out the steps we take to preprocess the images. We first rescale
the image from its original size (see Table 1 for the three image sizes) down to 224 × 224 using
cubic interpolation. We then clip all element values to 75% of the image maximum, subtract the
minimum, and divide by the new maximum. The values are inverted and any image that is posi-
tioned on the left hand side is flipped horizontally. We perform histogram equalization and nor-
malize the image to contain values between 0 and 1. We show examples of these preprocessed
images in Fig. 1.

3.2 Feature Extraction

To perform the feature extraction part of our procedure, we use two pretrained deep networks:
ResNet22 and DenseNet.23 Both were trained on the ILSVRC 2012 version of ImageNet,9 a large

Fig. 2 Illustration of our deep learning pipeline for producing final density estimations on mammo-
grams. The input mammogram is processed to reduce the size down from (a × b) to ð224 × 224Þ
and increase the contrast. The processed image is fed into the feature extractors, we use two in
this paper (ResNet22 and DenseNet23) but others could be included in which each produce a fea-
ture vector for that image. The density mapping, either a linear regression or MLP, is then applied
to each feature vector to produce the separate density estimates. Finally, the ensemble model is
applied to convert the separate density estimates into one final prediction.
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database of 1.2 million images across 1000 classes. ResNet and DenseNet are both popular in the
literature, available as easily accessible models from PyTorch24 and produce modest sized feature
vectors, which keeps the computational requirement manageable. However, there are other
potential feature extraction networks available that could be further investigated, such as
VGG25 or inception.26

To extract features from the preprocessed images, we remove the final fully connected clas-
sification layer from both networks, which alters the output from 1000 classes to 2208 and 512
dimensional feature vectors for DenseNet and ResNet, respectively. Details of our implementa-
tion is in Appendix A. We do not adjust the weights of the network or perform any form of fine-
tuning. The training for the feature extractors was performed using ImageNet data, which con-
sists of natural images with three channels, whereas our mammograms only have one channel.
We therefore copy across the same image to make a repeated three-channel tensor. Both net-
works require the inputs to be normalized across the channels to have means of (0.485, 0.456,
0.406) and standard deviations of (0.229, 0.224, 0.225), respectively. In Algorithm 2, we lay out
the steps of our feature extraction method.

3.3 Density Mapping

To map the deep feature vectors to produce a density estimation, we utilize two methods: linear
regression with regularization and the application of MLPs. The linear regression approach
enables us to see how well a simple model, with one consistent solution, performs. An
MLP can (in principle) map any function,27 and allows us to explore whether nonlinear mappings
are necessary.

A procedure for our linear regression method is shown in Algorithm 3. During training, we
add a bias term to the feature vectors from the training set, fvtri ∈ Rpgntri , then stack them into a
feature matrix, X ∈ Rntr×ðpþ1Þ. We utilize standard ridge regression, forming an objective func-
tion, f ¼ kXw − yk22 þ λ2kwk22, where y ∈ Rntr are the known labels and w ∈ Rpþ1 are the
weights. To find the optimal λ2 term, we perform five-fold cross-validation on the training data,
finding the value of λ, which minimizes the combined held-out error. We then retrain the weights
on the entire training dataset using the optimal λ. To solve for w during both cross-validation and
for the final optimal λ, we use pseudoinverse inversion: w ¼ ðXTX þ λIÞ−1XTy.

The linear regression approach assumes that the feature extractors are mapping the images
onto a reasonably linear space where there is no need to consider nonlinear correlations. As this
assumption may not be correct, and it may be possible to improve performance with a more
complex mapping, we also consider the use of the MLP.

Algorithm 2 Feature extraction method.

Input: a set of n preprocessed mammogram images (see Algorithm 1), fI i ∈ R224×224gni¼1

Output: a set of n, p-dimensional feature vectors, fvi ∈ Rpgni¼1

1: Select pretrained deep model (ResNet or DenseNet) and load model with pretrained weights

2: Remove the necessary layers from the model and alter the model so it transforms the output into a
vector

3: for i to n do

4: Copy matrix I i ∈ R224×224 into a tensor I i 0 ∈ R224×224×3

5: Normalize each channel to have means of (0.485, 0.456, 0.406) and standard deviations of (0.229,
0.224, 0.225), respectively.

6: Run tensor through model, producing feature vector vi

7: end for

8: Output: fvi ∈ Rpgni¼1
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In Algorithm 4, we show the procedure we follow for applying the MLP to the data. We have
the same input training vectors as for the linear regression. The details of the architecture and
training are in Appendix A. In summary, we train the MLP on the same training partition as the
linear regression, use three objective functions: L1, L1Smooth, mean squared error (MSE), and
select the learning rates and training epochs from a trial and error approach until the training
error converges reasonably smoothly to a steady state.

Algorithm 4 Density mapping: MLP.

Inputs: a set of ntr training feature vectors, fvtri ∈ Rpg with known density labels y ∈ Rntr

Output: trained MLP model

1: Create MLP network: choose number of layers and number of neurons (see Appendix A for details.

2: for L1, L1Smooth, MSE objective functions do

3: for range of learning rates and training epochs do

4: Train MLP network on training data

5: if Objective function ends before convergence then

6: Increase training epochs

7: else if Objective function fails to converge then

8: Reduce learning rate

9: end if

10: end for

11: Output: trained MLP model

12: end for

Algorithm 3 Density mapping: linear regression training.

Inputs: a set of ntr training feature vectors, fvtri ∈ Rpgntr
i¼1 with known density labels y ∈ Rntr

Output: a p þ 1-dimensional weight vector w

1: Add bias term to each vector v

2: Concatenate n feature vectors to form a matrix: X ∈ Rntr×ðpþ1Þ

3: Objective function: f ¼ kXw − yk22 þ λ2kwk22
4: Split training data to perform K -fold cross-validation

5: for λ in range of λ values do

6: Solve for each, k , held-in fold by pseudoinverse inversion: wk ¼ ðXT
k Xk þ λIÞ−1XT

k yk

7: Find k held-out errors

8: end for

9: Use λopt value that produces the lowest held-out error

10: Perform pseudoinverse inversion on full set of training data: w ¼ ðXTX þ λoptIÞ−1XTy:

11: Return w
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3.4 Ensemble Approach

The two deep feature extracting models along with a linear regression and the MLP models
produce different predictions for each image. In addition, as will be discussed in Sec. 5.1,
we can train on different labels, producing another set of different density mapping models.
Ensemble methods tend to outperform individual models28 so if we can combine the individual
predictions together, we would expect to improve the model performance. Therefore there are 16
separate predictions: two feature extractors (ResNet and DenseNet) and four density mappings
(linear regression and three MLPs trained with different objective functions). Those eight models
can be either trained on averaged labels or individual labels (see Sec. 5.1 for details), giving the
total of 16 separate sets of predictions.

To produce our final ensemble prediction, we start by splitting the training data into two sets
—a larger one that each individual model is trained upon (see Algorithms 3 and 4) and a smaller
one to train the ensemble on. We train the m individual models on the first training set and then
apply each to the second training set to produce n predictions. We stack the predictions into a
new training set, which we then train a new MLP on to find a final model. To make predictions,
we run all m models on an image, produce the output for each one and make a final prediction
by feeding the m-dimensional vector into our ensemble model. In Appendix A, we provide
details of the architecture and training procedure. There are many ensemble approaches
available29 including simple methods, such as averaging across individual results. We show just
one approach that demonstrates that we can improve on individual results using an ensemble
method.

4 Assessing Predictive Performance

4.1 Metrics

To assess the predictive performance of our models, we consider a range of metrics. The global
measures we use to compare the quality of the VAS predictions with labels are Pearson corre-
lation coefficient, root mean squared errors (RMSE), mean absolute error (MAE), and median
absolute error (MedAE). We also show results of the risk ratios on the priors as discussed
in Sec. 2.

4.2 Perfect Predictor Estimates

Due to label unreliability, a “perfect” model, which correctly estimates the VAS scores for all
images, if compared to the noisy labels, will have a nonzero error. Therefore, we need to produce
an estimate of what metrics a “perfect”model would produce so that we can assess the quality of
our approach.

Algorithm 5 Ensemble method.

Inputs: a set of m models trained on the same training set, fmodgmi . A second training set of feature vectors
fvvali ∈ Rmgnval

i¼1 with known density labels y ∈ Rnval ,

Output: trained ensemble MLP model

1: for model in fmodgmi do

2: Make predictions, ŷ ∈ Rnval on fvvali g

3: end for

4: Build new ensemble training set fvensi ∈ Rnval×mg from model predictions

5: Train new MLP (see Algorithm 4 and Appendix A for details) on the ensemble training set.

6: Output: MLP trained to predict ensemble density predictions from m input predictions
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We take the average of the two reader scores to be the “true” values and then assume that
the actual reader scores are drawn from a Gaussian distribution around the real score.
The Gaussian error distribution varies for different parts of the score distribution, with smaller
average errors at both low and high densities, when considering averaged reader scores. We
calculate the error distribution for small ranges of densities. We then use the “true” values, the
averaged reader scores, and create a pair of modeled reader scores by adding Gaussian noise to
the “true” value.

In detail, we take the average reader scores and call these our perfect modeled estimates. We
bin the average reader scores into small bins (4% each), which provides a reasonable number of
data points to calculate the Gaussian parameters, except for above 80% where there is little data
so that we use the range 80% to 100% as one bin. The distributions approximate a Gaussian
(see Fig. 9 in appendix) but the Gaussian tails are longer than the real results, and there is the
problem of modeled reader estimates below 0 and above 100. To correct for these two effects,
we resample from the distribution if the reader estimate is outside the 0 to 100 range or if the
deviation of the sample from the mean is greater than a certain threshold σmax. These correc-
tions make the modeled distribution a plausible match for the real data. To make the model as
simple as possible, the only parameter we alter is σmax. To check whether the model produces
sensible estimates, we compare the differences between the pairs of real reader estimates and
the modeled pair differences. We can then adjust this tuneable parameter to equalize this com-
parison for the different metrics we consider. In this manner, we can estimate the range of
metrics that would occur for an optimal prediction method. We summarize our method in
Algorithm 6.

We compare the four metrics (correlation, RMSE, MAE, and MedAE) between the pair of
modeled reader scores and match up the metrics between the pair of real reader scores. For
example, we alter σmax until the modeled pair of readers have the same RMSE as the real pair
of readers. We do the same for the other metrics and record the optimal metrics from the lowest to
the highest. We then show the range of these values when we perform the simulation.

Algorithm 6 Perfect predictor model.

Inputs: n average reader scores, n pairs of reader scores, maximum difference σmax

Output: metrics for the optimal predictor

1: Bin the average reader scores into 4% bins up to 80% then one bin for 80% to 100%.

2: Calculate Gaussian parameters, μj and σj for each bin, j for the differences between individual and the
average of scores

3: for average reader score ∈ n do

4: for two reader estimates do

5: Draw sample, x from Gaussian distribution for that bin, calculate the deviation (σ̂) from the mean

6: if x > 100 or x < 1 or σ̂ > σmax then

7: Resample from distribution

8: end if

9: end for

10: Save two reader estimates alongside average reader score

11: end for

12: Original average reader score becomes optimal density estimates, yopt ∈ Rn . Modeled reader estimates
are now x ∈ Rn×2.

13: Calculate metrics by comparing y to average of x
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5 Results

We split our results section into three subsections. In Sec. 5.1, we analyze the labels to gain
insight into their reliability and how we need to train our models. Then in Sec. 5.2, we analyze
the performance of our models compared to the ground truth as produced by radiologist’s labels
of the images. Finally, in Sec. 5.3, we make a range of comparisons both between different
versions of our models and between our models and previous work to try and gain further insight
into our model performance.

5.1 Reader Density Label Analysis

In Fig. 3, we show the (a) distribution of the density scores and the (b) distribution of the abso-
lute differences between reader scores. For the density scores, we show both the average of the
two readers (averaged) and the individual reader estimates (individual). As there are twice as
many individual scores as averaged scores, we normalized the distributions to make them
directly comparable. The distributions of density are highly skewed, with little data at high
breast densities and relatively large amounts with a density of around 20. In addition, the aver-
aged reader score tends to compress the distribution away from both low and high densities
compared with the individual scores. The reader absolute differences [Fig. 3(b)] show a dis-
tribution with a relatively long tail, with many images having similar density scores but some
with large differences.

In Fig. 4, we show how RMSE between the pair of readers differs per decile of VAS scores
for averaged and individual reader scores. The averaged and individual scores are used to define
the deciles (bins) and the differences per decile then calculated using those images in each bin.
In Table 6, the appendix scores for MAE and median absolute for the same decile are shown.

The variability of reader scores means that some of the images will be labeled inaccurately.
To gain some intuition about the scale of this effect, in Figure 5, we show the distribution of
the differences for the reader estimates using individual reader estimates as the scores. We bin
the images into their deciles using the individual labels and then plot the distribution of the
differences for each decile. The differences shown are between an individual VAS score and
its pair, therefore we see skewed distributions.

In Sec. 4.2, we presented a simulation method for producing quantitative estimates of the
errors for a perfect set of predictions. In Table 2, we show error measures between the modeled
density scores and the reader estimates for correlation, RMSE, MAE, and the MedAE for the
entire dataset (all data) and for the test set. The ranges are by adjustments of σmax (see Sec. 4.2
and Algorithm 6). There are further plots and analysis of these results in the appendices.

(a) (b)

Fig. 3 (a) Distributions of the averaged and individual VAS estimates and (b) distribution of the
absolute differences between reader scores.
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Fig. 4 The RMSE per decile with the deciles determined either with averaged (crosses) or indi-
vidual (dots) labels. The errorbars are at the 95% level estimated by bootstrapping with 1000
repeats.

Fig. 5 The distribution of the differences for each decile, considering the individual reader esti-
mates. The decile is shown at the top, the reader difference axis is the same for all plots while the
frequency varies depending on the number of images in each decile. The lower density scores
tend to have tighter distributions with fewer large differences in label annotation.

Table 2 Expected metrics per image, for a model predicting the true VAS values if the assump-
tions we specify are correct. This can be seen as an estimate of a set of metrics we would find if we
produced a highly accurate model. The range is found by matching the metrics of the modeled pair
of reader scores using σmax for the four metrics. The best score (high correlation and low errors) is
found when matching RMSE and the worst when matching the correlation.

Correlation RMSE MAE MedAE

All data

CC 0.865 to 0.891 8.30 to 9.31 6.29 to 7.01 4.77 to 5.28

MLO 0.879 to 0.899 7.96 to 8.76 6.07 to 6.65 4.66 to 5.08

Test set

CC 0.869 to 0.892 7.98 to 8.90 5.96 to 6.60 4.41 to 4.88

MLO 0.876 to 0.899 7.75 to 8.67 5.82 to 6.50 4.37 to 4.87
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5.2 Model Predictions

In Fig. 6, we show plots of our ensemble CC image density estimates against the reader aver-
age. Fig. 6(a) is a direct comparison of prediction against reader average, and Fig. 6(b) is a
Bland–Altman plot of the difference between prediction and reader averages against the aver-
age of the two. Plots per woman are shown in the appendix in Fig. 14 and show a similar
pattern, with a smaller variation. These plots allow for some intuition about the quality of the
predictions compared to labels. They can also be compared to plots of the individual reader
scores against one another as well as the modeled scores, all in the appendix (Fig. 11). These
plots also show a considerable similarity to those of the modeled optimal plots in the appen-
dix (Fig. 12).

In Table 3, we show the four metrics produced by comparing our predictions against the
averaged labels for the CC images. The equivalent results for the MLO images are in
Table 7 in Appendix B. All the results are shown against the averaged reader scores of the test
set. The label columns refers to which label was used when training the models on the training
data. The general trend is for the DenseNet model to perform better than ResNet and for the
MLPs to outperform the linear regression. The ensemble predictor slightly outperforms the indi-
vidual models in most of the metrics.

Figure 7 (a) shows differences in labels per decile and (b) shows prediction errors per decile.
The label differences are slightly different than Fig. 4 (but there are no differences in trends), as
those were on the entire dataset and these on the test set. The images are binned either by their
averaged labels (crosses) or individual labels (dots). The errorbars are the 95% confidence inter-
vals found by performing 1000 sets of bootstrapping. The prediction errors are taken as the
difference between the ensemble predictions and averaged labels, the individual labels are used
to bin the images, not to estimate the accuracy of the model. The key point is that while the
prediction errors do increase with breast density, the differences between the pairs of readers also
do. At higher density, the models are both trained and compared to more variable labels.

In Fig. 8, we show the results of cancer risk predictions for the same 16 model variants and
ensemble predictor as in Table 3. The odds ratios (ORs) are in comparison to the first quintile.
The most relevant is Q5, which shows the OR of the highest density women compared with the
lowest density women. All the model predictions show a substantial OR between the first and
fifth quintile, with no differences outside of the uncertainty bounds. These are also comparable to
those of the averaged reader VAS scores with an OR of around 4.5.4

(a) (b)

Fig. 6 Density prediction of the CC images by the ensemble model compared to the averaged
reader image estimates. (a) Direct comparison between the ensemble model prediction and the
reader average score. The dashed line represents equal predictions and reader average scores.
(b) Bland–Altman plot of the difference between the ensemble model prediction and the reader
average score against the average of the two.
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Table 3 Comparison metrics between our models and the average labeled data for the CC
images.

Model Label Obj. func. Corr RMSE MAE Median

ResNet Average LinReg 0.80 ± 0.01 9.50 ± 0.21 7.39 ± 0.16 5.97 ± 0.20

L1 0.82 ± 0.01 9.34 ± 0.22 7.08 ± 0.16 5.48 ± 0.18

L1Smooth 0.82 ± 0.01 9.30 ± 0.22 7.05 ± 0.16 5.48 ± 0.18

MSE 0.82 ± 0.01 9.20 ± 0.21 7.10 ± 0.16 5.69 ± 0.16

Individual LinReg 0.80 ± 0.01 9.49 ± 0.21 7.38 ± 0.16 6.00 ± 0.20

L1 0.82 ± 0.01 9.37 ± 0.21 7.04 ± 0.16 5.34 ± 0.19

L1Smooth 0.82 ± 0.01 9.38 ± 0.22 7.06 ± 0.16 5.28 ± 0.20

MSE 0.82 ± 0.01 9.13 ± 0.21 7.00 ± 0.15 5.52 ± 0.18

DenseNet Average LinReg 0.82 ± 0.01 9.12 ± 0.21 7.08 ± 0.15 5.72 ± 0.16

L1 0.83 ± 0.01 9.03 ± 0.22 6.87 ± 0.15 5.38 ± 0.22

L1Smooth 0.83 ± 0.01 9.04 ± 0.21 6.88 ± 0.15 5.38 ± 0.19

MSE 0.83 ± 0.01 8.99 ± 0.21 6.94 ± 0.15 5.56 ± 0.18

Individual LinReg 0.82 ± 0.01 9.12 ± 0.20 7.08 ± 0.15 5.71 ± 0.16

L1 0.83 ± 0.01 9.05 ± 0.22 6.77 ± 0.16 5.19 ± 0.2

L1Smooth 0.83 ± 0.01 9.05 ± 0.23 6.77 ± 0.16 5.11 ± 0.18

MSE 0.83 ± 0.01 9.01 ± 0.21 6.88 ± 0.15 5.39 ± 0.18

Ensemble L1 0.84 ± 0.01 8.79 ± 0.21 6.66 ± 0.15 5.17 ± 0.17

(a) (b)

Fig. 7 The changes in RMSE per decile for the labels and ensemble predictions, with deciles
defined by averaged and individual labels. The error bars are the 95% confidence intervals found
by bootstrapping 1000 times. (a) Reader differences as measured by RMSE with data placed into
deciles from averaged labels (black crosses) and individual labels (blue dots), respectively.
(b) Ensemble prediction RMSE per decile with data placed into the decile using the average label
(black crosses) and individual labels (blue dots).
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5.3 Model Comparisons

We make a comparison between models trained on averaged and individual labels and models
with different feature extractors (ResNet and DenseNet) and models with density mapping from
linear regression and MLPs. In addition, we compare our predictions to those of a variant of a
previous method trained on this data, pVAS.18

In Table 4 (comparison 1), we show metrics for the differences in prediction between models
trained on averaged and individual labels for the DenseNet MLP method with L1 objective func-
tion. Plots relating to these results are in the appendix (Fig. 15). The similarity in predictions is
high, which might not be expected considering the substantial differences in some reader scores,
implying there is a strong density signal in the data.

Metrics for the comparison between model predictions made using the feature extractors
ResNet and DenseNet, both with MLPs trained on the feature vectors, are shown in Table 4
(comparison 2) (with related Fig. 16). Both models are trained on individual labels and with
the L1 objective function. The differences are larger than the pair of predictions trained on the
individual and averaged labels, but they also appear to be random in character; there does not
appear to be much in the way of systematic variation.

We show the results for a comparison between model predictions made using the
linear regression and MLP density estimators, both using the DenseNet feature extractor

Fig. 8 Plots of the ORs calculated using the model predicted scores with uncertainties found via
bootstrapping. OR: Q2, Q3, Q4, Q5 shows the ORs for the second, third, fourth, and fifth quintile,
respectively. L shows the ORs found from the labels. R∕D represent ResNet or DenseNet, A rep-
resents the model trained on the averaged labels, 0, 1, 2, 3 represent linear regression, the L1,
L1Smooth, and MSE objective functions, respectively. For example, RI2 is the ResNet feature extrac-
tor trained on the individual labels with a L1Smooth objective function. E is the ensemble predictor.

Table 4 Comparison metrics between the predictions made between our density mapping mod-
els. We show standard metrics with the addition of the RMSE per quintile (labeled Q1 to Q5), with
quintiles defined as the average of the two predictions. AvQ is the mean of the RMSEs per quintile.
Comparison 1 is between models trained on averaged and individual labels. Comparison 2 is
between MLPs trained on DenseNet and ResNet extracted features. Comparison 3 is between
an MLP and linear regression model trained on the DenseNet extracted features. Comparison 4 is
between our ensemble model trained on both individual and averaged labels and pVAS from a
previous study.18 The test set for this comparison is different than in the rest of this paper.

Name Corr RMSE MAE MedAE AvQ Q1 Q2 Q3 Q4 Q5

Comparison 1 0.996 1.80 1.46 1.28 2.33 1.90 1.70 1.69 2.29 4.05

Comparison 2 0.945 4.69 3.55 2.72 6.54 3.27 4.9 6.25 8.44 9.82

Comparison 3 0.983 2.60 2.04 1.68 3.86 2.66 2.32 2.97 4.35 7.02

Comparison 4 0.924 5.74 4.40 3.53 7.89 4.63 5.80 7.00 8.85 13.19
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[Table 4 (comparison 3)] (Fig. 17 in the appendix). These are for average labels and L1 objective
function for the MLP. They show some systematic differences in predictions, likely due to the
linear regression underfitting to the data.

The final comparison we make is between previous work18 labeled pVAS and the final
ensemble predictions produced in this paper. Table 5 shows metrics for the pVAS estimates and
our ensemble estimates. We also show these results as comparison 4 in Table 4. Plots are shown
in Fig. 18. The test set is different to that for the results shown in the rest of the paper so that it
coincides with the test set used by the pVAS model. Our model outperforms the pVAS model
even though it is never trained end-to-end, which demonstrates the power of the representation
formed by the pretrained models.

6 Discussion

Breast density, as measured on a VAS by experienced radiologists, shows a strong realtionship
with breast cancer risk.4 We designed and implemented a framework based on pretrained deep
networks to find a mapping between a mammogram and its associated breast density. The core
part of the system is the feature extractor, which is taken from deep networks trained on
ImageNet.9

Reader density scores are known to be variable.30,31 One consequence is that we are training
our models on data with interreader variability, and the second is that if we were to produce a
highly accurate predictor, when we compared it to the labels, it would look like it produced
inaccurate predictions. We analyzed the labels, in Sec. 5.1, to gain insight into how this vari-
ability affects our conclusions.

An important consideration is how the variability changes with the density scores. The aver-
age of the two reader estimates (Fig. 4 and Table 6) appear to show significantly smaller
differences between the readers at both lower and higher densities with a maximum difference
in the middle. For example, in the 50 to 60 decile, we have a mean difference of 18.0 and in the 0
to 10 decile a mean difference of 4.5. This might imply that the readers are more consistent at the
two extremes and produce more variable results in the middle. However, if we look at the indi-
vidual reader estimates, the average differences between the readers tend to increase with
increasing density across the deciles.

The reason the differences appear to peak in the middle of the density distribution and are
lower at the two ends for the averaged reader estimates is likely to be at least partially a statistical
artefact. If we consider the first decile (1 to 10) and take an example of an averaged reader score
of 5.0, the maximum difference possible for this average result is one reader marking 1 and the
other marking 9, with a difference of 8. Conversely, the maximum possible difference for an
average value of 50.0 is one reader marking 1 and the other marking 99, giving a difference
of 98. Part of the reason that the average differences appear to be lower in the low and high
densities is because, when considering the average scores, the results with the larger differences
would not result in averages with low or high densities. There might be more label consistency at
the low and higher ends of the density distribution, but it is hard to separate that out from this
statistical artefact.

Table 5 Metrics of predictions made by our ensemble method and predictions made by pVAS18

per image. The results are all the images, both CC and MLO. These results are from the second
test set partition, discussed in Sec. 2. Uncertainties are at the 95% confidence level found via
bootstrapping with 1000 repeats.

Correlation RMSE MAE MedAE

pVAS versus our method 0.924 ± 0.001 5.74 ± 0.04 4.40 ± 0.03 3.53 ± 0.03

Our method versus labels 0.839 ± 0.003 9.00 ± 0.05 6.92 ± 0.04 5.49 ± 0.05

pVAS versus labels 0.809 ± 0.003 9.78 ± 0.05 7.66 ± 0.04 6.32 ± 0.05

Squires et al.: Automatic assessment of mammographic density using a deep transfer learning method

Journal of Medical Imaging 024502-15 Mar∕Apr 2023 • Vol. 10(2)



As the performance of our models is measured based upon the quality of the labels, if the
label variability increases with higher density, we would expect to see an apparent fall in model
performance due to the increasing variability, rather than the failure of the model. In Fig. 7, this is
the effect we do see, an apparent reduction in performance of the model at higher density scores.
It is likely that our models are more inaccurate at higher densities as we also see a large vari-
ability when comparing model predictions to each other at those higher densities (Table 4), but it
is a smaller effect than if we simply measure the differences in predictions to the labels. These
effects are further discussed in the appendix.

The errors between our density predictions (Table 3) and the labels fall close to the range of
the errors we see with a modeled optimal estimator (Table 2), which can perfectly predict the
density of an image. There is still space for improvement in the quality of the predictions, which
may be best achieved by adapting the feature extractors to better represent mammography data
either through fine-tuning or with other approaches. However, there is a limit above which it will
become difficult to assess if the improved models are able to perform better as they approach the
metrics shown for the simulated optimal model.

We compared our models both to a previous method, pVAS,18 and to variants of our method.
We find considerable similarities between all of our models and to pVAS. This sort of similarity
implies that we are finding true structure in the data. There is greater divergence of prediction at
higher VAS scores, although it is still fairly small considering the uncertainty in the labels and the
small amount of data at those higher densities.

There is little difference in results when training on averaged or individual labels (Table 3),
and this is an interesting finding considering the low consistency of the pairs of reader estimates.
We might expect there to be a significant improvement when training on the averaged labels
because they might be expected to reduce some of the noise in data. The fact that we do not
see this suggests that the models are able to effectively extract a true density-related signal. The
ensemble predictor produces a small improvement in performance giving slightly lower errors
and higher correlations than the individual density mapping models.

The linear regression produced reasonable accuracy implying that the feature extractors are
producing a mapping to a fairly linear subspace; however, there is clearly some nonlinearity
required as the MLPs do perform better (Table 3). DenseNet performs better than ResNet, which

Table 6 The fraction of density scores (number fraction) and the average (both mean and
median) absolute differences between reader estimates per decile. These are all shown for the
deciles defined either by averaged reader scores (averaged) or individual reader scores
(individual).

Number fraction Mean differences Median differences

Decile Averaged Individual Averaged Individual Averaged Individual

1 to 10 0.151 0.197 4.5 9.3 4.0 5.0

11 to 20 0.251 0.228 9.9 9.7 8.0 7.0

21 to 30 0.214 0.189 13.9 11.7 12.0 10.0

31 to 40 0.170 0.157 15.1 13.1 13.0 12.0

41 to 50 0.109 0.108 16.8 14.8 14.0 13.0

51 to 60 0.059 0.059 18.0 17.2 16.0 16.0

61 to 70 0.029 0.039 15.1 19.1 12.0 17.0

71 to 80 0.012 0.019 13.0 21.5 11.0 18.0

81 to 90 0.003 0.007 8.7 21.2 7.0 18.0

91 to 100 0.000 0.001 7.2 22.6 6.0 20.0

All 1 1 12.2 12.2 9.0 9.0
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may be due to the fact that the DenseNet version performs better on ImageNet than the specific
ResNet version used (see Appendix A for details). Alternatively, it may be due to the larger
subspace size of the DenseNet model.

The model predictors (Fig. 8) are all comparable with the VAS labels in terms of risk pre-
diction. Although there is variation between the models in terms of the ORs found, these are all
within the uncertainty bounds and we cannot make any strong statements about the quality of the
predictive models compared with one another.

This usage of transfer learning allows us to leverage the long training times and large com-
putational power of other research groups. There is a debate over whether transfer learning or
learning from scratch are more appropriate.10 One answer is that transfer learning approaches
like the one we have demonstrated here is far quicker to implement than the requirement of
designing and then training networks from scratch. If results from a transfer learning approach
are poor, then it may be necessary to pursue other approaches.

A potential issue with a transfer learning approach in medical imaging is that the models used
tend to be trained on unrelated images. It might be expected that this would result in features
being extracted that are unrelated to the medical domain. However, we have shown that reason-
ably accurate results can be obtained using these features, even when using only a linear map-
ping. Perhaps with some domain adaptation, these results would improve further.

We reduced the size of the images to 224 × 224, both to match the size of images the models
were originally trained on and to reduce computational requirements. If we can utilize smaller
images and achieve good results, it is a significant advantage in terms of the computer power and
time required. Saving on computational time is a major advantage, one benefit is that it allows
researchers and groups without access to large computing resources to perform analysis. It also
means that multiple different runs of algorithms can be performed, and multiple other facets of
the data can be investigated.

We also did not preserve the aspect ratios of the images, do anything about the fact that there
are three different image sizes that are then distorted by differing amounts, or crop the images to
focus on the breast. Yet we still achieve accurate predictions, although further research is
required to investigate whether results could be improved by correcting these issues, or if they
do not adversely effect the quality of the models. We also do not utilize the three-channel nature
of the transferred network, something that might enable more predictive capacity to be extracted
from the pretrained models.

Overall, our method produces predictive accuracy close to the maximum that can be assessed
with the ground truth labels we have access to. We do so using a method that requires modest
computer resources both in terms of memory and time. In particular, once the feature extractors
have been run, the computational requirements of the density predictors are very low, especially for
the linear regression. This can enable both much faster training and also training on a small dataset
or subsets of the larger dataset. We also demonstrate the, perhaps, surprising ability of deep learning
models trained on a different image domain to produce good performance on this medical dataset.

There is a direct benefit of accurate prediction of breast density, and that it can be used to
produce information to medical practitioners or in research projects where there is no access to
radiologists. Another potential value is as an input to other automated models. Density provides
considerable information that might enable models that are trying to predict cancers, perform
segmentation, or other tasks that might be able to utilize to produce improved performance on
their specific problem.

7 Conclusions

In this paper, we have demonstrated that using a transfer learning approach with deep features
results in accurate breast density predictions. This approach is computationally fast and cheap,
which can enable more analysis to be done and smaller datasets to be used. However, the deep
feature models were trained on a nonmedical dataset, which would imply that the features
extracted could be considerably improved. If we can train deep models on medical imaging
data, then we might expect to see improvements in performance when those models are used
as a transfer learning model across a wide range of medical imaging applications.
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We have demonstrated the issues associated with data where readers are variable in predic-
tions. Finding ways to reduce the variability of the labels would enable us to train on more
reliable data and to better assess which models are performing better than others. If we could
improve the quality of the labels, it would also mean that we could more systematically inves-
tigate what measures could improve performance.

8 Appendix A: Model Details

8.1 Feature Extraction

We use two networks for the feature extraction: ResNet22 and DenseNet,23 specifically we use the
“ResNet18” and “DenseNet161” architectures downloaded with pretrained weights from the
PyTorch24 Torchvision repositories. For both, we replace the final classification layer (“fc”
in Resnet and “classifier” in DenseNet) with an identify matrix. We ran the images through the
two networks with a NVIDIAQuadro P400 2 GB GPU, a process that takes around 10 to 50 s per
100 images for ResNet and DenseNet, respectively. In total, we have around 160,000 images,
and the total run time is around 4.5 to 22 h for ResNet and DenseNet, respectively. Once this
stage is completed, there is no need to repeat as the feature vectors remain the same and can be
used in any required permutation.

8.2 MLP Density Mapping

Our MLP is small and simple with p (512 for ResNet and 2208 for DenseNet) input neurons,
followed by 200 neurons, and a rectified linear unit (ReLU),32 then 300 neurons and a ReLU to
the output. We trained them using the same NVIDIA Quadro P400 GPU on PyTorch24 with
around 200 epochs, the Adam optimizer,33 and a starting learning rate of 1 × 10−5 and one reduc-
tion in learning rate half way through to end at 2 × 10−6. Due to the small and simple nature of
the MLP, multiple other training approaches would suffice, this one was found through trial-and-
error checking that the training error was reducing as we would expect. We use three objective
functions: L1, L1Smooth, and the MSE, all available as basic functions in PyTorch.

8.3 Ensemble Prediction

The ensemble MLP is built using PyTorch24 with two hidden layers of size 5p and 10p, respec-
tively, where p is the number of density predictions fed into the system. We apply ReLU to both
hidden layers and trained using the Adam optimizer.

9 Appendix B: Extra Results

In Fig. 9, we show the distribution of the differences between individual label scores for the
bins we use to make our simulated predictions. The bin centers are noted on the top of
each plot.

9.1 Label Analysis

In Fig. 10, we graphically demonstrate the challenge with having high reader uncertainty
together with a skewed distribution. We plot all the binned individual reader scores per decile
along with the distribution of the differences from the center of the decile, these are the blue bars.
We also plot the total number of individual labels above 80% as orange bars. In the bottom right
two plots, we show the entire distributions (left of the bottom right pair) and a zoomed in version
(bottom right plot). The potential number of images, which are falsely labeled as high density,
may be comparable to the number of real high-density images. This makes it difficult to con-
fidently assess how well our models are performing at high VAS scores, as we cannot assess
whether a high VAS score is accurately labeled. If we were to perform oversampling or data
augmentation on the VAS scores classed as high by the average reader estimate, we are likely
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to oversample from the least reliable part of the distribution with the most falsely labeled data
points and the lowest signal-to-noise ratio.

In Fig. 11, we show plots of the pairs of VAS labels for the modeled and real estimates, we
show 3000 random pairs so the structure of the distribution is visible. The dotted line shows a
perfect relationship between the pair of readers. Fig. 11(a) is the lower error (higher correlation)
end of our modeled range, and Fig. 11(c) is the higher error (lower correlation) end of our mod-
eled range. Fig. 11(b) show the real pairs of reader labels plotted next to one another, these points
are very slightly perturbed so that individual points can be seen.

In Fig. 12, we show the average modeled optimal scores versus the average of the two mod-
eled labels. Fig. 12(a) is a direct comparison and Fig. 12(b) is the Bland–Altman plot for the
difference between the modeled optimal score and the modeled average reader scores versus the
average of the optimal and modeled scores.

Previous work has shown that VAS density scores show a strong correlation to the risk of
developing cancer.4 In this paper, we have demonstrated that the variability of the reader

Fig. 9 Distribution of the differences within bins. Bin centers are noted on the top.

Fig. 10 For each of the first eight deciles, we show the distribution of the pair values as blue bars.
For example, in the 1 to 10 decile range, we show the distribution of the reader values, which have
a paired score between 1 and 10. We also show the number of reader averaged scores that are
above 80. The bottom right two plots show the entire 0 to 80 distributions and a zoomed in version
of the same results.
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estimates means that we have to be cautious about the level of confidence we have in results
derived from these labels. We therefore repeat the analysis for the Prior dataset from that pre-
vious work to calculate the ORs.4,18 In addition, we provide an additional piece of analysis by
perturbing the averaged scores. The purpose of doing so is to give some intuition about how
much the ORs might change with small variations in the reader scores. We added a random
amount to all the averaged scores by sampling from a Gaussian distribution with three different
standard deviations of σ ¼ 1, 2, 5. We resampled any scores that went above 100 or below 1,
until we got a score within the correct range. We performed each set of perturbations five times.
The perturbation we apply to the reader averaged scores is small when compared to the vari-
ability between the pairs of reader scores, which have an RMSE between readers of 16.2.

The results of the range of the ORs found are shown in Fig. 13. We show OR plots for the
second (Q2), third (Q3), fourth (Q4), and fifth (Q5) quintiles. On the left side of the plots, labeled
with Orig., is the nonperturbed ORs. The next five, labeled with σ ¼ 1 show the five repeats
when the perturbation is parameterized with a standard deviation of 1. The results for σ ¼ 2

and σ ¼ 5 are shown in the next two sections, separated by the dashed line. The crosses show
the ORs and the error bars the upper and lower 95% confidence intervals found via bootstrapping.

We therefore consider two aspects of uncertainty here: via bootstrapping we see the uncer-
tainty relating to the sampling of the data, and via the perturbations we see the uncertainty due to

(a) (b)

Fig. 12 Modeled optimal scores and modeled reader average scores. (a) Direct relationship
between the modeled optimal scores versus the averaged modeled pairs of estimates.
(b) Bland–Altman plots of the difference between the modeled optimal and modeled reader aver-
aged scores versus the average of the modeled optimal and modeled reader average scores.

(a) (b) (c)

Fig. 11 Examples of the pairs of scores for the modeled and real data, the dotted line shows a
perfect relationship between the pair of estimates. (a) The modeled pairs of scores for the results
produced with the lowest errors. (b) The pairs of real reader scores. (c) The modeled pairs of
scores produced with the highest error in the range.
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the unreliability of the labels due to reader variability. The uncertainty due to sampling (the
bootstrap error bars) is large and show the wide range of possible ORs that could occur with
a different sample. The perturbations alter both the OR and the uncertainty of it. We will see in
the next section that the ORs found by the models are comparable with these ORs for the readers.

Although this is a positive result for our models, the problem is that the high level of uncer-
tainty in the OR values means we cannot easily assess whether our models are performing better
than one another. This means that we cannot bypass the metrics we considered earlier in this
section to assess the quality of our models by looking directly at cancer risk, because the uncer-
tainty involved is too large. From these perturbation results, we would not want to trust that one
model is better than another without quite significant differences in estimates. However, what
this also shows is that the VAS scores do produce a robust set of cancer risk prediction. In pre-
vious work, the other measures of density studied did not produce a ratio of above 3.4 Therefore,
although we cannot be confident that results in a fairly broad range are an improvement on other
results, we can be reasonably confident in the overall ability of VAS to make good risk estimates
in comparison to other density scores.

9.2 Model Predictions

In Table 7, we show the prediction results for the MLO images equivalent to Table 3.

Fig. 13 Plots of the ORs calculated using the reader averaged scores with uncertainties found via
bootstrapping. OR: Q2, Q3, Q4, Q5 shows the ORs for the second, third, fourth, and fifth quintile,
respectively. Orig. shows the results with no perturbation, the five points around σ ¼ 1, 2, 5 show
the ORs when the reader averaged scores are perturbed by the standard deviation specified, with
the multiple points being repeated applications of the perturbations across the dataset.

Table 7 Comparison metrics between our models and the average labeled data for the MLO
images.

Model Label Obj. func. Corr RMSE AME Median

ResNet Average LinReg 0.81 ± 0.01 9.49 ± 0.22 7.32 ± 0.17 5.87 ± 0.18

L1 0.82 ± 0.01 9.24 ± 0.22 7.02 ± 0.16 5.54 ± 0.19

L1Smooth 0.82 ± 0.01 9.35 ± 0.23 7.14 ± 0.16 5.69 ± 0.2

MSE 0.83 ± 0.01 9.13 ± 0.21 7.04 ± 0.15 5.60 ± 0.16

Individual LinReg 0.81 ± 0.01 9.48 ± 0.22 7.31 ± 0.16 5.88 ± 0.18

L1 0.82 ± 0.01 9.25 ± 0.23 6.94 ± 0.17 5.34 ± 0.2

L1Smooth 0.82 ± 0.01 9.25 ± 0.23 6.95 ± 0.16 5.38 ± 0.17

MSE 0.83 ± 0.01 9.02 ± 0.22 6.89 ± 0.15 5.45 ± 0.19
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Plots of the final ensemble predictions versus labels per woman are displayed in Fig. 14.
There are 2682 women in the test set who have all labels and all predictions intact, 15 women
are missing labels or images and are removed. We see the same general pattern as the per-image
plots of Fig. 6.

9.3 Model Comparisons

In Fig. 15 we show a comparison of predictions made by training on the individual labels
compared to averaged labels, both with a DenseNet feature vector and an MLP trained using
the L1 objective function. Metrics related to these plots are shown as in Table 4 (compari-
son 1).

(a) (b)

Fig. 14 Density prediction per woman by the ensemble model compared to the averaged reader
woman estimates. (a) Direct comparison between the ensemble model prediction and the reader
average score. (b) Bland–Altman plots of the difference between the ensemble model prediction
and the reader average score against the average of the two.

Table 7 (Continued).

Model Label Obj. func. Corr RMSE AME Median

DenseNet Average LinReg 0.83 ± 0.01 9.03 ± 0.22 6.96 ± 0.15 5.66 ± 0.17

L1 0.83 ± 0.01 8.94 ± 0.22 6.75 ± 0.16 5.21 ± 0.16

L1Smooth 0.83 ± 0.01 8.94 ± 0.23 6.75 ± 0.16 5.22 ± 0.17

MSE 0.84 ± 0.01 8.82 ± 0.22 6.78 ± 0.15 5.33 ± 0.17

Individual LinReg 0.83 ± 0.01 9.04 ± 0.21 6.97 ± 0.15 5.66 ± 0.16

L1 0.83 ± 0.01 9.01 ± 0.24 6.75 ± 0.17 5.10 ± 0.18

L1Smooth 0.83 ± 0.01 9.03 ± 0.23 6.75 ± 0.16 5.12 ± 0.15

MSE 0.83 ± 0.01 8.92 ± 0.21 6.77 ± 0.15 5.22 ± 0.15

Ensemble L1 0.84 ± 0.01 8.68 ± 0.21 6.59 ± 0.15 5.12 ± 0.17
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In Fig. 16 we show a comparison of predictions made using MLPs with the L1 objective
function on the DenseNet and ResNet feature vectors, both trained on individual labels.
Metrics related to these plots are presented in Table 4 (comparison 2).

In Fig. 17 we show a comparison of predictions made using an MLP (with L1 objective
function) against linear regression, both on feature vectors from the DenseNet model, with aver-
aged labels. Related metrics are in Table 4 (comparison 3).

In Fig. 18 we show predictions made by our ensemble predictor compared to the pVAS
model. Related metrics are in Table 4 (comparison 4).

(a) (b)

Fig. 16 Differences in image prediction between MLPs trained on the DenseNet and ResNet fea-
ture vectors. (a) Predictions made using DenseNet against predictions made using ResNet.
(b) Bland–Altman plots of the difference between predictions made by DenseNet and ResNet ver-
sus their average.

(a) (b)

Fig. 15 Plots showing the similarities and differences between image predictions made by mod-
els trained on individual labels and averaged labels. (a) Predictions from training on individual
labels against predictions from training on the averaged labels. (b) Bland–Altman plots of the
same data.
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(a) (b)

Fig. 18 A comparison between the ensemble predictions using our methods and pVAS.18

(a) Direct comparison and (b) Bland–Altman plot.

(a) (b)

Fig. 17 Image predictions made using DenseNet extracted features with an MLP and linear
regression as the density mapping functions. (a) Direct comparison. (b) Bland–Altman plots of
the difference between predictions made by MLP and linear regression versus their average.
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