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ABSTRACT. Purpose: Specular reflections (SRs) are highlight artifacts commonly found in
endoscopy videos that can severely disrupt a surgeon’s observation and judgment.
Despite numerous attempts to restore SR, existing methods are inefficient and time
consuming and can lead to false clinical interpretations. Therefore, we propose the
first complete deep-learning solution, SpecReFlow, to detect and restore SR regions
from endoscopy video with spatial and temporal coherence.

Approach: SpecReFlow consists of three stages: (1) an image preprocessing stage
to enhance contrast, (2) a detection stage to indicate where the SR region is present,
and (3) a restoration stage in which we replace SR pixels with an accurate under-
lying tissue structure. Our restoration approach uses optical flow to seamlessly
propagate color and structure from other frames of the endoscopy video.

Results: Comprehensive quantitative and qualitative tests for each stage reveal
that our SpecReFlow solution performs better than previous detection and restora-
tion methods. Our detection stage achieves a Dice score of 82.8% and a sensitivity
of 94.6%, and our restoration stage successfully incorporates temporal information
with spatial information for more accurate restorations than existing techniques.

Conclusions: SpecReFlow is a first-of-its-kind solution that combines temporal and
spatial information for effective detection and restoration of SR regions, surpassing
previous methods relying on single-frame spatial information. Future work will look to
optimizing SpecReFlow for real-time applications. SpecReFlow is a software-only
solution for restoring image content lost due to SR, making it readily deployable
in existing clinical settings to improve endoscopy video quality for accurate diagno-
sis and treatment.
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1 Introduction
Specular reflection (SR) is an optical phenomenon wherein light is strongly reflected from a
surface in a unified direction based on Snell’s law. On a camera, SR often leads to saturation
of the pixels (causing them to appear white) and is well known for obscuring the underlying
information in the image—rendering it a functional blind spot. In clinical settings, that blind

*Address all correspondence to Audrey K. Bowden, a.bowden@vanderbilt.edu

Journal of Medical Imaging 024012-1 Mar∕Apr 2024 • Vol. 11(2)

https://orcid.org/0000-0001-7842-3474
https://orcid.org/0000-0002-0217-8094
https://doi.org/10.1117/1.JMI.11.2.024012
https://doi.org/10.1117/1.JMI.11.2.024012
https://doi.org/10.1117/1.JMI.11.2.024012
https://doi.org/10.1117/1.JMI.11.2.024012
https://doi.org/10.1117/1.JMI.11.2.024012
https://doi.org/10.1117/1.JMI.11.2.024012
mailto:a.bowden@vanderbilt.edu
mailto:a.bowden@vanderbilt.edu
mailto:a.bowden@vanderbilt.edu


spot can critically impair all three stages of surgical operations: diagnosis, planning, and post-
operative observation. Moreover, SR artifacts impact the interpretation of clinical endoscopy data
and can hinder the utility of augmented/virtual reality (AR/VR) tools for surgical navigation and
the creation of accurate three-dimensional (3D) organ models that have been found to improve
surgical outcomes.1–3 Thus, there is a significant positive impact associated with improving video
quality by restoring SR regions. Several studies have directly linked enhanced image restoration
to improved performance in downstream medical tasks. For instance, Ali et al.4 found that the
restoration of SR and saturated regions significantly improved image feature matching, which
could be used for 3D organ reconstruction for further analysis. This and other studies5,6 collec-
tively suggest that advancements in image restoration quality not only are beneficial in their own
right but also play a crucial role in enhancing the accuracy and effectiveness of various medical
applications.

We propose a novel method for accurate, multiview restoration of SR regions of endoscopy
data based on the propagation of optical flow7 from adjacent frames of a video sequence. Optical
flow is defined as the pattern of apparent movement of objects in a visual scene caused by relative
motion between an observer and a scene. The optical flow concept has been commonly applied to
tasks such as object detection and tracking, movement detection, robot navigation, and visual
odometry;8 however, we are the first to apply it to SR restoration of medical endoscopy data. The
optical flow method that we employ utilizes pixel movement data, enabling a transformer deep
learning model to effectively integrate pixel information into the SR region. Pretrained on various
video data, this model is proficient at adapting to different lighting conditions in SR regions. Its
adaptability is crucial for maintaining spatiotemporal consistency in SR regions informed by
optical flow. The flow-guided transformer (FGT) algorithm9 that we use implicitly accounts for
depth information via optical flow, which aids in lighting adjustments during the restoration
process. As a result, the restored pixels in the SR regions are not merely copied from another
frame; their colors are also appropriately transformed. Intuitively, this method preserves the tex-
ture of the restored image content while allowing color to adapt seamlessly to its new back-
ground. We evaluate the effectiveness of our method in the context of other state-of-the-art
restoration strategies and propose new assessment metrics appropriate for this task, termed
mPSNR and mSSIM, to evaluate free-form SR and masked regions.

The ability to remove and restore SR regions in an accurate and color-consistent manner is
useful for improving the potential for both accurate analysis and diagnosis of endoscopy images.
Our algorithm represents a major contribution to the field by being the first full system to com-
bine both temporal and spatial information from endoscopy videos for effective detection and
restoration of SR regions, surpassing previous methods that rely solely on spatial information.
Importantly, unlike other work for optical flow applied to SR restoration,10 our implementation is
a software-only solution that does not require additional equipment beyond the clinical standard
of care for endoscopy, making it readily deployable for clinical use.

2 Related Works
One strategy to eliminate SR artifacts is to replace them with new information that infers the
original content. Efforts to restore the appearance of the clinical data underlying SR artifacts can
be broadly categorized into three groups: single-frame conventional methods, single-frame learn-
ing methods, and multi-frame matching methods.

Single-frame conventional methods include traditional image processing methods such as
thresholding or filtering. One limitation of using traditional techniques for detecting SR is that it
may result in some SR regions—especially smaller regions—going undetected, which prevents
restoration.11–13 In addition, conventional methods for SR restorations largely depend on empiri-
cal parameter setting, which can lead to slow runtimes and inaccurate feature appearance such as
blurriness, structural inaccuracy, and poor color blending with the surrounding non-SR
region.6,11–17

Many single-frame methods use deep learning approaches, such as convolutional neural
networks (CNNs)18,19 or generative adversarial networks,4,5,20–22 to directly inpaint the region
for restoration. Although learned methods may lead to fast and high-quality restorations, the
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generated regions may not be truly representative of the ground-truth tissue, as they only inpaint
the missing SR region using local spatial information obtained from a single perspective.

Multi-frame matching methods involve the use of multiple frames (e.g., video datasets). SR
regions can be restored by directly replacing SR pixels that are present in one frame with the
corresponding pixels of the same region that are not covered by SR in another frame. This is
possible because SR can be thought of as a dynamic object with no apparent pattern of move-
ment. SR regions vary among frames due to the varying angle of incidence of the light source,
which may be caused by changes in the camera angle relative to the tissue, changes in the
smoothness of the tissue, or other variations in the optical density of the intervening medium.
These factors affect how light is reflected off the surface, leading to changes in the appearance
and location of SRs in each frame. A significant drawback of simple replacement approaches
(e.g., homography transform), however, is that the restored SR regions do not have the same
brightness of color as the surrounding area due to lighting inconsistencies caused by camera
or light source movement from one frame to another. The result of these lighting aberrations
is seen as temporal inconsistency and color flickering.23,24 Recent efforts, such as those by
Daher et al.,25 have tried to harness temporal data using traditional nonlearning methods to detect
SR regions. However, their limited accuracy in SR detection causes temporal-aware generative
adversarial models to unintentionally include undetected SR from other regions, resulting in
noisy reconstructions.

Finally, a general limitation of all previous specular restoration studies performed to date is
that the standard metrics used to evaluate the effectiveness of the restoration techniques [e.g.,
peak signal-to-noise ratio (PSNR) and structural similarity metric (SSIM)] have settings (e.g.,
kernel size) that are often not fully explained or standardized, which can make it difficult to
accurately compare the results of different methods. Furthermore, as we will show, these standard
metrics are not sensitive enough to capture important details relevant to the scope of the resto-
ration task, or they may not be applied to the most relevant regions of the images being restored.
As a result, it is difficult to accurately assess the true improvement in image quality achieved by
existing methods.

3 Methodology

3.1 Overview
SpecReFlow is an SR detection and restoration algorithm with three stages: (1) image prepro-
cessing, (2) SR detection, and (3) SR restoration. Figure 1 presents an overview of the frame-
work. The preprocessing stage increases the contrast of SR in the original image to simplify the
detection task. The SR detection stage combines a modified U-net model that detects small SR
regions with a thresholding method to detect the larger SR regions on which deep learning meth-
ods commonly fail. The SR restoration stage leverages recent progress in flow-based video com-
pletion using optical flow and vision transformers to distinguish the dynamic foreground image
(SR) from the dynamic background image (ground truth tissue)26 and inpaint the detected SR
regions. All work was implemented in Python 3.10 using PyTorch version 1.13.1+cu117 with
Ubuntu 22.04 on an NVIDIAGeForce RTX 3090 GPUwith 24 GB VRAM, 32 GB RAM, and an
AMD Ryzen 9 5950X with 16 logical processors.

3.2 Dataset
For model training and pipeline development, we used the CVC-EndoSceneStill from Vázquez
et al.,27 a compilation of 912 frames obtained from 44 endoscopy videos from 36 patients. We
chose this dataset because it is one of the only known datasets with manually annotated SR
region masks.

To increase the amount of training data for the deep learning detection model, we employed
data augmentation techniques: each image was cropped into four equal-sized, smaller images of
288 × 384 pixels and subjected to horizontal/vertical flips at random. The order of the entire
dataset was then randomized to ensure sample independence. The train/validation/test split was
80∕10∕10 based on common splits in other papers.4,19
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3.3 Algorithm Design

3.3.1 Stage 1: image preprocessing

To improve the contrast between SR regions and surrounding regions, we used an image
enhancement algorithm proposed by Saint-Pierre et al.11 that modifies the pixel intensity
histogram distribution by multiplying the red, green, and blue (RGB) planes with the 1-S plane
of the hue, saturation, and value (HSV) color model, as shown in Fig. 2. When observing the
distribution of pixel intensities, we found that this step leads to an increased gap between the SR
values and the rest of the histogram, which makes it easier to separate SR and non-SR regions in
the detection stage.

3.3.2 Stage 2: SR detection

Our SR detection algorithm combines deep learning with a traditional thresholding algorithm. The
deep learning detection model, which we call “Light U-net,” is built upon the popular and proven
U-net architecture for biomedical segmentation tasks.28 The original U-net model28 included 64
convolutional layers and went five layers deep (i.e., it had four downsampling operations on the
encoder side). We use only four layers (with three downsampling operations on the encoder side)
and eight convolutional layers, yielding a total of 121,641 trainable parameters. The resulting
model, shown in Fig. 3, is lighter and more efficient for SR detection. We used fewer layers because
a smaller model allowed for less complexity to detect relatively simple objects such as SR. In

Fig. 1 Simplified overview of the SpecReFlow algorithm. A white-light endoscopy video is used as
input; it is then preprocessed to create an enhanced video for input to the detection stage for better
results. After the detection stage, SR binary masks are generated for each video frame, and both
the original endoscopic video and the mask video are used during the restoration stage to create
the restored video.
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addition, the reduced complexity of the model allows for real-time SR detection, which can be
combined with an appropriate SR restoration algorithm to fix SRs in real time.

To train our Light U-net model, we used a combination of Dice loss and binary cross entropy
loss, a U-net four levels deep (i.e., three pooling operations), an Adam optimizer (initial learning
rate of 0.01, β1 ¼ 0.9, β1 ¼ 0.999), and a learning rate scheduler of ReduceLrOnPlateau
(patience = 10, factor = 0.1). These settings were then used to train the model on 120 epochs
with a batch size of eight. We found that training the model on more epochs led to overfitting and
a decreased performance on the validation and test sets.
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Fig. 2 Image preprocessing stage visualization. A white-light endoscopy video is used as input,
and each video frame is processed to create an enhanced video. For each frame, HSV and RGB
images are created. Then, the saturation (S) channel is inverted through a 1-S operation and multi-
plied with each channel of the RGB image to ultimately create the enhanced frame.
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On its own, the Light U-net model learns to detect smaller SR regions significantly better
than larger regions, which can be explained in two ways. First, the training dataset was relatively
unbalanced as there were significantly more samples of smaller, scattered SRs; thus, the model
often misidentified larger SR regions as non-SR objects. Second, the fixed receptive field of the
convolutional kernels caused the model to learn more of the smaller SR regions. Because the
training frames were of a lower resolution than true endoscopy frames, the model was primed to
detect smaller SR regions in higher-resolution frames.

Hence, to enable the detection of large SR regions, we utilized a simple thresholding
method. It is well known that SR regions have higher pixel intensity values than surrounding
regions based on the thresholding algorithm proposed by Yu et al.29 and the analysis of a histo-
gram of pixel intensities within a frame with SR. We chose the threshold Iðx; yÞ > 194, where
Iðx; yÞ is the pixel intensity in the value channel of the HSV image and ðx; yÞ is the location of the
pixel, by optimizing the detection metrics [i.e., Dice score and intersection over union (IoU)]
through a greedy search on the same training set used for U-net training. Although this basic
method worked well on large SR regions, our testing (as shown in Sec. 4.1) revealed that thresh-
olding alone is insufficient for detecting all SR as it misses relatively low-intensity SR commonly
found in smaller SR regions. Inspired by Xu et al.,30 to harness the strength of both algorithms,
our final strategy was a combination of deep learning mask prediction (good at small, scattered
SR) and thresholding mask prediction (good at large SR) through an AND operation of the masks
generated by each prediction method. In summary, the final, optimal SR detection stage algo-
rithm that we adopted is the Light U-net + thresholding algorithm, with an additional dilation
step that we describe and justify in Sec. 4.1.

3.3.3 Stage 3: SR restoration

In this work, we chose to use an existing flow-based algorithm for the SR restoration stage. We
tested three state-of-the-art algorithms for flow-based video completion to determine which per-
forms best for our task: (1) the Flow edge-Guided Video Completion (FGVC) algorithm from
2020,26 modified by us to use the state-of-the-art single-frame inpainting model, LaMa,31 instead
of DeepFillv1 to test more recent methodologies; (2) the End-to-End Flow-Guided Video
Inpainting (E2FGVI) algorithm,32 which comprises three main modules—flow completion, feature
propagation, and content hallucination—all tied together in a streamlined manner to allow for fast,
efficient, and accurate restoration of SR regions; (3) the FGT,9 which improves upon FGVC by
replacing the edge completion part of flow estimation with an edge loss function in a novel flow
estimate network, mitigating additional computational complexity. After color propagation along
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Fig. 3 Architecture of our Light U-net model. We use four layers and eight initial convolutional
filters to create an efficient and optimized architecture as determined by a neural architecture
search.
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the estimated flow, FGT completes the missing pixels of multiple frames at once using a spatial and
temporal transformer model, incorporating more information to complete missing pixels more effi-
ciently than the single-frame and iterative inpainting version of FGVC. To compare these flow-
based models against a baseline, we also analyzed two single-frame inpainting methods represent-
ing the current standard in SR restoration: LaMa31 and DeepFillv2.33

Based on the experimentation and discussion in the following sections, we determined that
FGT accomplished the optical flow-based restoration task better than the other two. Hence,
SpecReFlow uses FGTas its third stage; an overview of the restoration algorithm is given in Fig. 4.

3.4 Evaluation Strategy and Metrics

3.4.1 SR detection

To test the effectiveness of the SR detection stage, we reserved ∼10% of the CVC-
EndoSceneStill dataset detailed in Sec. 3.2 (separate from the other 90% utilized for training),
which was 184 images. The following quantitative metrics were evaluated: sensitivity, Jaccard/
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Fig. 4 SR restoration stage visualization. The original endoscopy video and SR binary masks
generated from the SR detection stage are used as inputs. Once frames are sampled from the
video, forward and backward flows are calculated for adjacent frames, and all three datasets are
used as inputs to the flow propagation and the FGT, which performs frame restoration. The
restored frames are then combined to synthesize the restored video.
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IoU score, and Dice score. Here, we define sensitivity to be the number of true-positive SR pixels
detected divided by the total number of SR pixels in an image. Sensitivity, rather than specificity, is
relevant because our end goal is not detection but restoration; hence, we recognize that the detected
SR mask does not have to be exact to the pixel (i.e., high specificity), but rather needs to cover as
many true-positive regions as possible. Note that using sensitivity alone will give a false impression
of the performance as over-detection (of non-SR pixels) can also lead to high sensitivity; thus, we
first optimized the detection algorithm for high IoU and Dice scores to limit the detected regions to
locations of true SR pixels. Our qualitative analysis sought to validate whether our method masks
all SR regions and any surrounding regions affected by increased saturation. In both cases, we
compared our results to baselines of existing, open-source SR region-detection methods: a conven-
tional histogram thresholding method by Tchoulack et al.,34 a more recent non-deep learning adap-
tive robust principal component analysis (RPCA) method,16 and a denoising convolutional neural
network (DnCNN) modified to detect SR regions by Zhang et al.35 We chose these methods
because they represent the broad range of approaches taken to solve the detection problem in the
past and are the current state-of-the-art methods for open-source implementations.

3.4.2 SR restoration

To identify which SR restoration method performs best for endoscopy data, we generated a syn-
thetic dataset. We overlaid the GLENDA dataset (360 × 640-pixel resolution) from Leibetseder
et al.,36 which contains over 13,000 unannotated (no SR labels/masks), nonpathological images
from 20þ laparoscopy endometriosis video surgeries, with synthetic SR masks pulled from the
CVC-EndoSceneStill dataset and resized to the appropriate dimensions. The latter dataset con-
tained 200 masks, from which 50 independent random masks were chosen to be applied to
frames as described in the following experimental procedure. Note that SR masks were not
applied to regions of GLENDA frames that had pre-existing SR.

We chose to test three flow-based algorithms, FGVC, FGT, and E2FGVI, along with two
single-frame inpainting methods, DeepFillv2 and LaMa, as these were the state-of-the-art algo-
rithms for their respective categories. Each experimental trial comprised an independent set of
100 sequential frames, defined as a sequence of video frames that do not overlap temporally with
another set of 100 sequential frames. To provide the flow-based algorithms with sufficient tem-
poral data (not relevant for the single-frame inpainting algorithms as they only require spatial
data), the first 50 frames were considered “warm-up” data, and the following 50 frames were
used for “assessment” for both classes of algorithms. No masks were applied to the “warm-up”
dataset. To account for the potential spatial overlap (i.e., footage circles back to the same region)
between temporally independent sets of frames, the process of selecting random masks also
allowed for different regions to be restored despite the overlap, preserving the spatial independ-
ence of each frame sequence. In total, 13 independent restoration trials were conducted for each
algorithm.

Our metrics of assessment were modified versions of the established PSNR and the SSIM,
which we term mPSNR and mSSIM, respectively. The need for modifications stems from the
specifics of our use case. In general, PSNR is used as a quality measurement to indicate how well
the restored image compares to the fidelity of the original image. When applied to evaluate the
effectiveness of various restoration algorithms, we observed that the difference in PSNR out-
comes [Fig. 5(a)] is statistically insignificant (p > 0.05 in a two-sample t-test); we believe that
this result is due to the introduction of excess noise from non-SR regions included in the PSNR
calculation. Similarly, SSIM measures perceived changes in structural information. Because
SSIM uses a sliding window/kernel across the entire image, the resulting structural similarities
are nearly indistinguishable for the various algorithms and are close to ideal across all restoration
methods, as shown in Fig. 5(b). We believe that this result is due to the relatively small size of SR
regions compared with the image size. Hence, we observed that the original formulas for PSNR
and SSIM do not fit our use case well to distinguish restoration algorithms.

We thus modified the metrics as follows. Our proposed mPSNR differs from PSNR in that
we zero out the error terms for non-SR pixels and replace the standard mean square error (MSE)
term with a modified MSE in which we divide the MSE by the number of SR pixels instead of the
total number of pixels in the frame. The overall result is that only SR pixels from the image
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contribute to the metric assessment. The formula to describe the mPSNR between the ground
truth and a restored image is

EQ-TARGET;temp:intralink-;e001;117;189mPSNR ¼ 20 � log
�

MAXIffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mMSE

p
�
; (1)

EQ-TARGET;temp:intralink-;e002;117;140mMSE ¼ 1

C
1

S

Xm−1

i¼0

Xn−1
j¼0

½Iði; jÞ − Kði; jÞ�2 � w; (2)

where C is the number of color channels, S is the number of SR region pixels, I is the original
image of size m × n, K is the restored image, i and j are pixel indexes, and w is a binary weight,
which is 1 for SR pixels and 0 for non-SR pixels. For Eq. (1), MAX is the maximum possible
pixel value of the image, which is 255 for an 8-bit image and 1.0 for a normalized image.

(a)

(b)

Flow-based Spa�al Inpain�ng

Flow-based Spa�al Inpain�ng

Fig. 5 Original restoration metrics for quantitative restoration analysis. (a) PSNR and (b) SSIM
performance of various restoration algorithms show insignificant differences. The following resto-
ration algorithms and baselines are compared: SR unrestored image as the baseline; optical flow-
based methods such as FGT, FGVC, and E2FGVI; and single-frame inpainting methods such as
DeepFillv2 and LaMa.
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Our mSSIM also provides focus on the SR regions rather than the entire frame as this change
better captures structural inconsistencies of the restored regions. Because SSIM requires rectan-
gular regions, we first extracted bounding boxes from the ground truth SR masks. We chose a
minimum bounding box size of eight to facilitate the use of sliding windows (of size seven)
during the SSIM operation. Once the SSIM of each bounding box was found, the frame-level
mSSIM was computed as a weighted average of the number of SR pixels in a particular bounding
box divided by the total number of SR pixels in the frame. Note that the possible ranges of values
for these metrics are still the same as that of the unmodified versions, i.e. [0, unbounded) for
mPSNR and [0, 1] for mSSIM. The algorithm is detailed in Algorithm 1.

4 Results

4.1 SR Detection
The results reported in Table 1 reveal that our initial detection algorithm (SpecReFlow Det(-))
achieved Dice score and IoU values that were more than 1.17× and 1.22× higher, respectively,
than the next best established method (modified DnCNN), and it was nearly 4.25× faster. As
observed, SpecReFlow detection performs favorably against existing SR detection algorithms of
all types in both measures of effectiveness and efficiency.

Although our initial SpecReflow detection algorithm already shows the best sensitivity of all
methods, we sought to increase its sensitivity to ensure that all SR regions are detected. The
bottom row of Table 1 shows the performance that results when it is updated to include a step
that dilates the generated segmentation mask with a 5 × 5 elliptical kernel. Although this step
leads to a noticeable decrease in Dice score and IoU, the behavior is expected as the enlarged
masks intentionally overstep the bounds of the ground truth SR regions. Importantly, this step

Algorithm 1 mSSIM calculation

Require: Ground Truth Image (origImg), Restored Image (restoredImg) and SR Mask

Ensure: mSSIM Metric

1: Initialize ssims, weights = [ ], [ ]

2: boundingBoxes = Get bounding boxes for each separate SR region in SR Mask

3: for bBox in boundingBoxes do

4: Initialize boxHeight, boxWidth

5: if boxHeight <8 then

6: add to each side until minimum height of sliding window dimension

7: end if

8: if boxWidth <8 then

9: add to each side until minimum width of sliding window dimension

10: end if

11: ssim = Calculate ssim with origImg[bBox], restoredImg[bBox], windowSize=7

12: ssims.append(ssim)

13: weights.append(sum(mask[bBox]))

14: end for

15: totalSpecularReflections = sum(weights)

16: weights = weights/totalSpecularReflections

17: return weights × ssims
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leads to a notable sensitivity increase. We believe that mask dilation is warranted for our appli-
cation because it helps capture SR-adjacent pixel regions that have a manipulated appearance due
to their proximity to SR, which can affect the restoration quality due to disruptions in the true
color and feature propagation. We explore this topic more in depth in Sec. 4.2. Thus, our final
implementation of SpecReFlow detection (SpecReFlow Det.) includes dilation. We thus term the
original detection algorithm that does not include dilation as SpecReFlow Det.(-).

To assess our results qualitatively, we used a representative subset of the same test dataset
from Sec. 3.4.1. The algorithms were evaluated on representative types of SR: (a) a large SR
region and SR present in both light and dark regions, (b) medium-sized SR regions scattered
across a relatively homogeneous region, and (c) small, speckled SR regions scattered in localized
regions. As seen in Fig. 6, the green annotations indicate true positives, and the blue annotations
indicate false positives. The red asterisks indicate regions of increased saturation around the
central SR region that are not strictly SR but require correction; thus, our algorithm is sensitive
to detecting such regions of information loss. SpecReFlow Det. Successfully detects large SR
regions [Fig. 6(a)(6)], whereas the modified DnCNN model is unable to [Fig. 6(a)(5)]. In addi-
tion, the blue arrow in Fig. 6(a)(2) indicates a location where SR was not labeled in the ground
truth image but was still detected with SpecReFlow Det., suggesting that our method is robust to
mislabeled annotations.

Table 1 Quantitative comparison of SR detection metrics.

Detection method Dice ↑ IoU ↑ Sensitivity ↑ Time (ms) ↓

Tchoulack algorithm34 0.5012 0.3500 0.5122 1212

Adaptive RPCA16 0.6094 0.4590 0.5960 3.70

Modified DnCNN35 0.7096 0.5853 0.6210 53.17

SpecReFlow Det. (-) 0.8285 0.7158 0.8158 11.06

SpecFeFlow Det. 0.6517 0.4947 0.9457 11.32

Note: bold values highlight the best performing algorithm for each metric.

(a)

(b)

(c)

Original Ground Truth Tchoulack et al. Adaptive RPCA Modified DnCNN SpecReFlow Detection

(1) (2) (3) (4) (5) (6)

*  *
*

*  *
*

*  *
*

*  *
*

*  *
*

*  *
*

Fig. 6 Qualitative comparison of SR detection performance. Performance of algorithms on rep-
resentative types of SR: (a) a large SR region and SR present in both light and dark regions,
(b) medium-sized SR regions scattered across a relatively homogenous region, and (c) small,
speckled SR regions scattered in localized regions. The green annotations indicate true positives,
and the blue annotations indicate false positives. The red asterisks indicate regions of increased
saturation around the central SR region. The blue arrow in the ground truth image (a)(2) indicates a
region of high saturation that our detection method picked up but was not indicated in the ground
truth.
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Considering Figs. 6(c)(3) and 6(c)(4), we see that SpecReFlow Detection [Fig. 6(c)(6)] also
led to fewer false positives than the conventional methods (adaptive RPCA and Tchoulack’s
algorithm). Furthermore, our method generated a smoother, more continuous mask that captured
the entire SR region rather than just the most intense SR regions (as seen in Tchoulack’s algo-
rithm), which can lead to more accurate restorations without random spots of SR. Notably, we
observed that the ground truth was manually labeled with a thick marker size, which makes the
labeled SR regions appear larger than they are. Thus, some of the false negative regions in
Figs. 6(b) and 6(c) (unlabeled) are not actually wrong but appear so due to the overly extensive
marker labels in the ground truth. Qualitatively, the “thickness” of the algorithm-marked labels in
Fig. 6(c) matches what is expected from the original image.

As mentioned, the final SpecReFlow detection stage includes a marginal dilation step to
increase sensitivity and capture adjacent regions that are not strictly SR but that require inpaint-
ing. Hence, in some locations, our detection mask covers a larger area than the “ground truth”
SR. However, some of these additional regions are warranted: SpecReFlow Det. can accurately
identify highly saturated regions (red asterisks) that are adjacent to the main SR region and con-
tribute to information loss, as demonstrated by their coverage indicated with blue regions in
Fig. 6(a)(6). Furthermore, our method does not contribute false positives that still contain rel-
evant information, unlike the blue areas in Figs. 6(a)(3) and 6(a)(4) that mask regions with useful
spatial information. This exemplifies the effectiveness of our method in identifying only highly
saturated regions of interest with information loss.

We also performed an ablation study to assess the effectiveness of each of the SR detection
pipeline components: preprocessing, deep learning (Light U-net), and thresholding. The input to
each run comprised a raw or preprocessed RGB image, and the output was an SR mask. We
analyzed the time and improvement in quantitative detection metrics as each component was
systematically added or removed from the pipeline. The results can be observed in Table 2.
Notably, the impact of preprocessing on quality performance metrics (Dice and IoU) could not
be assessed as preprocessing alone is not a form of detection and yields no detected mask output.

Using only raw images as input, simple thresholding takes less than a millisecond (0.51 ms)
of runtime on average. We found that using the Light U-net model alone takes significantly
longer—9.39 ms of runtime on average—but improves the Dice score and IoU metrics by nearly
2.03× compared with only using thresholding. Thresholding, however, yields better sensitivity
than only using Light U-net (0.8367 versus 0.7614). Furthermore, when comparing the results of
using Light U-net + thresholding versus using only thresholding, we surprisingly find the Dice
and IoU metrics to be similarly low, which can be explained by the high amount of detection error
contributed by the simple thresholding component.

Image preprocessing adds 1.20 ms of runtime on average but makes significant improve-
ments across all detection metrics: Light U-net metrics improved by 1.13× on average, thresh-
olding metrics improved by 1.44× on average, and Light U-net + thresholding metrics improved

Table 2 Quantitative ablation study of SR detection performance.

Detection component(s) Dice ↑ IoU ↑ Sensitivity ↑ Time (ms) ↓

Raw image

Light U-net 0.6892 0.5560 0.7614 9.39

Thresholding 0.2945 0.2087 0.8367 0.51

Light U-net + thresholding 0.3020 0.2117 0.9462 9.83

Preprocessed image

Light U-net 0.7881 0.6837 0.7636 10.76

Thresholding 0.5540 0.4047 0.4247 1.64

Light U-net + thresholding 0.8285 0.7158 0.8158 10.92

Note: bold values highlight the best performing algorithm for each metric.
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by 2.37× on average. When comparing the results of using preprocessed images with the Light
U-net + thresholding method versus using only thresholding, we find a significant 1.63×
improvement in Dice score and IoU metrics—a major difference from when only raw images
were used as input.

Thresholding on preprocessed images is significantly worse than Light U-net alone in terms
of sensitivity (0.4247 versus 0.7636). Although thresholding does seem to have superior sensi-
tivity to Light U-net when using raw images, it is important to note the significantly lower Dice
and IoU metrics produced by thresholding for both raw and preprocessed images. This can be
explained by the fact that, although thresholding detects more of the “true” SR region, it does so
by also detecting many more non-SR regions (low specificity), which will cause the restoration to
be more difficult.

Although mask dilation is the last step of the SpecReFlow detection stage, we chose not to
include it in our ablation study for the following reasons. (1) We wanted to measure detection
performance using Dice and IoU metrics before optimizing for sensitivity, so the predicted SR
mask is as close to the ground truth as possible. (2) We wanted the restored SR region to seam-
lessly integrate with the context of its surroundings, which makes the mask dilation step more
relevant for the SpecReFlow restoration stage rather than for the detection stage on which the
ablation study focuses.

Overall, the results of the ablation study of our detection pipeline components show that
each component adds minimal runtime to SR detection while contributing significant improve-
ments in all detection metrics.

Figure 7 corroborates the results of our ablation study. Figure 7(a)(1) shows that the deep
learning model works poorly in detecting larger SR regions (indicated by the gold arrow), but it
performs well in covering all of the relatively smaller SR regions. Switching to using prepro-
cessed images, Fig. 7(a)(2) shows how the model can recognize a hotspot in the large SR region,
indicating an improvement in detection.

Original Image

Raw

Thresholding
B

oth

Preprocessed

Light U
-net

(a)

(1)

(b)

(2)

(c)

Fig. 7 Qualitative ablation study of our detection pipeline components. To visually explain the con-
tributions of each component of our detection pipeline, masks generated from combinations of
components are shown. The green mask indicates predictions from only using Light U-net, the
blue mask indicates predictions from only using thresholding, and the magenta mask indicates
intersections between the green and blue masks. As expected, thresholding detects large SR
regions well, and the Light U-net detects smaller regions well.
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In Fig. 7(b)(1), we see that thresholding alone of raw images includes significant amounts of
unsaturated pixels, which makes the restoration task more difficult. By applying preprocessing
[Fig. 7(b)(2)], thresholding works much better to only detect saturated regions with information
loss; however, the smaller SR regions are weakly detected. By combining preprocessing, Light
U-net, and thresholding [Fig. 7(c)(2)], it can be seen that the Light U-net detects the smaller SR
regions where thresholding fails (seen by the green mask enveloping the magenta mask), and
thresholding detects the larger SR regions where the Light U-net fails (seen by the blue mask
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p = 2.87e–8
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Quan�ta�ve Restora�on Comparison using mSSIM(b)
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Flow-based Spa�al Inpain�ng

Flow-based Spa�al Inpain�ng

Fig. 8 Visual quantitative comparison of SR restoration methods. Restoration (a) mPSNR and
(b) mSSIM are measured for 13 independent SR restoration trials. The following restoration algo-
rithms and baselines are compared: an SR unrestored image as the baseline, optical flow-based
methods such as FGT, FGVC, and E2FGVI, and single-frame inpainting methods such as
DeepFillv2 and LaMa. The p-values associated with two-tailed, two-sample T -tests of means com-
paring each flow-based algorithm with the inpainting options are displayed above the bars.
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enveloping the magenta mask), as the magenta mask represents the intersection between the blue
and green mask. Thus, both small and large SR regions are fully detected, which is reflected well
in the quantitative detection metrics.

4.2 SR Restoration
Figure 8 compares the mPSNR and mSSIM performance of several restoration algorithms.
In general, the flow-based algorithms (FGT, FGVC, and E2FGVI) performed better than
single-frame inpainting methods (DeepFillv2 and LaMa) across both metrics. As expected,
FGT outperforms FGVC because it incorporates optimizations by design. All algorithms out-
perform the baseline of not restoring the region at all. Importantly, the differences are statistically
significant.

From visual observation, FGT and FGVC did not have overlapping error bars with those of
the single-frame inpainting methods, suggesting that those two algorithms performed the resto-
ration task significantly better than that of the single-frame inpainting methods. The end-to-end
method (i.e., E2FGVI) had overlapping bars with all other methods, showing weak evidence to
support a significant difference.

In both bar charts, comparing the restoration methods within their classes results in over-
lapped bars, showing strong evidence that there was not a significant difference. To analyze the
relationship quantitatively, for each restoration metric (i.e., mPSNR and mSSIM), we conducted
six combinations of two-tailed two-sample t-tests for means with the baseline being a spatial
inpainting algorithm and the “after” being a flow-based algorithm. The resulting p-values are
shown in Fig. 8. Because the null hypothesis is that there is no significant difference between a
selected spatial inpainting algorithm and a flow-based algorithm, with all resulting p-values
much less than 0.01, we find strong evidence that there is a significant difference and visually
observe that flow-based algorithms have significantly higher restoration metrics than do spatial
inpainting algorithms. Indeed, FGT has the best performance of all (highest mPSR, mSSIM, and

GT SR FGT FGVC E2FGVI DeepFillv2 LaMa

Flow-based Spatial Inpainting

20pixels

20pixels

20pixels

20pixels

(a)

(b)

(c)

(d)

(1) (2) (3) (4) (5) (6) (7)

Fig. 9 Qualitative comparison of SR restoration performance. Qualitative comparison of flow-
based and single-frame restoration algorithms. Four representative SR masks (green) are applied
to qualitatively test restoration in (a)–(d). DeepFillv2 and LaMa fail to restore key structural features
such as blood vessels (green arrows), with distortions or omissions evident. DeepFillv2 also strug-
gles with larger areas, creating darker pixels and artifacts (blue rounded arrow). In contrast, optical
flow-based algorithms like FGT, FGVC, and E2FGVI preserve structural integrity and color accu-
racy. However, E2FGVI shows undesirable smoothing (white dashed arrows), affecting its quan-
titative scores. Pixel-wise scale bars illustrate relative resolution between samples.
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most statistically significant difference from conventional methods) and was therefore selected as
the restoration algorithm of choice for SpecReFlow.

Our qualitative analysis also supports the superior performance of flow-based restoration
algorithms compared with single-frame counterparts. For example, in Fig. 9, both DeepFillv2
and LaMa fail to accurately restore structurally important features such as blood vessels (indi-
cated by the green arrows), which appear distorted in some cases and not at all in others.
Furthermore, we observed that DeepFillv2 struggled to correctly inpaint larger areas such as
in Fig. 9(c)(6), which resulted in darker pixels and more artifacts (indicated by the rounded blue
arrow). Compared with the single-frame inpainting restoration algorithms, optical flow-based
algorithms (FGT, FGVC, and E2FGVI) performed favorably: not only do structural features
appear in their correct likeness, but the colors are highly matched as well. E2FGVI, however,
demonstrated undesirable smoothing (indicated by dashed white arrows), which may be respon-
sible for its lower performance on the quantitative metrics. Overall, the qualitative results reflect
the conclusions drawn from the quantitative analysis. Note that Fig. 9 contains pixel-wise scale
bars that compare the relative resolution among samples, as physical measurements were not
available. In Fig. 10, we demonstrate that our algorithm works in different lighting conditions,
in which direct replacement is not as accurate as a restoration option. A demonstration video of
the full SpecReFlow algorithm in action is provided as Video 1.

5 Conclusion
The need to improve the visualization of internal structures using endoscopy video by eliminat-
ing SR image artifacts motivates a complete and systematic approach to SR detection and resto-
ration. To this end, we have created a complete solution for removing SR artifacts from
endoscopy videos, called SpecReFlow. Our approach combines image preprocessing for contrast
enhancement, deep learning, and conventional methods for complete SR detection, and it uses
transformer and optical flow-based methods to leverage both temporal and spatial data for SR
restoration.

SpecReFlow addresses the limitations of conventional detection algorithms by being able
to detect all types of SR regions while doing so without the time-consuming, inefficient, and

Fig. 10 Restoration under different lighting conditions. Green insets show enlarged versions of
each picture covering the region of intended restoration. The blue arrows emphasize regions that
have significantly different lighting across frames. Panel (a) shows a frame with an SR region.
Panel (b) is a later frame with target pixels that are not obscured by SR; however, it has different
lighting so direct replacement is not reasonable. Panel (c) shows the restored version of panel
(a) that is free from SR artifacts with appropriate consideration of lighting changes. Panel (d) rep-
resents the baseline algorithm for restoration using homography transform for direct pixel replace-
ment, which leads to color and lighting inconsistencies (Video 1, MP4, 1.02 MB [URL: https://doi
.org/10.1117/1.JMI.11.2.024012.s1]).
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ungeneralizable empirical parameter setting needed in conventional methods. Using flow-based
restoration algorithms, our approach not only removes the need to predict features and colors
directly, as done in other spatial inpainting methods, but also fixes the issue of lighting incon-
sistencies from direct pixel replacement in multiview restoration methods by operating in the
color gradient domain. Ultimately, we showed how incorporating temporal information from
adjacent slides leads to superior restorations compared with directly inpainting the SR region.
In addition, we proposed two new metrics, mPSNR and mSSIM, to evaluate the quality of SR
restoration more accurately than existing metrics.

Although the algorithm itself works well, a particularly challenging aspect of this work is the
memory requirement. Although the vision transformer in the restoration algorithm can process
relatively many frames at once, the virtual memory overhead is cost inefficient and not scalable to
longer-duration endoscopy videos. Future investigation of memory-efficient transformer archi-
tectures, efficient loading of data from CPU to GPU, or a chunking method to encode new tem-
poral information can drastically increase the restoration performance on longer duration frames.
Another edge case is that, when both the camera/lighting and tissue are truly stationary across
many frames, the calculated optical flow (which would be minimal because there is no move-
ment) could be exploited to remove redundant frames and allow for more efficient processing.
Once the set of frames is de-duplicated and the remaining frame is restored using our proposed
algorithm, the result can be broadcasted to the initial set of duplicate frames. We leave the imple-
mentation of this memory-saving method to future work.

By providing a reliable and efficient solution for SR artifact removal in endoscopy videos,
SpecReFlow can greatly improve diagnostic accuracy and efficiency, facilitating clearer visuali-
zation for early detection and management of diseases. Furthermore, we hope that our approach
can be extended to other imaging modalities and environments to remove image artifacts in an
efficient and reliable manner.

One promising future use case for SpecReFlow Det. is to generate accurate labels for other
endoscopy datasets and build a database of annotated SRs that can be used to train a better detec-
tion network. Future work can be done with this new dataset to encode the predictions of a
multicomponent detection algorithm into a singular more efficient and well-trained model archi-
tecture that performs just as well as, if not better than, our current detection algorithm.
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